NAME: \qquad

STUDENT \# : \qquad

Q1	Q2	Q3	Q4	Q5	Total (out of 50)

1. Let $\left\{f_{n}(x)\right\}$ be a sequence of functions whose first four terms are

$$
\begin{array}{ll}
f_{1}(x)=2+x^{2} \cos 2 x, & f_{2}(x)=2+\frac{1}{2} x^{4} \cos 4 x, \\
f_{3}(x)=2+\frac{1}{6} x^{6} \cos 6 x, & f_{4}(x)=2+\frac{1}{24} x^{8} \cos 8 x,
\end{array}
$$

$$
\text { where }-\infty<x<\infty
$$

[3] (a) Find the general term of the sequence that is $f_{n}(x)$.
[5] (b) Determine if the sequence converges. If yes, find the limit function.

Term Test 1

PAGE: 2 of 6
DATE: February 7, 2012 TIME: 70 minutes COURSE: MATH 2132 EXAMINER: G.I. Moghaddam
[9] 2. Find the value of c such that the $3^{r d}$ - term of the Taylor series of $f(x)=\frac{1}{1+x}$ about c is $8 x^{2}+8 x+2$. Show your work.

Term Test 1

PAGE: 3 of 6
[9] 3. For $f(x)=\frac{1}{3+2 x}$, it is given that $f^{(n)}(x)=\frac{(-1)^{n} n!2^{n}}{(3+2 x)^{n+1}}$ where $n \geq 1$. Find the $n^{\text {th }}$ Taylor's remainder $R_{n}(0, x)$ and show that $\lim _{n \rightarrow \infty} R_{n}(0, x)=0$ for $0<x<\frac{3}{2}$.

Term Test 1

PAGE: 4 of 6
DATE: February 7, 2012 TIME: 70 minutes COURSE: MATH 2132 EXAMINER: G.I. Moghaddam
[9] 4. Find the radius of convergence and the open interval of convergence for the series

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(3 n)!}{2^{n} n!(2 n+1)!} x^{3 n}
$$

Term Test 1

PAGE: 5 of 6
DATE: February 7, 2012 TIME: 70 minutes
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam
[15] 5. Find the Taylor series about 2 for the function

$$
f(x)=\frac{x^{2}-4 x-2}{x^{2}+x} .
$$

Express your answer in sigma notation and simplify as much as possible. Determine the open interval of convergence.
(Hint: $\frac{x^{2}-4 x-2}{x^{2}+x}=\frac{x-2}{1+x}-\frac{2}{x}$.)

ANSWERS

Q1-a $\quad f_{n}(x)=2+\frac{1}{n!} x^{2 n} \cos 2 n x$
Q1-b $\quad \lim _{n \rightarrow \infty} f_{n}(x)=2, \quad-\infty<x<\infty$
Q2 $\quad c=-\frac{1}{2}$
Q3 First show that $0<\frac{2 x}{3+2 z_{n}}<1$ and then use squeeze theorem.
Q4 $\quad R_{x}=\frac{2}{3}, \quad-\frac{2}{3}<x<\frac{2}{3}$.
Q5 $\quad f(x)=1+\sum_{n=0}^{\infty}(-1)^{n-1}\left(\frac{1}{3^{n}}+\frac{1}{2^{n}}\right)(x-2)^{n}, \quad 0<x<4$.

