DATE: March 27, 2017 COURSE: MATH 2020

NAME:_____

STUDENT # : _____

Q1 $[9]$	Q2 [10]	Q3 [10]	Q4 [21]	Total $[50]$

[9] 1. Consider the dihedral group D_4 and choose elements $s = (1 \ 3)$ and $r = (1 \ 2 \ 3 \ 4)$ in D_4 such that $s^2 = e$, $r^4 = e$ and $srs = r^3$. Complete the table of D_4 . Explain.

Ο	e				r^3			
e	e	S	r	r^2	r^3	sr	sr^2	sr^3
S			sr				r^2	
		sr^3	r^2	r^3	e			
	r^2		r^3			sr^3		
	r^3			r	r^2	sr^2	sr^3	S
sr	sr	r^3	sr^2	sr^3	S	e	r	r^2
	sr^2	-			sr			
sr^3	sr^3	r	S	sr	sr^2	r^2	r^3	e

DATE: <u>March 27, 2017</u> COURSE: <u>MATH 2020</u>

- 2. Let G and H be two groups and let $\phi: G \to H$ be an isomorphism.
- [5] (a) Prove that if G is abelian, then H is abelian.

[5] (b) Prove that if G is cyclic, then H is cyclic.

DATE: Ma	rch 27,	2017
COURSE:	MATH	2020

[10] 3. Let \mathbb{C}^* be the group all complex numbers except 0 with multiplication. Prove that \mathbb{C}^* is isomorphic to the group H where $H = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a^2 + b^2 \neq 0, a, b \in \mathbb{R} \right\}$ is a subgroup of $GL_2(\mathbb{R})$.

- 4. Short answer questions:
- [4] (a) Express the permutation $(1234)(45)(123)^{-1}$ as a single cycle.

[3] (b) List three elements of the alternating group A_4 .

[3] (c) Let G be a group of order 18 and let H be a subgroup of G. What is the possible order of H?

[4] (d) Explain why \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic.

[4] (e) Explain why for a subgroup H of a group G if $g_1 \in g_2 H$ and $g_2 \in g_1 H$ then $g_1 H = g_2 H$ (where $g_1, g_2 \in G$).

[3] (f) The number of elements of $U(\mathbb{Z}_{31})$ is \cdots and a generator for this group is \cdots .

Answers:

Q1

0							sr^2	sr^3
e	e	s	r	r^2			sr^2	
S	S						r^2	
r	r	sr^3						
•	r^2						s	sr
	r^3			r	r^2	sr^2	sr^3	S
	sr							r^2
	sr^2						e	r
sr^3	sr^3	r	s	sr	sr^2	r^2	r^3	e

Q2 (a) See the textbook page 115.

(b) Let $G = \langle a \rangle$ where $a \in G$ and let $\phi(a) = b$. Show that $H = \langle b \rangle$.

Q3 Define $\phi : \mathbb{C}^* \leftarrow H$ such that $\phi(a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$. Show that ϕ is 1-1, onto and preserves the group operations.

Q4 (a) (145).

(b) (1), (123), (124). In fact any cycle of length 3 in S_4 is also an answer.

(c) 1, 2, 3, 6, 9 and 18.

(d) \mathbb{Z}_4 is cyclic but $\mathbb{Z}_2 \times \mathbb{Z}_2$ is not cyclic because all elements have order at most 2.

(e) If $g_1 = g_2$ then $g_1H = g_2H$. If $g_1 \neq g_2$ then since $g_1 \in g_2H$ so $g_1H \subset g_2H$ and since $g_2 \in g_1H$ so $g_2H \subset g_1H$. Therefore $g_1H = g_2H$.

(f) A generator is $\bar{3}$. Also any of $1\bar{1}, 1\bar{2}, 1\bar{3}, 1\bar{7}, 2\bar{1}, 2\bar{2}$ and $2\bar{4}$.