DATE: March 14, 2014 COURSE: <u>MATH 2300</u> PAGE: 1 of 6 TIME: <u>60 minutes</u> EXAMINER: G.I. Moghaddam

NAME:

STUDENT # : _____

Q1 (6 marks)	Q2 (6 marks)	Q3 (8 marks)	Q4 (5 marks)	Q5 (10 marks)	Total (out of 35)

- [6] 1. For each of the following statements determine whether it is True or False.
 - (a) The eigenvalues of a matrix A are the same as the eigenvalues of the reduced row echelon form of $A\,$.
 - (b) Every orthogonal set of nonzero vectors in an inner product space is linearly independent.
 - (c) In an inner product space, there exist two distinct vectors \mathbf{u} and \mathbf{v} such that $d(\mathbf{u}, \mathbf{v}) = 0$
 - (d) If **u** and **v** are vectors in an inner product space, then $\langle \mathbf{u}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{u} = 0$ or $\mathbf{v} = 0$.
 - (e) Let **W** be a subspace of an inner product space **V**. If **u** and **v** are in **W** and **w** is in **W**^{\perp} then \langle **u** + **v**, **w** \rangle = 0.
 - (f) If the characteristic polynomial of a square A is $P(\lambda) = (\lambda^2 + 1)(\lambda^4 1)$, then A is of size 6×6 and det(A) = 1.

2. In the vector space \mathbf{P}_3 , define the inner product of \mathbf{p} and \mathbf{q} by

 $\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 + a_3 b_3,$

where $\mathbf{p} = a_0 + a_1 x + a_2 x^2 + a_3 x^3$ and $\mathbf{q} = b_0 + b_1 x + b_2 x^2 + b_3 x^3$.

If
$$\mathbf{p} = 1 + x^3$$
 and $\mathbf{q} = -1 + x$ then:

[2] (a) Is \mathbf{p} orthogonal to \mathbf{q} ? Explain.

[2] (b) Find $d(\mathbf{p}, \mathbf{q})$.

[2] (c) Find the angle between \mathbf{p} and \mathbf{q} .

3. Let
$$A = \begin{bmatrix} -7 & 0 & 3 \\ 9 & 2 & -3 \\ -18 & 0 & 8 \end{bmatrix}$$
. It is given that $\det(\lambda I - A) = (\lambda + 1) (\lambda - 2)^2;$

also it is given that the eigenspaces of A are

$$W_1 = \{ t(1, -1, 2) \mid t \in \mathbf{R} \}$$
 and $W_2 = \{ t(1, 0, 3) + s(0, 1, 0) \mid t, s \in \mathbf{R} \}.$

[3] (a) Find a matrix P that diagonalizes A. Explain your work.

[5] (b) Find A^6P where P is the matrix obtained in part (a).

DATE: March 14, 2014 COURSE: MATH 2300

[5] 4. Let V be an inner product space. Show that if **u** and **v** are orthogonal unit vectors in V, then $||3\mathbf{u} - 4\mathbf{v}|| = 5$.

	PAGE: 5 of 6
DATE: March 14, 2014	TIME: $\underline{60 \text{ minutes}}$
COURSE: MATH 2300	EXAMINER: G.I. Moghaddam

[10] 5. Let \mathbf{R}^3 have the inner product $\langle \mathbf{u}, \mathbf{v} \rangle = a_1 b_1 + 2 a_2 b_2 + a_3 b_3$, where $\mathbf{u} = (a_1, a_2, a_3)$ and $\mathbf{v} = (b_1, b_2, b_3)$. Use the Gram-Schmidt process to transform a basis

{
$$\mathbf{u}_1 = (0, -1, 0), \mathbf{u}_2 = (1, 3, -1), \mathbf{u}_3 = (1, 1, -2)$$
 }

into an orthonormal basis.

Answers

Q1: F T F F T F

Q2:

- (a) No it is not.
- (b) $d(\mathbf{p}, \mathbf{q}) = \sqrt{6}$.
- (c) $\theta = \frac{2\pi}{3}$.

Q3:

(a)
$$P = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 2 & 3 & 0 \end{bmatrix}$$
.
(b) $A^6 P = \begin{bmatrix} 1 & 64 & 0 \\ -1 & 0 & 64 \\ 2 & 192 & 0 \end{bmatrix}$.

Q4: Expand $||3\mathbf{u} - 4\mathbf{v}||^2 = \langle 3\mathbf{u} - 4\mathbf{v}, 3\mathbf{u} - 4\mathbf{v} \rangle$.

Q5: $\{(0, \frac{-1}{\sqrt{2}}, 0), (\frac{1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}}), (\frac{-1}{\sqrt{2}}, 0, \frac{-1}{\sqrt{2}})\}$ is an orthonormal basis.