Term Test 2

PAGE: 1 of 6
DATE: March 12, 2013
TIME: 70 minutes
COURSE: MATH 2132
EXAMINER: G.I. Moghaddam \& M. Virgilio

NAME: \qquad

STUDENT \# : \qquad
\square A01 G.I. Moghaddam \square A02 M. Virgilio

Q1	Q2	Q3	Q4	Q5	Total (out of 50)

[8] 1. Use the binomial expansion to find only the first three nonzero terms of the Taylor series about 1 of $f(x)=\sqrt{x}+\frac{1}{\sqrt{x}}$. Simplify your answer.
(You are not asked to find all the terms of the Taylor series. No mark will be given for any other method)

Term Test 2

PAGE: 2 of 6
DATE: March 12, 2013
COURSE: MATH 2132
TIME: 70 minutes
EXAMINER: G.I. Moghaddam \& M. Virgilio
[8] 2. Evaluate the following limit using infinite series.

$$
\lim _{x \rightarrow 0} \frac{1}{x^{3}}\left[\sqrt[3]{\left(1+x^{3}\right)^{2}}+x^{3}-1\right]
$$

(You are not allowed to use any other method.)

Term Test 2

PAGE: 3 of 6
DATE: March 12, 2013
COURSE: MATH 2132
TIME: 70 minutes EXAMINER: G.I. Moghaddam \& M. Virgilio
[8] 3. Find the sum and the open interval of convergence of the series $\sum_{n=1}^{\infty}\left(\frac{n+3}{n!}\right) x^{n+2}$.

Term Test 2

PAGE: 4 of 6
DATE: March 12, 2013
COURSE: MATH 2132
TIME: 70 minutes
EXAMINER: G.I. Moghaddam \& M. Virgilio
[11] 4. Find, in explicit form, a one parameter family of solutions for the differential equation

$$
x \frac{d y}{d x}+(1+x) y=e^{-x} \sin 2 x .
$$

Term Test 2

PAGE: 5 of 6
DATE: March 12, 2013
COURSE: MATH 2132
TIME: 70 minutes
EXAMINER: G.I. Moghaddam \& M. Virgilio
[15] 5. Find a 2 -parameter family of solutions for the differential equation

$$
2 \sqrt{x} y^{\prime \prime}=\left(y^{\prime}\right)^{2} .
$$

Is there any singular solution? Explain.

ANSWERS

Q1 $\quad f(x)=2+\frac{1}{4}(x-1)^{2}-\frac{1}{4}(x-1)^{3}+\cdots$
Q2 $\frac{5}{3}$
Q3 $\quad S(x)=x^{2}\left((x+3) e^{x}-3\right)$
Q4 $y=-\frac{\cos 2 x}{2 x e^{x}}+\frac{C}{x e^{x}}$.
Q5 $y=-2(\sqrt{x}+C)+2 C \ln |\sqrt{x}+C|+E$. Also $y=D$ is a singular solution.

