Math 3132 Practice Questions (Fall 2019)

Part 1 (Sections 14.1-14.4)

1. Let $\mathbf{F}(x, y, z)=\frac{1}{2} x^{2} \hat{\mathbf{i}}+y^{2} \hat{\mathbf{j}}+3 z^{2} \hat{\mathbf{k}}$ and $f(x, y, z)=\frac{-1}{x+2 y+6 z}$. Find values of a, b, and c such that

$$
(\nabla \cdot \mathbf{F})^{2} \nabla f-(a, 2 b, 3 c)=\nabla \times(\nabla f-\mathbf{F}) .
$$

2. Let \mathbf{F} be a vector field. If $\nabla \cdot \mathbf{F}=0$ and $\nabla \times \mathbf{F}=\mathbf{0}$, then is $\mathbf{F}=\mathbf{0}$? If yes prove it and if no give a counter example.
3. Evaluate the line integral of $f(x, y, z)=\left(x^{2}+\frac{y^{2}}{3}\right)^{2}+60 x^{3} y-1$ along the curve C, where C is that part of $x^{2}+\frac{y^{2}}{3}=1, z=0$ from $(1,0,0)$ to $(0, \sqrt{3}, 0)$.
4. Let C be a curve with initial and final points A and B. Also let $f(x, y, z)$ and $\mathbf{F}(x, y, z)$ be a real valued function and a vector field defined along C such that $\int_{C} f d s=2$, $\int_{C} \nabla f \cdot d \mathbf{r}=4$ and $\int_{C} \mathbf{F} \cdot d \mathbf{r}=5$. Show that

$$
\int_{-C}(3 \nabla f-2 \mathbf{F}) \cdot d \mathbf{r}+\int_{-C} 4 f d s=6
$$

where $-C$ is the same as C with the opposite direction, that is with initial and final points B and A. Explain your work.
5. (a) Is the line integral $\int y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z$ independent of path in \mathbf{R}^{3} ? Why?
(b) Evaluate $\int_{C} y^{2} z^{3} d x+2 x y z^{3} d y+3 x y^{2} z^{2} d z$ where C is the curve with parametric equations

$$
C: \quad x=(1-t)^{2}, \quad y=t^{2}, \quad z=t, \quad 0 \leq t \leq 2 .
$$

6. Evaluate $\int_{C} e^{x+y z^{2}} d x+z^{2} e^{x+y z^{2}} d y+2 y z e^{x+y z^{2}} d z$ where C is the curve $\frac{x^{2}}{16}+(y-4)^{2}=1, \quad y-z=5$ from $(4,4,-1)$ to $(0,5,0)$.

Part 2 (Sections 14.5-14.7)

7. Let $\mathbf{F}(x, y)=\left(\frac{2}{3} x y \sqrt{y}\right) \hat{\mathbf{i}}+\left(\frac{3}{2} x^{2} \sqrt{y}\right) \hat{\mathbf{j}}$. Find the work done by \mathbf{F} on a particle that moves along C where C traverses once counter-clockwise around the region in the $x y$-plane bounded by the parabolas $y=x^{2}, y=(x-2)^{2}$ and the line $y=0$.
8. Find the area of that part of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ which is not in the third quadrant.
9. Evaluate the surface integral $\iint_{S} x y d S$ where S is that part of the paraboloid $z=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$ inside the sphere $x^{2}+y^{2}+z^{2}=3$ in the first octant.
10. Evaluate the surface integral of $f(x, y, z)=2 y^{2} z$ over the surface S, where S is that part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies above the cone $z=\sqrt{x^{2}+y^{2}}$.

Part 3 (Sections 14.8-14.9)

11. Let S be that part of sphere $x^{2}+y^{2}+z^{2}=5$ above the plane $z=2$. Evaluate $\iint_{S} \mathbf{F} \cdot \hat{\mathbf{n}} d S$, where

$$
\mathbf{F}(x, y, z)=y \hat{\mathbf{i}}-\mathbf{x} \hat{\mathbf{j}}+\sqrt[3]{\left(1-x^{2}-y^{2}\right)^{2}} \hat{\mathbf{k}},
$$

and $\hat{\mathbf{n}}$ is the unit upper normal to the surface S.
12. Evaluate the surface integral $\oiint_{S}\left(\frac{4}{3} x^{3} \hat{\mathbf{i}}+\frac{4}{3} y^{3} \hat{\mathbf{j}}-z \hat{\mathbf{k}}\right) \cdot \hat{\mathbf{n}} d S$, where S is the surface enclosing the volume defined by $z=2-x^{2}-y^{2}, z=\sqrt{x^{2}+y^{2}}$, and $\hat{\mathbf{n}}$ is the unit outer normal to S.

Part 4 (sections 14.10 and 17.1)

13. Evaluate the line integral $\oint_{C} y^{2} d x+x z^{3} d y+x^{3} d z$ where C is the curve of intersection of sphere $x^{2}+y^{2}+z^{2}=8$ and the cone $x^{2}+y^{2}=z^{2}$ with $z \geq 0$, directed clockwise as viewed from the origin.(Do it with and also without Stokes' s Theorem.)
14. Evaluate $I=\oint_{C}\left[\left(x y+3 x^{2} y^{2}\right) \hat{\mathbf{i}}+\left(z+2 x^{3} y\right) \hat{\mathbf{j}}+\left(z^{2}+x^{2} z^{2}\right) \hat{\mathbf{k}}\right] \cdot d \mathbf{r}$, where C is the curve $x^{2}+z^{2}=1, x^{2}+y^{2}=1, z=y$, directed counterclockwise as viewed from a point far up the positive z-axis.
15. Assuming that $y=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}$ is a solution of the differential equation

$$
(x-1)^{2} y^{\prime \prime}-(x-1) y^{\prime}-\left(x^{2}-2 x\right) y=0
$$

find a recurrence relation for a_{n} and simplify it as much as possible. (Do not continue after finding the recurrence relation).
16. For the differential equation $x y^{\prime \prime}+3 y^{\prime}-x y=0$, when you use the power series $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ to solve the differential equation, you get

$$
3 a_{1}+\sum_{n=2}^{\infty}\left[n(n+2) a_{n}+a_{n-2}\right] x^{n-1}=0 .
$$

You do not need to prove this relation. Use it to find the solution of the differential equation. Write your solution using sigma notation and simplify as much as possible.
17. Use $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ to solve the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
$$

Simplify as much as possible. Is this solution a general solution? What is the interval of convergence?

Part 5 (sections 17.2, 18.1 and 18.2)

18. Consider the differential equation

$$
(\sin x) y^{\prime \prime}+\frac{\sin x}{x^{2}+16} y^{\prime}+(x \cos x) y=0
$$

(a) Is $x=0$ a singular point for the differential equation? Why?
(b) Find all real or complex singular points of the differential equation.
(c) What can be said about the radius of convergence of a power series solution about $x=3$ for the differential equation?
(You are not asked to solve the differential equation.)
19. Consider the differential equation

$$
\left(x^{2}-2 x+2\right) y^{\prime \prime}+x^{2} y^{\prime}-\left(\sin ^{2} x\right) y=0 .
$$

(a) Find all real or complex singular points of the differential equation.
(b) If $y(x)=\sum_{n=0}^{\infty} a_{n}(x+1)^{n}$ is used to solve this differential equation, will the result be a general solution? What can be said about the radius of convergence of this power series solution? Justify your conclusions.(You do not need to solve the differential equation.)
20. Let $f(x)=\left\{\begin{array}{ll}x-1 & \text { if } 0<x<1 \\ 0 & \text { if } 1<x<2\end{array}\right.$ with $f(x+2)=f(x)$.
(a) On the interval $-4 \leq x \leq 4$, draw the graph of $f(x)$; also draw the graph of the function $g(x)$ to which the Fourier series of $f(x)$ converges. Describe $g(x)$.
(b) Find the Fourier series for the periodic function $f(x)$. Simplify your answer as much as possible.
(c) Use part (b) to find the sum $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
21. Let $f(x)=\left\{\begin{array}{ll}8 x+16 x^{2} & \text { if }-\frac{1}{4}<x \leq 0 \\ 8 x-16 x^{2} & \text { if } 0<x \leq \frac{1}{4}\end{array}\right.$ with $f\left(x+\frac{1}{2}\right)=f(x)$.
(a) Draw the graph of $f(x)$ in the interval $-\frac{5}{4} \leq x \leq \frac{5}{4}$.
(b) Draw the graph of the function $g(x)$ to which the Fourier series of $f(x)$ converges to, in the interval $-\frac{5}{4} \leq x \leq \frac{5}{4}$. Describe $g(x)$.

Part 6 (section 18.2)

22. Let $f(x)=\left\{\begin{array}{ll}0 & \text { if }-1<x<-\frac{1}{2} \\ 1+2 x & \text { if }-\frac{1}{2}<x<0 \\ 1-2 x & \text { if } 0<x<\frac{1}{2} \\ 0 & \text { if } \frac{1}{2}<x<1\end{array} \quad, \quad\right.$ with $f(x+2)=f(x)$.
(a) Draw the graph of $f(x)$ and also the graph of the function $g(x)$ to which the Fourier series of $f(x)$ converges to, in the interval $-3 \leq x \leq 3$.

(b) Find Fourier series of $f(x)$ and simplify as much as possible. Use it to evaluate the sum $\sum_{n=0}^{\infty} \frac{1}{(2 n-1)^{2}}$.
23. Let $f(x)=3 x-2$ where $0 \leq x \leq \frac{1}{4}$. Expand $f(x)$ to a Fourier cosine series such that the Fourier cosine series converges to $f(x)$ on the interval $0<x<\frac{1}{4}$.

Part 7 (sections 19.1, 19.2 and 20.1-20.3)

24. Let $f(x)=3 x-2$ where $0 \leq x \leq \frac{1}{4}$. Expand $f(x)$ in terms of the eigenfunctions of the Sturm-Liouville system

$$
y^{\prime \prime}+\lambda y=0, \quad 0<x<\frac{1}{4}, \quad y(0)=0, \quad y^{\prime}(L)=0 .
$$

25. Consider the Sturm-Liouville system

$$
\begin{aligned}
y^{\prime \prime}+4 y^{\prime}+(1-2 \lambda) y & =0, \quad 0<x<L, \\
y(0) & =0, \\
y(L) & =0 .
\end{aligned}
$$

(a) Find the standard form of the Sturm-Liouville system.
(b) If $\lambda<-\frac{3}{2}$, find all eigenvalues and eigenfunctions of the Sturm-Liouville system.
26. A string with constant linear density ρ is stretched tightly between the points $x=0$ and $x=12$ on the x-axis. The tension in the string is a constant τ. The displacement of the string at time $t=0$ is shown in the figure below, and from this position, it is released. The right end of the string is fixed on the x-axis, but the left end is looped around a vertical rod, and can move vertically without friction. A restoring force proportional
to displacement and also gravity are taken into account. What is the initial-value problem for displacement $y(x, t)$ of the string? Include the partial differential equation, and all boundary and initial conditions, and include intervals on which they must be satisfied.

