PAGE: 1 of 5

DATE: November 12, 2015
COURSE: MATH 2720

TIME: 70 minutes
EXAMINER: G.I. Moghaddam

NAME: \qquad

STUDENT \# : \qquad

Q1 [10]	Q2 [10]	Q3 [10]	Q4 [10]	Q5 [10]	Total [50]

1. Evaluate each of the following limits or explain why it does not exist.
[5] (a) $\lim _{(x, y) \rightarrow(1,0)} \frac{(x-1) y}{y^{2}+(x-1)^{2}}$
[5] (b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{4}}{4 x^{2}+y^{2}}$

Term Test 2

PAGE: 2 of 5
COURSE: MATH 2720
TIME: 70 minutes
EXAMINER: G.I. Moghaddam
2. Let $f(x, y)=1+x \ln (x y-1)$.
[3] (a) Show that the function f is differentiable at the point $(2,1)$.
[4] (b) Find the linearization $L(x, y)$ of the function f at the point $(2,1)$.
[3] (c) Use part (b) to approximate $f(2.01,0.99)$.

Term Test 2

DATE: November 12, 2015
PAGE: 3 of 5 TIME: 70 minutes
COURSE: MATH 2720
EXAMINER: G.I. Moghaddam
[10] 3. If $g(s, t)=f\left(2 t^{3}-s^{3}, s^{3}-2 t^{3}\right)$ and f is differentiable, show that g satisfies the equation

$$
2 t^{2} g_{s}+s^{2} g_{t}=0
$$

4. Let $P(\sqrt{2}, 0, \sqrt{2})$ be a point and suppose that the temperature at a point (x, y, z) in space is given by $T(x, y, z)=e^{x^{2}+y^{2}-z^{2}}$.
[6] (a) Find the rate of change of the temperature at the point P in the direction of the vector $\mathbf{u}=(1,-4,-1)$.
[2] (b) In which direction does the temperature increases fastest at P ?
[2] (c) Find the maximum rate of increase at P.

Term Test 2

PAGE: 5 of 5 TIME: 70 minutes
DATE: November 12, 2015 COURSE: MATH 2720 EXAMINER: G.I. Moghaddam
[10] 5. Find and classify all critical points of $f(x, y)=3 x y-x^{2} y+x y^{2}$.

