Term Test 1

PAGE: 1 of 6
DATE: February 12, 2013
TIME: 70 minutes
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio

NAME: \qquad

STUDENT \# : \qquad
\square A01 G.I. Moghaddam \square A02 M. Virgilio

Q1	Q2	Q3	Q4	Q5	Total (out of 50)

[9] 1. Find all values of x for which the sequence of functions

$$
\left\{\frac{\left(x^{2}-1\right) n^{2}+\left(x^{2}+5 x+6\right) n}{(x+1) n^{2}+(x-1) n+1}\right\}_{n=1}^{\infty}
$$

is convergent. Find the limit function for those values of x.

Term Test 1

PAGE: 2 of 6
DATE: February 12, 2013
COURSE: MATH 2132
TIME: 70 minutes EXAMINER: G.I. Moghaddam \& M. Virgilio
[8] 2. Find the radius of convergence and the open interval of convergence for the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} 3^{n} n^{3}}{\ln (n+2)} x^{2 n}
$$

Term Test 1

PAGE: 3 of 6
DATE: February 12, 2013
TIME: 70 minutes
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[12] 3. Let $f(x)=e^{3 x}$ for $-\infty<x<\infty$. Then:
[4] (a) Find the first 4 terms of the Taylor series of $f(x)$ about -2 .
[4] (b) Find $R_{n}(-2, x)$ (i.e. the $n^{\text {th }}$-remainder with $c=-2$).
[4] (c) Show that $\lim _{n \rightarrow \infty} R_{n}(-2, x)=0$ only for the case $x>-2$.

Term Test 1

PAGE: 4 of 6
DATE: February 12, 2013
COURSE: MATH 2132
TIME: 70 minutes
EXAMINER: G.I. Moghaddam \& M. Virgilio
[6] 4. Find the value of a for which the sum of the series

$$
\frac{2 \mathbf{a}}{\sqrt{3}} x^{2}-\frac{4 \mathbf{a}}{3} x^{4}+\frac{8 \mathbf{a}}{3 \sqrt{3}} x^{6}-\frac{16 \mathbf{a}}{9} x^{8}+\cdots
$$

is $\frac{20 x^{2}}{\sqrt{3}+2 x^{2}}$.

Term Test 1

PAGE: 5 of 6
DATE: February 12, 2013
TIME: 70 minutes
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio
[15] 5. Find the Taylor series about 2 for the function

$$
f(x)=\frac{x-3}{x^{2}} .
$$

Express your answer in sigma notation and simplify as much as possible. Determine the open interval of convergence.

ANSWERS

Q1 $\quad f(x)=-1$ if $x=-1$, and $f(x)=x-1$ if $x \neq-1$.
Q2 $\quad R_{x}=\frac{1}{\sqrt{3}}, \quad-\frac{1}{\sqrt{3}}<x<\frac{1}{\sqrt{3}}$.
Q3-a $\quad e^{-6}+3 e^{-6}(x+2)+\frac{9}{2} e^{-6}(x+2)^{2}+\frac{9}{2} e^{-6}(x+2)^{3}$
Q3-b $\quad R_{n}(-2, x)=\frac{3^{n+1} e^{3 z_{n}}}{(n+1)!}(x+2)^{n+1}$ where z_{n} is between -2 and x.
Q3-c First show that $e^{3 z_{n}}<e^{3 x}$ and then use squeeze theorem.
Q4 $\quad a=10$.
Q5 $f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(3 n+1)}{2^{n+2}}(x-2)^{n}, \quad 0<x<4$.

