NAME: \qquad

STUDENT \# : \qquad

Q1 [9]	Q2 [11]	Q3 [6]	Q4 [10]	Q5 [14]	Total [50]

1. Let $\mathbb{N}=\{1,2,3, \cdots\}$ be the set of all natural numbers. Define \sim on \mathbb{N} such that for each $a, b \in \mathbb{N}, a \sim b$ if $\operatorname{gcd}(a, 2)=\operatorname{gcd}(b, 2)$.
[6] (a) Is \sim an equivalence relation on \mathbb{N} ? Why?
[2] (b) List all the equivalence classes.

Term Test 1

PAGE: 2 of 6
DATE: February 27, 2017 TIME: 50 minutes
COURSE: MATH 2020
EXAMINER: G.I. Moghaddam
2. Let $G=\{1,2,3,4,5\}$ be a set. A binary operation $*$ is defined on G with the table:

$*$	1	2	3	4	5
1	1	2	3	4	5
2	2	1	4	5	3
3	3	5	1	2	4
4	4	3	5	1	2
5	5	4	2	3	1

[3] (a) Is G associative under *? Why?
[5] (b) Find the identity element, order of each element, and inverse of each element.
[3] (c) Is $(G, *)$ a group? Why?

Term Test 1

PAGE: 3 of 6
DATE: February 27, 2017
TIME: 50 minutes
COURSE: MATH 2020
EXAMINER: G.I. Moghaddam
[6] 3. Let G be a group and H be a nonempty subset of G. Prove that if $a b^{-1} \in H$ (for every $a, b \in H$), then H is a subgroup of G.

Term Test 1

PAGE: 4 of 6
DATE: February 27, 2017 TIME: 50 minutes
COURSE: MATH 2020
EXAMINER: G.I. Moghaddam
4. Consider $U\left(\mathbb{Z}_{10}\right)$, that is the group of all units of \mathbb{Z}_{10} with multiplication modulo 10 .
[3] (a) List all elements of $U\left(\mathbb{Z}_{10}\right)$.
[3] (b) Find $<\overline{9}>$ in $U\left(\mathbb{Z}_{10}\right)$.
[4] (c) Is $U\left(\mathbb{Z}_{10}\right)$ a cyclic group? Why?
[14] 5. For each of the following statements determine if it is true or false. (You do not need to explain)

- If $f: \mathbb{Q} \rightarrow \mathbb{Z}$ such that $f\left(\frac{p}{q}\right)=p+q$ where $p, q \in \mathbb{Z}, q \neq 0$, then f is a well defined function.
- For the nonzero elements $\bar{a}, \bar{b}, \bar{c}$ in $\left(\mathbb{Z}_{6}, \times\right)$ if $\bar{a} \bar{b}=\bar{a} \bar{c}$ then $\bar{b}=\bar{c}$.
- If H_{1} and H_{2} are both subgroup of a group G then $H_{1} \cup H_{2}$ is a subgroup of G.
- If H and G are groups and $H \subset G$, then H is a subgroup of G.
- The only elements of finite order of the group $\left(\mathbb{C}^{*}, \times\right)$ are 1 and -1 .
- If $H=\left\{\left.\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right) \right\rvert\, n \in \mathbb{Z}\right\}$ is a subgroup of the group $G L_{2}(\mathbb{R})$, then H is a cyclic subgroup generated by $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
- Every subgroup of the group $(\mathbb{Z},+)$ is cyclic.

Answers:
Q1 (b) $[1]=\{1,3,5,7, \cdots\},[2]=\{2,4,6,8, \cdots\}$ and $\mathbb{N}=[1] \cup[2]$.

Q2 (a) No it is not. For instance $2 \star(3 \star 3)=2$ but $(2 \star 3) \star 3=5$.
(b) Identity is 1 which is of order 1 . For any $a \neq 1$ in G, since $a^{2}=1$ so a is of order 2 and $1^{-1}=1,2^{-1}=2,3^{-1}=3,4^{-1}=4,5^{-1}=5$.
(c) No G is not a group because it is not associative under *.

Q3 Read the textbook.
Q4 (a) $U\left(\mathbb{Z}_{10}\right)=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$
(b) Since $\overline{9}^{2}=\overline{1}$ so $\overline{9}$ is of order 2 and $\langle\overline{9}\rangle=\{\overline{1}, \overline{9}\}$.
(c) $(\overline{3})^{0}=\overline{1},(\overline{3})^{1}=\overline{3},(\overline{3})^{2}=\overline{9},(\overline{3})^{3}=\overline{7}$ so $\langle\overline{3}\rangle=\{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}=$ $U\left(\mathbb{Z}_{10}\right)$ which means it is a cyclic group and $\overline{3}$ is a generator. Note that $\overline{7}$ is also a generator.

$$
\text { Q5 } \quad F, F, F, F, F, T, T \text {. }
$$

