DATE: February 12, 2013 COURSE: MATH 2132		EXAM	PAGE: 1 of 6 TIME: <u>70 minutes</u> EXAMINER: <u>G.I. Moghaddam & M. Virgilio</u>		
NAME:					
STUDENT $\#$:				
	A01 G.I. Mog	haddam	D A02	2 M. Virgilio	
Q1	Q2	Q3	Q4	Q5	Total (out of 50)

[9] 1. Find all values of x for which the sequence of functions

$$\left\{\frac{(x^2-1)n^2 + (x^2+5x+6)n}{(x+1)n^2 + (x-1)n + 1}\right\}_{n=1}^{\infty}$$

is convergent. Find the limit function for those values of x.

 $\begin{array}{l} \text{DATE: February 12, 2013} \\ \text{COURSE: } \underline{\text{MATH 2132}} \end{array}$

PAGE: 2 of 6 TIME: <u>70 minutes</u> EXAMINER: <u>G.I. Moghaddam & M. Virgilio</u>

[8] 2. Find the radius of convergence and the open interval of convergence for the series

$$\sum_{n=1}^{\infty} \frac{(-1)^n \, 3^n \, n^3}{\ln(n+2)} \, x^{2n} \, .$$

DATE: February 12, 2013 COURSE: <u>MATH 2132</u>

- [12] 3. Let $f(x) = e^{3x}$ for $-\infty < x < \infty$. Then:
- [4] (a) Find the first 4 terms of the Taylor series of f(x) about -2.

[4] (b) Find $R_n(-2, x)$ (i.e. the n^{th} -remainder with c = -2).

[4] (c) Show that $\lim_{n \to \infty} R_n(-2, x) = 0$ <u>only</u> for the case x > -2.

	PAGE: 4 of 6
DATE: February 12, 2013	TIME: <u>70 minutes</u>
COURSE: MATH 2132	EXAMINER: G.I. Moghaddam & M. Virgilio

[6] 4. Find the value of \mathbf{a} for which the sum of the series

is

$$\frac{2\mathbf{a}}{\sqrt{3}}x^2 - \frac{4\mathbf{a}}{3}x^4 + \frac{8\mathbf{a}}{3\sqrt{3}}x^6 - \frac{16\mathbf{a}}{9}x^8 + \cdots$$
$$\frac{20x^2}{\sqrt{3} + 2x^2}.$$

DATE: February 12, 2013 COURSE: MATH 2132

[15] 5. Find the Taylor series about 2 for the function

$$f(x) = \frac{x-3}{x^2}.$$

Express your answer in sigma notation and simplify as much as possible. Determine the open interval of convergence.

ANSWERS

Q1
$$f(x) = -1$$
 if $x = -1$, and $f(x) = x - 1$ if $x \neq -1$.
Q2 $R_x = \frac{1}{\sqrt{3}}, \quad -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}.$
Q3-a $e^{-6} + 3e^{-6}(x+2) + \frac{9}{2}e^{-6}(x+2)^2 + \frac{9}{2}e^{-6}(x+2)^3$
Q3-b $R_n(-2,x) = \frac{3^{n+1}e^{3z_n}}{(n+1)!}(x+2)^{n+1}$ where z_n is between -2 and x .
Q3-c First show that $e^{3z_n} < e^{3x}$ and then use squeeze theorem.

Q4 a = 10.

Q5
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}(3n+1)}{2^{n+2}} (x-2)^n, \quad 0 < x < 4.$$