DATE: November 9, 2011 COURSE: MATH 3132

NAME:_____

STUDENT # : _____

Q1	Q2	Q3	Q4	Total (out of 40)

[10] 1. Consider the differential equation x y"+(x² cos x) y'+(tan x) y = 0.
(a) Find all singular points (if any) of the differential equation.

(b) What can be said about the radius of convergence of a power serires solution about x = 1 of the differential equation.

[10] 2. Use Stokes's theorem to evaluate the line integral

 $\oint_C -x^2 yz \, dx \, + \, xy^2 z \, dy \, + \, 3 \, dz$

where C is the curve of intersection of the cone $z=4-\sqrt{x^2+y^2}$ and the plane $z=3\,$, directed clockwise as viewed from the point (0,0,2) .

DATE: November 9, 2011 COURSE: MATH 3132 PAGE: 3 of 4 TIME: <u>70 minutes</u> EXAMINER: G.I. Moghaddam

[12] 3. Solve the differential equation 2x y'' + (1-x) y' - y = 0 using power series $y = \sum_{n=0}^{\infty} a_n x^n$. Write your answer in sigma notation and simplify as much as possible. Find the interval of convergence.

	PAGE: 4 of 4
DATE: November 9, 2011	TIME: <u>70 minutes</u>
COURSE: <u>MATH 3132</u>	EXAMINER: G.I. Moghaddam

[8] 4. Find the radius and the open interval of convergence of a power series solution about x = 3 for the differential equation

$$(x+3)(x^2+9)y'' + (x^2-9)y' + (x^4+9x^2)y = 0.$$

(You are \mathbf{not} asked to solve the differential equation)

	PAGE: 5 of 4
DATE: November 9, 2011	TIME: <u>70 minutes</u>
COURSE: <u>MATH 3132</u>	EXAMINER: G.I. Moghaddam

[10] 5. Find the Fourier series for the periodic function f(x) whose graph is given for $-3 \le x \le 3$. Simplify your answer as much as possible. Also draw the graph of the function to which the Fourier series converges for $-3 \le x \le 3$.

