PAGE: 1 of 5
DATE: October 13, 2015
TIME: 60 minutes
COURSE: MATH 2720
EXAMINER: G.I. Moghaddam

NAME: \qquad

STUDENT \# : \qquad

Q1 [9]	Q2 [7]	Q3 [9]	Q4 [6]	Q5 [9]	Total [40]

[9] 1. Identify and sketch the graph of the quadric surface

$$
x^{2}-y^{2}+z^{2}-4 x-2 y-2 z+4=0
$$

Find the intersection point of this surface with the x-axis. Does this surface intersect the y-axis or the z-axis ?

Term Test 1

PAGE: 2 of 5
DATE: October 13, 2015
TIME: 60 minutes
COURSE: MATH 2720
EXAMINER: G.I. Moghaddam
[7] 2. Let
$\mathbf{u}(t)=\cos \pi t \hat{\mathbf{i}}-\sin \pi t \hat{\mathbf{j}}+3 \pi \hat{\mathbf{k}} \quad$ and $\quad \mathbf{v}(t)=\frac{1}{2} \sin \pi t \hat{\mathbf{i}}+\left(1+\frac{1}{2} \cos \pi t\right) \hat{\mathbf{j}}+0 \hat{\mathbf{k}}$.
First find $\mathbf{u}(t) \times(2 \mathbf{v}(t))$ and then evaluate the integral $\int(\mathbf{u}(t) \times(2 \mathbf{v}(t))) d t$.

Term Test 1

PAGE: 3 of 5
DATE: October 13, 2015 TIME: 60 minutes
COURSE: MATH 2720
EXAMINER: G.I. Moghaddam
3. Let C be the curve with vector function $\mathbf{r}(t)=\left\langle\frac{1}{2} t^{2}, \frac{4}{3} t^{\frac{3}{2}}, 2 t\right\rangle$.
[4] (a) Find the arc length of the curve C between the points at which $t=0$ and $t=2$.
[5] (b) Find the curvature of the curve C at the point at which $t=1$.

Term Test 1

PAGE: 4 of 5
DATE: October 13, 2015 TIME: 60 minutes COURSE: MATH 2720
[6] 4. Let C be the curve with vector function $\mathbf{r}(t)=\left\langle e^{t}, \sqrt{2} t, e^{-t}\right\rangle$. It is given that $\mathbf{r}^{\prime}(0)=\langle 1, \sqrt{2},-1\rangle$ and $\mathbf{N}(0)=\left\langle\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right\rangle$. Find the equation of the osculating plane of the curve C at the point $P(1,0,1)$.
5. Let $f(x, y)=\frac{\sqrt{x^{2}-y}}{\sqrt{2 x}}$.
[4] (a) Find and sketch the domain of $f(x, y)$.
[5] (b) Identify the level curves of $f(x, y)$ and sketch only two of the level curves.

