PAGE: 1 of 5
TIME: 50 minutes
DATE: March 27, 2017
COURSE: MATH 2020
EXAMINER: G.I. Moghaddam

NAME: \qquad

STUDENT \# : \qquad

Q1 [9]	Q2 [10]	Q3 [10]	Q4 [21]	Total [50]

[9] 1. Consider the dihedral group D_{4} and choose elements $s=\left(\begin{array}{ll}1 & 3\end{array}\right)$ and $r=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right)$ in D_{4} such that $s^{2}=e, r^{4}=e$ and $s r s=r^{3}$. Complete the table of D_{4}. Explain.

O	e	s	r	r^{2}	r^{3}	$s r$	$s r^{2}$	$s r^{3}$
e	e	s	r	r^{2}	r^{3}	$s r$	$s r^{2}$	$s r^{3}$
s	s	e	$s r$	$s r^{2}$	$s r^{3}$	r	r^{2}	r^{3}
r	r	$s r^{3}$	r^{2}	r^{3}	e	s		$s r^{2}$
r^{2}	r^{2}	$s r^{2}$	r^{3}	e	r	$s r^{3}$		
r^{3}	r^{3}	$s r$	e	r	r^{2}	$s r^{2}$	$s r^{3}$	s
$s r$	$s r$	r^{3}	$s r^{2}$	$s r^{3}$	s	e	r	r^{2}
$s r^{2}$	$s r^{2}$	r^{2}	$s r^{3}$	s	$s r$			
$s r^{3}$	$s r^{3}$	r	s	$s r$	$s r^{2}$	r^{2}	r^{3}	e

Term Test 2

DATE: March 27, 2017
PAGE: 2 of 5
COURSE. MATH 2020
TIME: 50 minutes
COURSE: MATH 2020
EXAMINER: G.I. Moghaddam
2. Let G and H be two groups and let $\phi: G \rightarrow H$ be an isomorphism.
[5] (a) Prove that if G is abelian, then H is abelian.
[5] (b) Prove that if G is cyclic, then H is cyclic.

Term Test 2

DATE: March 27, 2017
COURSE: MATH 2020

PAGE: 3 of 5
TIME: 50 minutes
EXAMINER: G.I. Moghaddam
[10] 3. Let \mathbb{C}^{*} be the group all complex numbers except 0 with multiplication. Prove that \mathbb{C}^{*} is isomorphic to the group H where $H=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a^{2}+b^{2} \neq 0, a, b \in \mathbb{R}\right\}$ is a subgroup of $G L_{2}(\mathbb{R})$.
4. Short answer questions:
[4] (a) Express the permutation $(1234)(45)(123)^{-1}$ as a single cycle.
[3] (b) List three elements of the alternating group A_{4}.
[3] (c) Let G be a group of order 18 and let H be a subgroup of G. What is the possible order of H ?
[4] (d) Explain why \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic.
[4] (e) Explain why for a subgroup H of a group G if $g_{1} \in g_{2} H$ and $g_{2} \in g_{1} H$ then $g_{1} H=g_{2} H$ (where $g_{1}, g_{2} \in G$).
[3] (f) The number of elements of $U\left(\mathbb{Z}_{31}\right)$ is \cdots and a generator for this group is

Answers:

Q1

O	e	s	r	r^{2}	r^{3}	$s r$	$s r^{2}$	$s r^{3}$
e	e	s	r	r^{2}	r^{3}	$s r$	$s r^{2}$	$s r^{3}$
s	s	e	$s r$	$s r^{2}$	$s r^{3}$	r	r^{2}	r^{3}
r	r	$s r^{3}$	r^{2}	r^{3}	e	s	$s r$	$s r^{2}$
r^{2}	r^{2}	$s r^{2}$	r^{3}	e	r	$s r^{3}$	s	$s r$
r^{3}	r^{3}	$s r$	e	r	r^{2}	$s r^{2}$	$s r^{3}$	s
$s r$	$s r$	r^{3}	$s r^{2}$	$s r^{3}$	s	e	r	r^{2}
$s r^{2}$	$s r^{2}$	r^{2}	$s r^{3}$	s	$s r$	r^{3}	e	r
$s r^{3}$	$s r^{3}$	r	s	$s r$	$s r^{2}$	r^{2}	r^{3}	e

Q2 (a) See the textbook page 115.
(b) Let $G=\langle a\rangle$ where $a \in G$ and let $\phi(a)=b$. Show that $H=\langle b\rangle$.

Q3 Define $\phi: \mathbb{C}^{*} \leftarrow H$ such that $\phi(a+b i)=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Show that ϕ is $1-1$, onto and preserves the group operations.

Q4 (a) (145).
(b) (1), (123), (124). In fact any cycle of length 3 in S_{4} is also an answer.
(c) $1,2,3,6,9$ and 18 .
(d) \mathbb{Z}_{4} is cyclic but $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not cyclic because all elements have order at most 2 .
(e) If $g_{1}=g_{2}$ then $g_{1} H=g_{2} H$. If $g_{1} \neq g_{2}$ then since $g_{1} \in g_{2} H$ so $g_{1} H \subset g_{2} H$ and since $g_{2} \in g_{1} H$ so $g_{2} H \subset g_{1} H$. Therefore $g_{1} H=g_{2} H$.
(f) A generator is $\overline{3}$. Also any of $\overline{11}, \overline{12}, \overline{13}, \overline{17}, \overline{21}, \overline{22}$ and $\overline{24}$.

