NAME:

STUDENT # : _____

Q1	Q2	Q3	Q4	Q5	Total (out of 35)

- [8] 1. For each of the following statements determine whether it is True or False.
 - (a) There is a vector space which contains only two vectors.
 - (b) Every subset of a vector space \mathbf{V} that contains the zero vector in \mathbf{V} is a subspace of \mathbf{V} .
 - (c) The set of 2×2 matrices, that each matrix contains exactly two 1's and two 0's, is a linearly dependent set in \mathbf{M}_{22} .
 - (d) Every linearly independent subset of a vector space \mathbf{V} is a basis for \mathbf{V} .
 - (e) The coordinate vector of a vector \mathbf{x} in \mathbf{R}^n relative to the standard basis for \mathbf{R}^n is \mathbf{x} .
 - (f) Every set of vectors that spans \mathbf{R}^n contains a basis for \mathbf{R}^n .
 - (g) There is a set of 18 linearly independent vectors in \mathbf{R}^{17} .
 - (h) If **W** is a subspace of \mathbf{R}^n , then $\mathbf{W} \cap \mathbf{W}^{\perp} = \{\mathbf{0}\}$.

DATE: February 14, 2014 COURSE: $\underline{MATH 2300}$ PAGE: 2 of 6 TIME: <u>60 minutes</u> EXAMINER: G.I. Moghaddam

[5] 2. Let **U** and **W** be subspaces of a vector space **V**. Prove that $\mathbf{U} + \mathbf{W}$ is also a subspace of **V** where

 $\mathbf{U} + \mathbf{W} = \left\{ \mathbf{u} + \mathbf{w} \ \middle| \ \mathbf{u} \in \mathbf{U}, \mathbf{w} \in \mathbf{W} \right\}.$

DATE: February 14, 2014 COURSE: <u>MATH 2300</u> PAGE: 3 of 6 TIME: <u>60 minutes</u> EXAMINER: G.I. Moghaddam

- [8] 3. Let $B_1 = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ and $B_2 = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be the bases for \mathbf{R}^3 in which $\mathbf{u}_1 = (1, 0, 0)$, $\mathbf{u}_2 = (0, 1, 0)$, $\mathbf{u}_3 = (2, 5, 1)$, and $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 7, 0)$, $\mathbf{v}_3 = (0, 0, 1)$.
 - (a) Find the transition matrix from B_1 to B_2 .

(b) Let $\mathbf{w} = (3, 6, 1)$; first find $[\mathbf{w}]_{B_1}$ and then use the transition matrix obtained in part (a) to compute $[\mathbf{w}]_{B_2}$ by matrix multiplication.

DATE: February 14, 2014 COURSE: <u>MATH 2300</u> PAGE: 4 of 6 TIME: <u>60 minutes</u> EXAMINER: G.I. Moghaddam

[5] 4. Find a basis and the dimension of W as a subspace of the vector space \mathbf{P}_3 where

$$W = \{a + ax^2 + bx^3 \mid a, b \in \mathbf{R}\}$$

 $[9] 5. For the matrix A = \begin{bmatrix} 1 & 0 & -2 & 1 & 0 \\ 0 & -1 & -3 & 1 & 3 \\ -2 & -1 & 1 & -1 & 3 \\ 0 & 3 & 9 & 0 & -12 \end{bmatrix}, \text{ it is given that}$ the reduced row echelon form of A is $R = \begin{bmatrix} 1 & 0 & -2 & 0 & 1 \\ 0 & 1 & 3 & 0 & -4 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$

(a) Find a basis for the column space of A.

(b) Find a basis for the null space of A.

(c) Find the rank and the nullity of A and also the nullity of A^T .

Answers

Q1: F F T F T T F T

Q2: One must prove that the set $\mathbf{U} + \mathbf{W}$ is not empty and it is closed under addition and scalar multiplication.

•

Q3:

(a)
$$P_{B_1 \to B_2} = \begin{bmatrix} 7 & -3 & -1 \\ -2 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.
(b) $[\mathbf{w}]_{B_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $[\mathbf{w}]_{B_2} = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$

Q4: $\{1 + x^2, x^3\}$ is a basis for W and dim(W) = 2.

Q5:

(a)
$$\left\{ \begin{bmatrix} 1\\0\\-2\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-1\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix} \right\}$$
 is a basis for the column space of A .

(b) $\{(2, -3, 1, 0, 0), (-1, 4, 0, 1, 1)\}$ is a basis for the null space of A.

(c)
$$rank(A) = 3$$
, $nullity(A) = 2$, $nullity(A^T) = 1$.