DATE: February 27, 2017 COURSE: MATH 2020 PAGE: 1 of 6 TIME: <u>50 minutes</u> EXAMINER: G.I. Moghaddam

NAME:

STUDENT # : _____

Q1 [9]	Q2 $[11]$	Q3 [6]	Q4 [10]	Q5 $[14]$	Total [50]

- 1. Let $\mathbb{N} = \{1, 2, 3, \dots\}$ be the set of all natural numbers. Define \sim on \mathbb{N} such that for each $a, b \in \mathbb{N}$, $a \sim b$ if gcd(a, 2) = gcd(b, 2).
- [6] (a) Is ~ an equivalence relation on \mathbb{N} ? Why?

[2] (b) List all the equivalence classes.

DATE: February 27, 2017 COURSE: <u>MATH 2020</u> PAGE: 2 of 6 TIME: <u>50 minutes</u> EXAMINER: G.I. Moghaddam

- 2. Let $G = \{1, 2, 3, 4, 5\}$ be a set. A binary operation * is defined on G with the table:

[3] (a) Is G associative under *? Why?

[5] (b) Find the identity element, order of each element, and inverse of each element.

[3] (c) Is (G, *) a group? Why?

DATE: February 27, 2017 COURSE: <u>MATH 2020</u> PAGE: 3 of 6 TIME: <u>50 minutes</u> EXAMINER: G.I. Moghaddam

[6] 3. Let G be a group and H be a nonempty subset of G. Prove that if $ab^{-1} \in H$ (for every $a, b \in H$), then H is a subgroup of G.

DATE: February 27, 2017 COURSE: <u>MATH 2020</u>

- 4. Consider $U(\mathbb{Z}_{10})$, that is the group of all units of \mathbb{Z}_{10} with multiplication modulo 10.
- [3] (a) List all elements of $U(\mathbb{Z}_{10})$.

[3] (b) Find
$$<\bar{9}>$$
 in $U(\mathbb{Z}_{10})$.

[4] (c) Is $U(\mathbb{Z}_{10})$ a cyclic group? Why?

	PAGE: 5 of 6
DATE: February 27, 2017	TIME: 50 minutes
COURSE: MATH 2020	EXAMINER: G.I. Moghaddam

- [14] 5. For each of the following statements determine if it is *true* or *false*.(You do not need to explain)
 - If $f: \mathbb{Q} \to \mathbb{Z}$ such that $f(\frac{p}{q}) = p + q$ where $p, q \in \mathbb{Z}, q \neq 0$, then f is a well defined function.
 - For the nonzero elements $\bar{a}, \bar{b}, \bar{c}$ in (\mathbb{Z}_6, \times) if $\bar{a}\bar{b} = \bar{a}\bar{c}$ then $\bar{b} = \bar{c}$.
 - If H_1 and H_2 are both subgroup of a group G then $H_1 \cup H_2$ is a subgroup of G.
 - If H and G are groups and $H \subset G$, then H is a subgroup of G.
 - The only elements of finite order of the group (\mathbb{C}^*, \times) are 1 and -1.
 - If $H = \left\{ \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}$ is a subgroup of the group $GL_2(\mathbb{R})$, then H is a cyclic subgroup generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - Every subgroup of the group $(\mathbb{Z}, +)$ is cyclic.

Answers:

Q1 (b) $[1] = \{1, 3, 5, 7, \dots\}, [2] = \{2, 4, 6, 8, \dots\} \text{ and } \mathbb{N} = [1] \cup [2].$

Q2 (a) No it is not. For instance $2 \star (3 \star 3) = 2$ but $(2 \star 3) \star 3 = 5$.

(b) Identity is 1 which is of order 1. For any $a \neq 1$ in G, since $a^2 = 1$ so a is of order 2 and $1^{-1} = 1, 2^{-1} = 2, 3^{-1} = 3, 4^{-1} = 4, 5^{-1} = 5$.

(c) No G is not a group because it is not associative under \star .

- Q3 Read the textbook.
- Q4 (a) $U(\mathbb{Z}_{10}) = \{\bar{1}, \bar{3}, \bar{7}, \bar{9}\}$
- (b) Since $\bar{9}^2 = \bar{1}$ so $\bar{9}$ is of order 2 and $\langle \bar{9} \rangle = \{\bar{1}, \bar{9}\}.$

(c) $(\bar{3})^0 = \bar{1}, (\bar{3})^1 = \bar{3}, (\bar{3})^2 = \bar{9}, (\bar{3})^3 = \bar{7} \text{ so } <\bar{3} >= \{\bar{1}, \bar{3}, \bar{7}, \bar{9}\} = U(\mathbb{Z}_{10})$ which means it is a cyclic group and $\bar{3}$ is a generator. Note that $\bar{7}$ is also a generator.

$$Q5 \quad F, F, F, F, F, T, T.$$