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A Generalized Earning-Based Stock Valuation Model 
with Learning 

 
 

Abstract 
This paper extends a recent generalized complete information stock valuation 

model with incomplete information environment. In practice, mean earnings-per-share 
growth rate (MEGR) is random and unobservable. Therefore, asset prices should reflect 
how investors learn about the unobserved state variable. In our model investors learn 
about MEGR in continuous time. Firm characteristics, such as stronger mean reversion 
and lower volatility of MEGR, make learning faster and easier. As a result, the magnitude 
of risk premium due to uncertainty about MEGR declines over learning horizon and 
converges to a long-term steady level. Due to the stochastic nature of the unobserved 
state variable, complete learning is impossible (except for cases with perfect correlation 
between earnings and MEGR). As a result, the risk premium is non-zero at all times 
reflecting a persistent uncertainty that investors hold in an incomplete information 
environment.  

 
 
 



I. Introduction  

This paper extends the earnings-based stock valuation model of Bakshi and Chen 

(2005) (BC hereafter) by relaxing the complete information assumption and allowing for 

a market with incomplete information. To this end, we assume as in the BC model that 

earnings growth is observed by investors. However, they do not observe the 

instantaneous mean of earnings growth rate (thereafter, MEGR). The MEGR is an 

additional state variable, and we model it as a mean-reverting process. Our model allows 

for continuous learning about the unobserved state variable, and asset prices reflect this 

learning process. We investigate the effects of firm characteristics, such as mean-

reversion speed and volatility of earnings growth, on differences in asset pricing between 

our incomplete-information and the BC complete-information models as well.  

 

Our results indicate that the faster the earnings-growth mean reverts to its long-

term value, the smaller the mispricing attributed to information incompleteness. This 

effect results from the fact that the higher speed of reversion towards the constant long-

term mean leads to a faster exponential decay of any initial deviation from this mean and, 

therefore, faster learning. Ceteris paribus, the higher volatility of the unobservable 

MEGR results in larger mispricing. This result is more pronounced for younger firms 

with shorter learning horizons for which, naturally, there is a short history of data 

available for learning. This finding is consistent with Pastor and Veronesi (2003), who 

predict that M/B declines over a typical firm’s lifetime, and younger firms should have 

higher M/B ratios than otherwise identical older firms since uncertainty about younger 

firms’ average profitability is greater.  

 

In our model the mean squared error of MEGR estimate, a measure of the degree 

of learning, persists and remains especially large for short learning horizons. The 

persistent uncertainty of the MEGR estimate generates an extra risk premium beyond 

what is accounted for in the complete information model. Over time both the uncertainty 

about MEGR estimate and extra risk premium decline to equilibrium levels as more 

information becomes available. In a perfect learning environment (e.g., unobservable 

MEGR is perfectly correlated with earnings), the extra risk premium on MEGR declines 



and converges to zero in the long run. At the same time, the variance of the estimate of 

MEGR decreases over learning horizon and converges to zero.1

 

 Perfect correlation 

implies that investors eventually have complete knowledge of the true process of the 

mean growth rate.  

However, in non-perfect learning environment, the extra risk premium on MEGR 

never vanishes regardless of learning horizon. This long run risk premium reflects a 

persistent uncertainty that investors hold in an incomplete information environment.  

 

For comparison, we compute the risk premiums based on our incomplete-

information model and the complete-information model of BC. First, MEGR risk 

premium in incomplete information case is always bigger than that under complete 

information environment. They are the same only if the correlation between earnings and 

MEGR is perfect. Second,  The difference in MEGR risk premiums declines with 

learning horizon faster for firms with larger correlation between earnings and underlying 

MEGR. Third, for 20 technology stocks used in Bakshi and Chen (2005), we find that the 

difference in risk premiums can be as high as 40%-50% for short learning horizons of 

several months. Given BC parameter values the difference declines to a steady state level 

after 6-11 months. Finally, the level of incomplete information premium can reach up to 

7 percent for firms with short learning horizons and weaker mean reversion even if their 

earnings are perfectly correlated with MEGR.  

 

The equilibrium stock prices computed based on our model have patterns similar 

to those of risk premiums. With perfect correlation between earnings growth and MEGR, 

investors perfectly learn about MEGR within ~ 11 months (based on 20 technology stock 

data of Bakshi and Chen, 2005). By this time there is no longer any difference in prices 

between BC model and our model. Further, average price differential between our model 

and BC model ranges from 0 percent for perfect learning case (the correlation between 

                                                 
1 When the correlation between earnings and their latent MEGR is perfectly negative, this result holds as 
long as the speed of mean reversion is not too small relative to the volatility of MEGR. This condition is 
the consequence of measuring the long-term uncertainty of MEGR by the ratio of the earnings volatility to 
the speed of mean reversion. See Proposition 1 below. 



earnings and MEGR is perfect) to -15.5% for zero-learning case (the correlation between 

earnings and MEGR is zero), with incomplete information price being lower on average. 

The lower stock price based on our incomplete-information model is corresponding to the 

extra risk premium on MEGR that investors demand implying that investors’ uncertainty 

about MEGR should be compensated.  

 

We find that the price differential between our model and that of BC, defined as 

pricing error, can persist for years even under perfect learning conditions. The more 

volatile MEGR is, the longer the persistence. We also show that fast mean-reversion 

speed of MEGR facilitates learning in that pricing errors are small in magnitude even 

after short learning process; while with low mean-reversion speed of MEGR, pricing 

errors are reduced substantially only after long learning process. Holding MEGR’s 

volatility and mean-reversion speed constant, we find that there is a negative association 

between long-term pricing errors and degree of incompleteness of information 

environment as reflected by correlation between earnings and MEGR (in absolute value). 

For an extreme incomplete-information environment, such as one with zero correlation 

between earnings and MEGR, investors basically learn nothing about state variable 

MEGR from earnings. In this case, pricing errors are largest on average. Finally, we show 

that pricing errors still exist after long learning horizon (e.g., eight years) with precisely 

estimated MEGR as long as the information environment is incomplete. The non-

vanishing pricing errors reflect residual risk premium (not present in the complete 

information model) due to investors’ imperfect forecasts of the underlying state variable. 

 

The remainder of the paper is organized as follows. The next section discusses 

related literature. Section 3 extends the complete information stock valuation model by 

modeling investors’ inference about an unobserved state variable. Section 4 compares 

risk premiums and prices in the incomplete and complete information models. Section 5 

concludes the paper. 

 

2. Related Literature 

Prior studies, such as Grossman and Shiller (1981), have found that the volatility 



of stock return is too high relative to the volatility of its underlying dividends and 

consumption.2

 

 The discrepancy between the high volatility of stock return and low 

volatility of dividends and consumption is viewed as the basic reason for the equity 

premium puzzle in recent work such as Campbell (1996) and Brennan and Xia (2001). To 

reconcile the discrepancy, learning about an unobservable state variable, such as the 

dividend growth rate, has been introduced to stock valuation (see, for example, 

Timmermann, 1993;  Brennan, 1998; Brennan and Xia, 2001; Veronesi, 1999 and 2001, 

and Lewellen and Shanken, 2002).   

Most of traditional stock valuation models neglect the learning process and 

implicitly assume that state variables for return predictability are known to investors (see, 

for example, Merton, 1971, and 1973; Samuelson, 1969, Breedon, 1979, and Bakshi and 

Chen, 2005). However there is substantial evidence indicating that market information is 

incomplete (see, for example, Faust, Rogers, and Wright, 2000; and Shapiro and Wicox, 

1996). With an incomplete information set, investors may face an estimation risk because 

they are unable to observe many of state variables characterizing financial markets. This 

limitation is recognized by recent studies, (see, for example, Williams, 1977; Dothan and 

Feldman, 1986; Detemple, 1986; Gennotte, 1986; Timmerman, 1993; Brennan, 1997; and 

Feldman, 2007), which examine the role of learning with incomplete information in 

equilibrium.  

 

For example, Timmermann (1993) provides a simple learning model, in which 

average dividend growth is unknown, to account for the fact that agents may not observe 

the true data-generating process for dividends. The model of Timmermann (1993) shows 

that dividend surprise affects stock price not only through current dividends but also 

through the effect on expected dividend growth rate, which also changes expected future 

dividends. The latter effect also explains why return volatility is much higher than that of 

dividend growth. 
                                                 
2 Among others, Brennan and Xia (2001) state that the standard deviation of real annual continuously 
compounded stock returns in the U.S. was 17.4 % from 1871 to 1996, while the standard deviation for 
dividend growth was only 12.9 %, and 3.44 % for consumption growth. Pastor and Veronesi (2009) 
document that the postwar volatility of market returns was 17% per year while volatility of dividend 
growth was 5%. 



 

Instead of using price-to-dividend ratio (P/D), Pastor and Veronesi (2003) assume 

that M/B is the only observed state variable but its long term mean (a constant) is not. 

Their learning model predicts that the uncertainty of the estimate declines to zero 

hyperbolically. In the end, the case is identical to complete information. In a later study, 

Pastor and Veronesi (2006) calibrate their 2003 model to value stocks at the peak of the 

Nasdaq “bubble” in March 2000. They find a positive link between uncertainty about 

average dividend growth and the level and variance of stock prices. Pastor and Veronesi 

(2006) argue that the observed Nasdaq bubble is associated with the time-varying nature 

of uncertainty about technology firms’ future productivity, and can be explained by 

learning model.  Pastor and Veronesi (2009) extend Timmermann (1993) and show the 

positive association between the volatility of stock returns and its sensitivity to the 

uncertainty of average dividend growth. 

 

The calibration of Pastor and Veronesi (2003) model to annual data from the 

CRSP/COMPUSTAT database shows that it takes about 10 years with learning to revert 

to complete information case under their parameter values. Further, once their model 

reverts back to complete information case, eventually there is no risk premium associated 

with uncertainty about latent state variable (mean of dividend growth rate). This result is 

the artifact of the long term mean being a constant (although unknown). In contrast, 

MEGR in our model is an additional state variable. Complete learning is impossible 

(except for perfect correlation cases) and therefore risk premium is non-zero at all times. 

The non-vanishing risk premium in our model reflects a persistent uncertainty that 

investors hold in an incomplete information environment. The greater risk premium on 

MEGR results in lower stock price as a compensation to investors for remaining 

uncertainty about the state variable.  

 

In a more sophisticated framework, Brennan and Xia (2001) provide a dynamic 

equilibrium model of stock prices in which representative agents learn about time-

varying mean of dividend growth rate. They claim that the non-observability of expected 

dividend growth demands a learning process which increases the volatility of stock 



prices. The calibration of their model matches the observed aggregate dividend and 

consumption data for the U.S. capital market. Unlike us, they assume a constant risk-less 

interest rate in their dynamic model. Similarly, Pastor and Veronesi (2003) do not model 

risk free rate as random. In contrast, our model incorporates a stochastic interest rate into 

a pricing-kernel process to discount future risky payoff. The dynamic interest rate is 

consistent with a single-factor Vasicek (1977) interest-rate process which makes the 

model arbitrage-free as in Harrison and Kreps (1979).  

 

Bakshi and Chen (2005) derive an earnings-based stock valuation model which is 

directly related to our paper. The model of Bakshi and Chen (2005) makes a more 

realistic assumption about the stochastic nature of risk-free interest rate. They adopt a 

stochastic pricing kernel process together with a mean-reverting process of earnings. 

Based on a sample of stocks and S&P 500 index, they show that the empirical 

performance of their model produces significantly lower pricing errors than existing 

models. 3

 

  

In contrast to Bakshi and Chen (2005), in our model we recognize that the state 

variable, MEGR, is uncertain and subject to learning. In our model investors estimate 

MEGR based on earnings growth observations. Our incomplete-information model shows 

that the uncertainty about MEGR declines exponentially over time. Complete information 

case of Bakshi and Chen (2005) is a special case of our model with perfect correlation 

between MEGR and earnings growth in the limit of very long learning horizons. In 

addition, in our model estimates of state variable are imprecise resulting in an 

incremental risk premium not present in complete information models. 

 

3. A Generalized Earnings-Based Model with Incomplete-information 

                                                 
3 However, the applicability of Bakshi and Chen (2005) model is limited to stocks with zero or negative 
earnings. To address this issue, Dong and Hirshleifer (2004) introduce an alternative earnings adjustment 
parameter to the earnings process of BC model. The models of both Bakshi and Chen (2005) and Dong and 
Hirshleifer (2004) implicitly assume that information is complete about the mean of earnings growth rate. 
However, they do not recognize that the state variable, mean of earnings growth rate, is unobservable and 
has to be learned by observing realized earnings data. 
 



In this section, we introduce an incomplete-information stock valuation model, in 

which investors estimate the latent state variable, MEGR. We retain several desirable 

features in the BC model.  

 

Assumption 1: The basic building block for pricing is earnings rather than 

dividends. ττ dD )(  is dividend-per-share paid out over a time period τd , and it is 

assumed to be equal, on average, to a fraction of the firm’s earning-per-share (EPS) with 

white noise that is uncorrelated with the pricing kernel, 

),()()( tdwdttYdttD d+= δ      (1) 

where 10 ≤≤ δ , which is a constant dividend-payout ratio, and )(tdwd  is the increment 

to a standard Wiener process that is orthogonal to everything else. 4

 

  

The constant dividend-payout-ratio assumption is widely used in equity literature 

(eg. Lee et al. 1999; and Bakshi and Chen, 2005). 5

)(tdwd

 Consistent with Bakshi and Chen 

(2005), the inclusion of allows firm’s paid dividend to randomly deviate from a 

fixed percentage of earnings. In practice, many firms do not pay cash dividends and 

therefore the implementation of dividend-based valuation model is limited (e.g., Gordon 

model and its variants). 6

 

 To avoid this problem, the specification in equation (1) allows 

us to value stocks based on firm’s earnings, instead of cash dividends directly.  

Assumption 2: As in BC model, earnings growth in our model follows arithmetic 

Brownian motion. EPS, denoted by Y, follows an Itô process: 

                                                 
4 The white noise process of )(tdwd is uncorrelated with other variables, (eg., earnings growth, MEGR, 
risk-less interest rate, and pricing kernel), and therefore not a priced risk factor.   
5 In practice, many aspects are exogenous (eg. firm’s production plan, operating revenues and expenses, 
target dividend-payout-ratio) to net earnings process and any deviation from the fixed exogenous structure 
will affect the earnings process. To simplify the valuation of cash flow, Bakshi and Chen (2005) assume 
that the earnings process indirectly incorporates these aspects reflecting firm’s investment policy and 
growth opportunities.  
6 Fama and French (2001) find that, in recent years, many firms (especially technology firms) repurchase 
outstanding shares or reinvest in new projects with earnings, instead of paying cash dividends. As shown in 
the bottom panel of Figure 7 of their paper, the fraction of firms that pay no dividend rises from 27 percent 
in 1963 drastically to 68 percent in 2000.  Similarly, while only 31 percent of firms neither pay dividends 
nor repurchase shares in 1971 (when repurchase data is available), the fraction grows to 52 in 2000. 
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MEGR, denoted by G(t), follows an Ornstein-Uhlenbeck mean-reverting process: 
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where gyggk σσµ  and , , , 0 are constants, and )(tdwy  and )(td gω  are increments to 

standard Wiener processes. Shocks to G(t), the MEGR, are correlated with shocks to EPS 

growth with an instantaneous correlation coefficient gyρ . The orthogonal part of )(td gω  

is denoted by )(0 tdw . The long-term mean for )(tG , under the actual probability 

measure, is 0
gµ , and the speed at which )(tG reverts to 0

gµ  is governed by gk .  

 

The specification in equation (2) provides a link between actual EPS growth and 

expected EPS growth. Both EPS growth (actual and expected), as Bakshi and Chen 

(2005) analyze that, could be positive or negative reflecting firm’s transition stages in its 

growth cycle.  The mean-reverting process for expected EPS growth G(t) in equation (3) 

implies that any deviations of G(t) from its long-term mean 0
gµ  decline exponentially 

over time.  

 

Assumption 3: The pricing kernel follows a geometric Brownian motion, which 

makes the model arbitrage-free as in Harrison and Kreps (1979): 

)()(
)(
)( tdwdttR

tM
tdM

mmσ−−= , 

where mσ  is a constant, and )(tR  is the instantaneous riskless interest rate. 

 

Assumption 4: The instantaneous riskless interest rate, )(tR , follows an 

Ornstein-Uhlenbeck mean-reverting process: 

)())(()( 0 tdwdttRktdR rrrr σµ +−= , 

where rk , 0
rµ and rσ are constants. This process is consistent with a single-factor 

Vasicek (1977) interest-rate process.  



 

Shocks to earnings growth, denoted by )(twy in equation (2), is correlated with 

systematic shocks )(twm  and interest rate shocks )(twr  with their respective correlation 

coefficients, denoted by myρ  and yrρ . In addition, )(twg is correlated with )(twm and 

)(twr  with correlation coefficients mgρ  and grρ , respectively. Consistent with BC, both 

actual and expected EPS growth shocks are priced risk factors.  

 

Following the BC model we consider a continuous-time, infinite-horizon 

economy with an exogenously specified pricing kernel, )(tM . For a firm in this 

economy, its shareholders receive infinite dividend stream }0 : )({ ≥ttD as specified in 

equation (1). The per-share price of firm’s equity, ,tP  for each time ,0≥t  is determined 

by the sum of expected present value of all future dividends, as given by 

τττ dD
tM

MEP
t tt )](

)(
)([∫

∞
= ,     (4) 

where )(⋅tE is the time-t conditional expectation operator with respect to the objective 

probability measure.  

 

Following assumptions 1 to 4, the equilibrium stock price at time t is determined 

by three state variables: Y(t), G(t), and R(t). Note that, EPS and risk-less interest rate, Y(t) 

and R(t), are observable at time t. However, the mean EPS growth, G(t), is unobservable 

in any point of time in practice. Bakshi and Chen (2005) use analyst estimates as 

unobserved G(t) to implement their valuation formula, in which the uncertainty about 

estimates is neglected, and the associated risk premium is missing in asset prices. In 

contrast, we recognize the fact that investors cannot observe G(t) and have to learn it by 

observing available relevant information, such as earnings. The learning process in our 

model affects risk premium and equilibrium prices reflecting investors’ uncertainty about 

estimates of G(t). In the next subsection, we describe the dynamic learning process for 

the unobserved MEGR. The time-varying nature of uncertainty about estimates is 

explored as well. 

 



3.1 Learning about unobserved MEGR 

In practice analysts use past observations of EPS growth to build their forecasts of 

MEGR into the future. To be consistent with this observation we model the best (in the 

mean square sense) estimate of the unobserved MEGR as an expectation conditional on 

previous observations on earnings growth. Due to the Markovian nature of the model a 

representative agent takes as given the estimate of MEGR (Genotte, 1986; and Dothan 

and Feldman, 1986) when pricing assets.  

 

Theorem 1: Following standard results from one-dimensional linear filtering 

(see, for example, Liptser and Shiryaev, 1977 and 1978), the processes for )(tY  and the 

MEGR estimate, )(ˆ tG , based on the information set available to the agents,  are given by 
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posterior variance of the agent’s estimate of G(t) given earnings information 

accumulated until time t, which is defined as, )](|))(ˆ)([()( 2 tYtGtGEtS −≡ . If an initial 

forecast error variance is )0(S , S(t) is given by, 
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Proof. See Appendix A. 

 

The term *
ydw  represents an increment of the standard Wiener process given 

earnings information available to investors. gyσ  is an instantaneous covariance between 



the innovations in MEGR and earnings. S(t) quantifies the forecast error of 

)(ˆ tG reflecting the degree of information incompleteness. For example, S(t) of zero 

implies perfect knowledge of the underlying state variable.  

 

Note that 21 and 0 SS ><γ . Hence, equation (6) implies that in the long run as 

more information becomes available, )(tS  declines and eventually converges to 1S , 

which is always nonnegative. In addition to 1S , another bound for )(tS  is denoted by 2S , 

which is always non-positive and lower than 1S . Therefore, 2S  is irrelevant to our 

analysis of the long-term value of )(tS . Nevertheless, 2S  is one of the parameters 

determining the speed of convergence of )(tS  to 1S .  

 

Next, we change the parameters in SDE (5) to reflect the agent’s information set: 
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define the long-run speed of mean reversion, *
gk , as .2
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and rearranging the terms we get the following expression for the long-run speed of mean 

reversion: .)1()( 2
2

2
2*

gy
y

g
gg kk ρ

σ

σ
β −++=  The last expression for *

gk  is intuitive. In our model, 

investors learn about the true MEGR from historical changes in EPS. Specifically, 

investors update the latent mean growth rate based on an OLS-type relation between the 

“explanatory variable”, ,)(
)(

tY
tdY  and the “dependent variable”, ).(ˆ tGd  This is very similar to 

the case of hedging a short position in an underlying asset with futures contracts.  In both 



cases, the hedge ratio is the OLS slope coefficient, or β . In our model, β  is the 

sensitivity of MEGR to the percentage change in EPS. 

 

Note that β  is an imperfect “hedge ratio” due to the less than perfect correlation 

in general between EPS and latent MEGR. Analogous to the case of hedging with futures, 

in our model this imperfect correlation translates into “basis risk” measured as 

),1( 2
2

2

gy
y

g ρ
σ

σ −  and serves as an adjustment for an imperfect forecast )(ˆ tG . Another 

adjustment for the latent MEGR comes from parameter ,gk  the strength of latent mean 

growth rate reversion towards its long-term mean. In the following propositions we 

consider two special cases for the correlation, gyρ , between EPS and the mean of 

earnings growth rate, MEGR.  

 

Proposition 1.a: When the correlation, gyρ , between EPS growth and MEGR is 

perfectly positive, the posterior error variance of MEGR estimate, S(t), declines with time 

and converges to zero, which suggests that complete learning is obtained eventually in 

this case. 

 

Proof: see Appendix A. 

 

Proposition 1.b: When the correlation, gyρ , between EPS growth and MEGR is 

perfectly negative, the posterior variance of the MEGR estimate, S(t), converges to S1. S1 

could be either positive or zero, depending on the sign of ( ),β+gk  which is the long-run 

speed of mean reversion for the latent MEGR in this case. 

 

Proof: see Appendix A. 

 

The intuition behind Proposition 1 is that a perfect and positive correlation 

between earnings and MEGR eventually allows investors to estimate the true mean 

growth rate with perfect accuracy, which implies perfect learning. When the correlation is 



perfect negative, the learning is perfect as long as the speed of mean reversion of the true 

process for the mean growth rate, ,gk  is not too small relative to the absolute value of β, 

which measures the relative variability of MEGR and EPS growth. 7

,*
gk

  In other words, 

learning is perfect in this perfect-negative-correlation case as long as the long-run speed 

of mean reversion for the process of MEGR,  is positive. We can think of this 

situation as interplay of two effects. First, absent uncertainty, mean reversion represented 

by kg, implies an exponential decay of any initial forecast error facilitating learning in this 

case. The second effect, representing the inverse of the signal-to-noise ratio, 
g

y

σ
σ , 

counteracts learning due to noise in the latent variable. The signal is the volatility of EPS 

growth, and the noise is the standard deviation of MEGR. In this case, the signal is too 

weak (β is large in absolute value), and complete learning is not possible in the long run 

despite the perfect negative correlation. The long-run result is determined by relative 

magnitudes of kg and β. 

 

To illustrate Proposition 1, we demonstrate the evolution of the learning process 

for MEGR estimate, ),(ˆ tG  in an incomplete-information environment. By using Euler 

approximation, we discretize the continuous processes for EPS growth rate, Y, its true 

mean, G(t), and its mean estimate, )(ˆ tG , which are given by: 
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( ) tttGktGtG gyygyggg ∆−++∆−−+−= 0
20 1))1(()1()( ερερσµ , 









∆−−

−
−−











++∆−−+−= ttG

tY
tYtYtSttGktGtG

y
gg )1(ˆ

)1(
)1()()())1(ˆ()1(ˆ)(ˆ

2
0 β

σ
µ , 

where t∆  is discrete time interval, which is set to be 1/12 for monthly observations. 
Parameters yε  and 0ε  are independent random variables following standard normal 
distribution. 
 
 

                                                 
7 In this case, 
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The base case parameter values are chosen to closely match the corresponding 

values of 20 technology stocks analyzed in Bakshi and Chen (2005). 8 In particular, we 

assume the following annualized initial values: Y(0)=2; G(0)=0.5; 9

%,4=δ

 Ĝ(0)=0.2; and 

S(0)=0.5. Further, base case parameter values are: 3=gk ; 3.00 =gµ ; 5.0=yσ ; 

5.0=gσ . 10

1−=gyρ

 To examine a perfect learning case, we assume that EPS and its 

unobservable MEGR are negatively but perfectly correlated, that is . In this case, 

12 −==
y

gy

σ

σ
β  and ( ) 2* =+= βgg kk , corresponding to the case of Proposition 1.b. Based 

on these values, the lower bound for S(t) is S1=0 suggesting perfect learning in the long 

run.  

 

Based on the base parameter values, we plot three processes in Figure 1: the 

process for the true MEGR, G(t), the process for the MEGR estimate, )(ˆ tG , and the 

process for the posterior variance of the estimate, S(t). As time progresses, the MEGR 

estimate, )(ˆ tG , converges to the true MEGR, G(t), as expected in the complete learning 

case. At the same time, the forecast error variance of the estimate, S(t), converges to its 

lower bound of S1=0. Thus, all uncertainty about the MEGR estimate is eventually 

eliminated by learning. 

 

                                                 
8 The 20 technology stocks used in Bakshi and Chen (2005) includes firms under ticker ADBE, ALTR, 
AMAT, CMPQ, COMS, CSC, CSCO, DELL, INTC, KEAN, MOT, MSFT, NNCX, NT, ORCL, QNTM, 
STK, SUNW, TXN and WDC.  
9 Consistent with Table 1 of Bakshi and Chen (2005), in which the expected earnings growth (G(t)) is 
reported to be 0.4923 for 20 technology stocks.  
10 BC estimates the parameter values under the objective probability measure, which are given below for 
reference: %.4 and );02.0( 02.0  );083.0( 425.0  );044.0( 296.0 );485.0( 688.2 0 =−==== δρσµ yrgggk  

The market-implied estimate of yσ  is reported to be 0.345. The values in parentheses are cross-sectional 
standard errors. δ  is obtained by regressing dividend yield on the earnings yield (without a constant). 
Average dividend divided by average net-earnings per share yields a similar δ . Note that throughout the 
empirical exercise, BC fixes two parameters to be that ,1=gyρ and yrgr ρρ = to reduce estimation burden.  
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In this figure we plot three processes: the process for the true MEGR, G(t); the process for the MEGR 

estimate, )(ˆ tG ; and the process for the posterior variance of the estimate, S(t). To generate the figure 

we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values 

for the assumed stochastic processes take the following values: 

.1 and ;5.0 ;5.0 ;3.0 ;3 0 −===== gygyggk ρσσµ  Based on these values, the lower bound for S(t) is 

S1=0, which suggests that complete learning is obtained eventually. 

 

      Next, we consider the case of imperfect correlation. We assume that 8.0−=gyρ , 

while maintaining all other parameters at the same base case level as used in Figure 1. 

Figure 2 shows that although the MEGR estimate, )(ˆ tG , does not converge to the true 

mean growth rate, G(t), the difference between the two decreases with time. At the same 

time, the forecast error variance of the estimate, S(t), converges to its positive lower 



bound of S1 = 0.02008. 11

 

 Thus, investors can only partially learn about the true mean 

growth rate. 

Figure 2 
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In this figure we plot three processes: the process for the true MEGR, G(t); the process for the 

estimated MEGR, )(ˆ tG ; and the process for the posterior variance of the filtered estimate, S(t). To 

generate the figure we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. 

Parameters values for the assumed stochastic processes take the following values: 

.8.0 and ;5.0 ;5.0 ;3.0 ;3 0 −===== gygyggk ρσσµ  Based on these values, the lower bound for S(t): 

S1= 0.02008. 

 

The learning speed at which S(t) converges to its long-run value S1 is affected by 

the speed of mean reversion of MEGR, the volatilities of MEGR and EPS growth, and 

the correlation between them. From the solution for S(t) in equation (6), the speed of its 

convergence, which we denote by K, is given by: 

                                                 
11 Using 8.0−=gyρ  along with the base parameter values in the formula ,421
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Recall that .)1()( 2
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gy
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σ

σ
β −++=  Note that β is a function of parameters 

. and ,, gyyg ρσσ  In the following propositions, we examine the impact of these 

parameters on the speed of learning.  

 

Proposition 2: The learning speed at which the posterior forecast error variance 

)(tS converges to its lower bound, S1, increases in gyρ , the correlation between EPS 

growth and MEGR.  

 

Proof: see Appendix A. 

 

The intuition behind Proposition 2 is that the information from EPS growth 

receives smaller weight if the correlation between EPS growth and its unobservable 

MEGR is smaller. In such case, learning the true MEGR from EPS data is slower.  

 

Proposition 3: The learning speed at which the posterior forecast error variance 

)(tS converges to its lower bound, S1, increases in gk  if )( β+gk  is positive, where 

2
y

gy

σ
σ

β = . 

 

Proof: see Appendix A. 

 

Information about the true MEGR, G(t), comes from two sources: (i) mean-

reverting nature of the unobservable mean process; and (ii) continuous observations on 

change in EPS, 
)(
)(

tY
tdY . Even in the absence of observations on earnings growth we know 

from equations (3) and (5) that regardless of the initial value of )0(ˆ =tG , in the long term 

)(ˆ tG  converges to the true MEGR, G(t). The speed of this convergence is governed 



by gk . A higher value of kg means that Ĝ(t) will be close to its mean more often, making 

it easier to learn the value of the latter. However, investors’ learning by observing actual 

EPS growth,
)(
)(

tY
tdY can increase or decrease the speed of this convergence depending on 

the correlation between MEGR and earnings growth. If correlation between 
)(
)(

tY
tdY and 

G(t) is negative and large enough in absolute value, learning may become slower simply 

because the updates of )(ˆ tG become less sensitive to new information, 







− dttG

tY
tdY )(ˆ
)(
)( . 

 

3.2 The Valuation Equation 

In this section we derive share price using standard SDE arguments based on 

stochastic discount factor (SDF) approach (see, e.g., Chochrane, 2005). The implicit 

assumption here is that any shock responsible for the difference between 

dividend )(tD and )(tYδ is not priced: 

( )[ ] ,0* =+ YdtMMPdEt δ       

where operator *
tE  represents an expectation with respect to investors’ information set. 

    

Under standard assumptions (see Dothan and Feldman, 1986; Detemple, 1986; 

Gennotte, 1986; and Feldman, 2007), the equilibrium price at time t is given in the 

following form:  

P(t, Y, )(ˆ tG , R) = δYZ(t, )(ˆ tG , R), subject to ∞<)(tP ,    (9) 

where Yδ represents dividends-per-share. The time-t price-dividend ratio, ),ˆ,( RGtZ , is 

given below, 

∫
∞ −+=

t

tRsttGstst dsRGstZ )](),()(ˆ),(),([exp),ˆ,,( νψϕ ,     (10) 

which represents the expected present value of a continuous stream of future dividends 

arriving at a unit rate.  The functions under the integral ),,ˆ( tRGZ have the following 

form (see Appendix B for details of derivation): 
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where 
y

gy
t

tS
σ

σ+
=Σ

)(
, ymmyy σσρλ ≡ representing the risk premium for firm’s earnings 

shocks, 
r

ryyrrmmr
rr k

σσρσσρ
µµ

−
−≡ 0*  and 

g

tymmy
gg k

Σ−
−≡

)(0* σσρ
µµ  are, respectively, 

the long-term means of )(ˆ tG and R(t) under the risk-neutral probability measure defined 

by the pricing kernel M(t). We denote tymmyg Σ−≡ )( σσρλ  as the risk premium for )(ˆ tG  

in our incomplete-information model.  

 

For the integral in equation (10) to exist, the integrand should be declining with 

time s sufficiently fast. Since functions ϕ(t,s) and υ(t,s) in equations (11) are bounded, 

this requirement implies that function ψ(t,s) should be negative and unbounded at large 

time s. The latter restriction implies certain constraint on model parameters, called a 

transversality condition as given below (see Appendix B for proof): 

( )
( ) ( )( ) ( )

.0
2

2
2

1
2

2
10*

2

2

<
+

−−+
−+−

++−+−
ygr

gy
rgrrmmyy

yg

gygy
gr

r

r
y kk

S
k

k
S

k σ
σ

σρσρσ
σ

ασησ
µµσλ    

(12) 

In the following proposition we show that the risk premium on MEGR based on 

BC full-information model is only a special case of our model. 

 

Proposition 4: Following BC, we define ,gymgmg
BC
g σσσρλ −=  as the risk 

premium on MEGR under BC complete-information model. The magnitude of difference 

in risk premium on MEGR between our incomplete-information model and BC model is 

given by )()()( mggymymg
y

ymmy
BC
ggg

tS ρρρσσ
σ

σσρλλλ −+−=−=∆  at time t. The 

difference in risk premiums declines with learning and converges to a long-run level 



equal to )()( 1
mggymymg

y
ymmy

S ρρρσσ
σ

σσρ −+− . When EPS growth and MEGR are 

perfectly correlated, the long-run difference in risk premium vanishes. Similarly, the risk-

neutral long-term mean of MEGR, defined as *
gµ  in our model, converges to that of the 

complete-information (BC) model. 

 

Proof: see Appendix B. 

  

A higher value of posterior variance S(t) results in less precise pricing. As a result, 

stocks with higher S(t) are considered relatively risky in the market. As S(t) is reduced by 

learning, risk premium due to information incompleteness is reduced as well. The lower 

bound of posterior variance, 1S , determines the minimum level of  information risk 

premium investors demand to compensate for the uncertainty in an incomplete-

information environment.  

 

In figure 4, we demonstrate this result. We plot information-related risk premium 

on MEGR for firms with varying levels of correlation between EPS growth and MEGR: 

.1 ,5.0 ,0 ,1 ===−= gygygygy ρρρρ  Holding the other parameters constant, according to 

proposition 4, the only two special cases in which information-related risk premium on 

MEGR is zero in the long run are the cases of perfect correlation, 1 and 1 −== gygy ρρ . 

These are the instances in which complete learning is possible. The only difference 

between the two cases is that the curve of information-related risk premium for 1=gyρ is 

much steeper than that for 1−=gyρ  reflecting a quicker learning process. Note that the 

case of 0=gyρ has the largest long-run risk premium. In fact, zero correlation implies 

that learning about MEGR is most difficult because the unobservable state variable is 

independent of available earnings observations. As a result, investors will demand the 

highest information-related risk premium on MEGR in the zero-correlation case among 

all cases with varying correlations.  

 



4. Comparison of the Incomplete and Complete Information Models 

In this section we examine the differences between our learning-based model and 

the complete-information (BC) model. The purpose of this section is to investigate the 

properties of our estimates of latent mean growth rate, examine how different firm 

characteristics affect the learning process, and compare the time series of price 

differentials in our incomplete-information model to those in complete-information 

model.  

 

To simplify discussion, we assume deterministic risk-less interest rate, i.e., 

frrr rk === µσ   ,0  for both models. To understand the major differences between the 

two models, we focus on the difference in risk premium on MEGR and price difference 

in equilibrium which are functions of the parameter vector, },,{ gyggk ρσ=Ω and learning 

horizons. The difference in risk premium is computed following Proposition 4. The per-

share price in equilibrium with incomplete-information is computed following equations 

(9) to (11). The stock price with complete-information is computed based on the price 

formula in Bakshi and Chen (2005). Lastly, the pricing error in equilibrium between two 

models is defined as (Price with complete-information - BC price)/BC price, in 

percentage format.  

 

Two issues are explored in this section. First, we examine the time series 

behaviour of risk premium difference based on varying parameter values. Next, we 

examine the dynamic change of percentage price errors observed at different learning 

horizons, such as short-term (4 months), intermediate-term (10 months), and long-term 

horizons (25 months), respectively, for varying parameter values. 

 

In figure 3, we plot three processes: the process for the risk premium based on true 

mean EPS growth rate, G(t); the process for the risk premium based on the filtered mean 

growth rate, )(ˆ tG ; and the process for the variance of the filtered estimate, S(t). To 

generate the figure we use similar base parameter values as used in figure 1 and figure 2 

with minor adjustment, that is 1=gyρ . With perfect correlation between EPS and its 



MEGR, the lower bound for S(t), given by S1, is equal to 0. While complete information 

risk premium is flat at 4%, the risk premium based on MEGR estimate, )(ˆ tG , is 

substantially higher than 4% during the initial period. As posterior variance of estimate 

S(t) reaches its minimum (in this figure, the minimum bound S1=0), the risk premium 

based on MEGR estimate, )(ˆ tG , drops over time and reaches 4% in the long term limit. 

This figure suggests that the investors demand an extra risk premium to compensate their 

estimation risk due to incomplete-information. As learning progresses, the extra risk 

premium declines over time. 

 

Figure 4 demonstrates the impact of change in the correlation between EPS and 

its MEGR on gλ∆ , the risk premium difference between our incomplete-information 

model and the complete-information model (BC). Holding other parameters constant, we 

change the correlation coefficient to be: 1−=gyρ , 0=gyρ , 5.0=gyρ , and 1=gyρ , 

respectively. Based on these values, we compute the lower bound for S(t) as given below: 

when 1−=gyρ  or 1=gyρ , S1= 0; when 5.0=gyρ , S1=2.63%; and when 0=gyρ , 

S1=4.05%. Following Proposition 4, we compute the difference of risk premium on 

MEGR based on our incomplete-information model and BC model. Figure 4 shows that 

when ,1or  1 =−= gygy ρρ both gλ∆ decline and eventually converge to zero in agreement 

with propositions 1.a, 1.b, and 4. The minor difference between the two perfect learning 

cases )1 and 1( −== gygy ρρ  is in the speed at which gλ∆ converges to zero. As 

demonstrated in Figure 4, for perfect positive correlation ),1( =gyρ gλ∆ declines much 

faster and converges to zero after nine months, while for , 1−=gyρ  it takes around 

sixteen months for gλ∆ to converge to zero. This finding implies that with the same 

degree of learning ( gyρ  equals one in absolute value), extra risk premium for 

positive gyρ case diminishes much faster than that for negative gyρ case as corresponding 

posterior variance S(t) declines faster. Slower learning in the case of negative correlation 

reflects the conflict between the mean-reverting nature of the MEGR process and new 

information coming from earnings growth as described in Proposition 3. For partial 



learning case, we find that when ,5.0=gyρ  risk premium difference gλ∆  declines at a 

medium speed which is faster than that for ,1−=gyρ but slower than that for ,1=gyρ  in 

support of Proposition 2.  

 

Note that in Figure 4, for ,5.0=gyρ gλ∆  converges to 4.2%, which is not equal to 

zero any more, implying that partial learning process results in compensation for the fact 

that the posterior variance of estimate S(t) cannot be eliminated completely even for long-

term learning horizons (S1 > 0). For the case of ,0=gyρ  gλ∆ converges to 6.4%, which is 

the highest one among all of the risk premium differences in Figure 4. Note that the 

highest long-term gλ∆  in this case is corresponding to its posterior variance of MEGR 

estimate equal to S1=4.05% for ,0=gyρ which is largest among all of that in Figure 4 

(S1= 0 for both 1  and 1 -gy =ρ ; and S1=2.63% for 5.0=gyρ ). The presence of S1 affects the 

risk-neutral drift of )(ˆ tG process and stock price in equilibrium reflecting the systematic 

nature of uncertainty about MEGR estimate. Consistent with Proposition 4, the 

magnitude of S1 positively affects the long-term magnitude of extra risk premium 

demanded by learning process. Recall that in Proposition 4, the long-term risk premium 

difference is parameterized to be, 

).()( 1
mggymymg

y
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ggg

S ρρρσσ
σ

σσρλλλ −+−=−=∆  

 

We further find that the additional risk premium on MEGR, gλ∆ , declines faster 

with learning for firms with higher gk , which governs mean-reversion speed. This result 

is demonstrated in Figure 5. Holding parameters at base case levels and 1=gyρ , we let 

the mean-reversion speed take three different values: ,2=gk  ,3=gk and 

,4=gk respectively. For BC model, the risk premium on G(t) remains flat at 4% level 

regardless of mean-reversion speed. While for incomplete-information model, risk 

premium curves for each gk start with different magnitude and declines at varying speed, 

but eventually converge to complete-information premium of 4% due to perfect learning. 



We see that before converging to its long run level, the risk premium on )(ˆ tG  is highest 

for the case with the smallest speed of mean-reversion ( 2=gk ), while lowest for the case 

with the largest speed of mean-reversion ( 4=gk ). This phenomenon is in line with 

Proposition 3. In this case with ,1=gyρ  learning speed, K, is positively correlated with 

gk , implying that the uncertainty S(t) declines faster if MEGR reverts to its long-term 

mean at a larger speed. At the same time, the faster decline of S(t) is associated with a 

lower risk premium at the same point in time during learning process.  

 

In addition to examining the impact of gk on risk premium, we examine its impact 

on stock price in equilibrium as well. In figure 6, we plot time series of pricing errors 

between our model and BC model in percentage terms with respect to, respectively, low 

speed, medium speed, and high speed of gk . The mean-reversion speed of MEGR is 

assumed to be 2=gk ; 3=gk ; to 4=gk , respectively, for each time series. We find that 

pricing errors are most volatile for low speed gk , but small in magnitude and stable for 

high speed. This is consistent with our proposition 3, because the higher speed gk  implies 

larger learning speed K. For example, in Figure 6 when 2=gk , the percentage pricing 

errors decline slowly until below 1% after 37 months of learning; when 3=gk , the 

percentage pricing errors decline relatively fast until below 1% after 15 months of 

learning; while when 4=gk , the percentage pricing errors decline faster to reach 1% 

only after 5 months of learning.  

 

In Figure 7, we further examine whether the pricing errors decline faster with 

learning for firms with lower gσ   which implies a less noisy MEGR process. For 

comparison, we plot three time series of percentage pricing errors with respect to 

relatively low uncertainty )5.0( =gσ , medium uncertainty ),65.0( =gσ  and high 

uncertainty ( 8.0=gσ ). We find that the magnitude of pricing errors is reduced more 

when MEGR is less volatile during the same learning horizon (e.g. 15 months). That is, 



the less uncertainty about MEGR, the smaller magnitude the percentage pricing error will 

decline to. This result follows from our proposition 3, in which we show that the learning 

speed K is inversely related to the level of gσ . Results in figures 6 and 7 reveal that 

parameters gσ and gk have opposing effects on learning. 

 

We also find that the effect of gk on pricing errors is stronger for a young firm. 

Young firm is interpreted as a firm with short history of observations on earnings 

implying short learning horizon. Similarly, we find that prices are much less sensitive to 

learning horizon when gk is large. These results are demonstrated in Figure 8 which 

presents the paths of pricing errors for gk varying from a low level of 1.8 to a high level 

of 5.8, for short learning horizon (t=4 months), intermediate learning horizon (t=10 

months), and long learning horizon (t=25 months), respectively. For relatively low 

gk ranging from 1.8 to 3.0, pricing errors are most sensitive to learning horizon. For 

example, on average, pricing error for short learning horizon is around -8%, which is 

most volatile; pricing error for medium-learning-horizon is around -5%; and pricing error 

for long-learning-horizon is around -2%, which is lowest in absolute value but non-zero. 

For medium gk  ranging from 3.0 to 4.6, pricing errors for long learning horizon converge 

to zero, and pricing errors for the other two learning horizons are substantially lower than 

those with low gk . For high gk ranging from 4.6 to 5.8, pricing errors for both long and 

medium learning horizons are zero, on average, while producing pricing errors of -1% for 

short learning horizon. This phenomenon observed in Figure 8 reveals that large mean-

reversion speed of MEGR facilitates learning in that pricing error is small in magnitude 

even after short learning process; while with low mean-reversion speed of MEGR, 

pricing errors are reduced substantially only after long learning process.  

 

In Figure 9, we examine the impact of precision of MEGR )/1( gσ on pricing 

errors at different observation times. We make gσ  range from 0.80 to 0.48 in the 

direction of improving precision of MEGR process. Similar to Figure 8, we choose three 

observation times (learning horizons) for comparison, which are: t = 4 Months; t = 10 



Months; and t = 25 Months. We find that for all three horizons the pricing errors decrease 

as σg declines in general. With a relatively low precision of MEGR (high σg ranging from 

0.80 to 0.66), the pricing error for the long learning horizon varies around zero but does 

not vanish; the average pricing error for the medium learning horizon is -4%; and the 

pricing error for the short learning horizon varies widely and averages at -7%. In 

comparison, with a relatively high precision of MEGR (low σg ranging from 0.64 to 

0.48), the pricing errors for the long learning horizon converge to zero, those for the 

medium learning horizon vary around zero, and decline substantially and approach zero 

for the short learning horizon. The pattern in Figure 9 suggests that high precision level 

of MEGR makes learning easier in that it facilitates in reducing pricing errors even in the 

short learning horizon case. Increasing precision of the MEGR process is equivalent to 

increasing its mean-reversion speed, gk . 

 

In Figure 10, we examine the impact of parameter gyρ  on the long-term level of 

pricing errors with incomplete information.  We assume that the estimated )(ˆ tG and the 

true G(t) are the same to examine whether pricing error still exists in an incomplete 

information environment (e.g., 1|| ≠gyρ ). Parameter gyρ  determines how well investors 

can eventually learn about the state variable, MEGR. To see price variation as a function 

of learning environment we let the correlation take four different values: 0=gyρ ; 

5.0=gyρ ; 9.0=gyρ ; 1=gyρ . The sample period covers eight years (96 months). We 

find that for perfect correlation such as 1=gyρ , the pricing errors are largely around -10% 

at the beginning of learning horizon, and then converge at zero over fourteen-month 

learning period. For non-perfect learning cases, the magnitude of long-term pricing errors 

for 9.0=gyρ  is 1.21%, increasing to 7.05% for ,5.0=gyρ  and finally to 15.48% 

for 0=gyρ  (all numbers are in absolute value). These findings suggest two implications. 

First, there is a negative association between long-term pricing errors and degree of 

incompleteness of information environment as reflected by absolute value of gyρ . 



Secondly, pricing errors still exist after long learning horizon (e.g., eight years) with 

precisely estimated )(ˆ tG  as long as the information environment is incomplete. 

 

Since long-term pricing errors never vanish in an imperfect learning environment, 

we examine whether faster learning affects the magnitude of long-term pricing errors. 

Following Proposition 3, faster learning can be achieved at higher mean-reversion speed, 

.gk  Figure 11 presents the relation between long-term pricing errors and mean-reversion 

speed gk  in an imperfect learning environment. To generate the figure, we assume that 

correlation 9.0=gyρ , and the mean-reversion speed gk  takes on the following values: 

2=gk , 3=gk , and 4=gk , respectively. The magnitude (absolute value) of long-term 

pricing error is 3.42% for 2=gk , decreasing to 1.32% for 3=gk , and again decreasing 

to 1.14% for 4=gk . This result implies that larger speed of mean-reversion leads to a 

reduction in the magnitude of long-term pricing errors, holding the other parameters 

constant. As before, the long run pricing errors are not zero. Similar to the intuition 

suggested by Figure 10, the non-vanishing pricing errors reflect residual risk premium 

(not present in the complete information model) due to investors’ imperfect forecasts of 

the underlying state variable. 

 

5. Conclusions 

This paper develops a dynamic framework for valuing stocks which allows for 

learning about a stochastic but unobservable MEGR (mean of earnings growth rate) in an 

incomplete-information environment. The instantaneous MEGR is a state variable in our 

model, and investors can learn about it from continuously released earnings information.  

 

We have shown in this paper that the posterior variance of MEGR estimate 

generates extra risk premium on MEGR beyond what is accounted for in the complete 

information model. We further show that the time-varying nature of posterior variance of 

MEGR leads to a dynamic change in risk premium and more volatile stock prices. As 

learning reduces the posterior variance of estimate, extra risk premium declines to an 



equilibrium level over time. We parameterize the risk premium on MEGR and find that 

the magnitude of risk premium is not only affected by posterior error variance of estimate 

but also affected by firm characteristics, such as volatility of earnings, volatility of 

MEGR, mean-reversion speed of earnings, and correlation between earnings and latent 

MEGR.  

 

Our results indicate that the faster the MEGR reverts to its long-term value, the 

smaller the magnitude of risk premium attributed to information incompleteness. This 

effect results from the fact that the higher speed of reversion towards the constant long-

term mean leads to a faster exponential decay of any initial deviation from this mean and, 

therefore, faster learning. With a lower mean-reversion speed, risk premium on MEGR 

and posterior variance of MEGR estimate decline slowly but essentially constant over 

time if learning horizon is long enough. We also find that the effect of mean-reversion 

speed on pricing errors is stronger for a young firm with short history of information. By 

increasing the speed of mean-reversion, pricing errors due to information-incompleteness 

can be reduced substantially and quickly even learning horizon is short.  

 

Lower volatility on MEGR has similar effect of higher effective speed of mean-

reversion process of latent variable on learning. Both facilitate faster learning process 

about the true unobservable state variable, which is shown by the fast reduction in the 

posterior variance of MEGR estimate.  

 

We have also shown that higher correlation between earnings and latent MEGR 

leads to more complete learning about the true unobservable variable. With a perfect 

correlation (1 or -1), complete learning is achievable which leads to the same magnitude 

of risk premium and equilibrium prices in the long run as those in complete-information 

environment. In such case, the extra risk premium due to information-incompleteness 

vanishes eventually. In contrast, with an imperfect correlation (between -1 and 1), 

complete learning is impossible and therefore extra risk premium is non-zero at all times. 

The non-vanishing risk premium in our model reflects a persistent uncertainty that 

investors hold in an incomplete information environment. The additional long-term risk 



premium on MEGR results in lower equilibrium price as a compensation to investors for 

remaining uncertainty about the state variable.  

 

Our finding is consistent with that learning can generate higher equity premium 

when investors are ambiguity averse (e.g., Cagetti et al. 2002; Leippold et al. 2008; and 

Epstein and Schneider 2008). As Pastor and Veronesi (2009) predict that when investors 

are cautious of model misspecification in incomplete-information environment, model 

uncertainty is penalized and risk premium rises as compensation.  

 

 

 

 

 



Figure 3 

Plot of Risk-Premium and Variance of Filtered Estimate
with Complete Learning
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In this figure we plot three processes: the process for the risk premium based on true MEGR, G(t); the 

process for the risk premium based on the estimated MEGR, )(ˆ tG ; and the process for the variance of 

the filtered estimate, S(t). To generate the figure we assume the following initial values: Y(0)=2; 

G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values for the assumed stochastic processes are given 

by: .1.0 and ;1.0 ;1 ;8.0 ;5.0  ;5.0  ;3.0  ;3 0 ======== mgmygymgyggk ρρρσσσµ Based on these 

values, we get the following lower bound for S(t): S1= 0. 



Figure 4 

Information-related Risk Premium on 
Estimates of Mean EPS Growth Rate (MEGR) 
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This figure demonstrates the curves of noise-related risk premium for four firms with different degree of 

correlation between EPS and its MEGR, holding the other parameters constant. The correlation is assumed 

to be: 1−=gyρ , 0=gyρ , 5.0=gyρ , and 1=gyρ , respectively. To generate the figure we assume the 

following initial values for each firm: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters values for the 

assumed stochastic processes take the following values: 

%.4  and 3%;r ; ;1  ;8.0  ;5.0  ;5.0  ;3.0  ;3 0 ========= δρρρρσσσµ gymymgmymgyggk  Based on 

these values, we obtain the following lower bounds for S(t): when 1,-or  1=gyρ S1= 0; when 5.0=gyρ , 

S1=2.63.%; and when ,0=gyρ  S1=4.05%. Let gλ∆ denote the information-related risk premium on MEGR, 

we obtain the convergence level of noise-related risk premium for each firm: 

0)1or   1( →=−=∆ gygyg ρρλ ; %2.4)5.0( →=∆ gyg ρλ ; and %4.6)0( →=∆ gyg ρλ , respectively. 

 

 

 

 

 



Figure 5 

 Risk Premium of Estimate of EPS Mean Growth Rate 
at Different Mean-reverting Speed kg
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In this figure, we examine the impact of change in mean-reversion speed ( gk ) of MEGR on the risk 

premium under our incomplete-information model and the complete-information model. To generate the 

figure we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters 

values for the assumed stochastic processes take the following values: 

.1.0 and ;1.0  ;1  ;8.0   ;5.0  ;5.0  ;3.00 ======= mymygymgyg ρρρσσσµ The speed of mean-reversion 

of MEGR is assumed to be, 2=gk , 3=gk , and 4=gk , respectively. Based on these values, we obtain 

the following lower bound for S(t): S1= 0. The constant risk premium on G(t) under complete-information 

model is 4 per cent.  



Figure 6 

Series of Pricing Differentials with Three Levels of 
Mean-Reversion Speed of Mean Growth Rate
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In this figure, we examine the impact of change in mean-reversion speed ( gk ) of MEGR on the pricing 

performance based on our incomplete-information model and the complete-information model. At each 

time during the sample period for each level of speed, gk , prices are computed by the learning model 

respectively. Percentage pricing error is defined as the ratio of (Incomplete-Information model price – BC 

Complete-Information model price)/ BC Complete-Information model price. This chart show the time 

series of pricing errors for each level of speed, gk . To generate the figure we assume the following initial 

values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. The mean-reversion speed of MEGR for each series is 

assumed to be, 2=gk , 3=gk , and 4=gk , respectively. The other parameters for the assumed stochastic 

processes take the following values: 

%.4  and 3%;r ;1 ;1  ;1 ;8.0  ;5.0  ;5.0  ;3.00 ==−==−===== δρρρσσσµ mgmygymgyg   

 

 

 

 

 

 



 

Figure 7 

 Comparison of Pencentage Price Errors with Three Levels of 
Volatility of Mean EPS Growth Rate
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In this figure, we examine how the percentage pricing errors are influenced by the precision level of the 

MEGR. To generate the figure we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and 

S(0)=0.5. Parameters for the assumed stochastic processes take the following values: 

%.4  and 3%;r ;1 ;1  ;1 ;8.0  ;5.0  ;5.0  ;3.0  ;3 0 ==−==−====== δρρρσσσµ mgmygymgyggk  We 

assume that the volatility of the mean EPS growth rate for each series 

are: ,8.0 and ,65.0 ,5.0 === yyy σσσ  respectively. With each level of volatility, yσ , percentage pricing 

errors are computed  for each month during the sample period respectively. Percentage pricing error is 

defined as the ratio of (Incomplete-Information model price – BC Complete-Information model price)/ BC 

Complete-Information model price. 

 

 

 

 

 

 

 



 

Figure 8  

Observations of Percentage Price Errors as kg Increases
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In this figure, we observe the pricing errors (percentage) by increasing the speed of MEGR. We focus on 

the pricing errors at three observation times (learning horizon), which are: t = 4 Months; t = 10 Months; and 

t = 25 Months, respectively. Percentage pricing error is defined as the ratio of (Incomplete-Information 

model price – BC Complete-Information model price)/ BC Complete-Information model price. To generate 

the figure we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters 

for the assumed stochastic processes take the following values: 

%.4  and 3%;r  ;1 ;1  ;1  ;8.0  ;5.0  ;5.0  ;3.00 ==−==−===== δρρρσσσµ mgmygymgyg The value of 

speed gk  increases from 1.8 to 5.8 gradually. 

 

 



Figure 9 

Observations of Percentage Pricing Error as 
Volatility of the Mean EPS Growth Rate Decreases
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In this figure, we observe the percentage pricing errors by decreasing the volatility of MEGR. We focus on 

the pricing errors at three observation times (learning horizon), which are: t = 4 Months; t = 10 Months; and 

t = 25 Months, respectively. Percentage pricing error is defined as the ratio of (Incomplete-Information 

model price – BC Complete-Information model price)/ BC Complete-Information model price.  To 

generate the figure we assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. 

Parameters for the assumed stochastic processes take the following values: 

%.4  and 3%;r ;1 ;1  ;1 ;8.0  ;5.0  ;3.0 ;3 0 ==−==−===== δρρρσσµ mgmygymyggk The volatility of 

MEGR decreases from 0.80 to 0.48 gradually. 

 

. 

 

 



Figure 10 
In this figure, we examine that in an incomplete-information environment, how pricing errors are 

influenced by a parameter, ρ, the correlation between EPS and its MEGR. The value of parameter ρ 

determines the degree to which learning on the true MEGR can be achieved by using available data on 

EPS. We assume the correlation parameter gyρ  to take the following four different levels: 

,1 ;9.0 ;5.0 ;0 ==== gygygygy ρρρρ  respectively. The sample period covers eight years (96 months). 

Percentage pricing error is defined as the ratio of (Incomplete-Information model price – BC Complete-

Information model price)/ BC Complete-Information model price.  To generate the figure we assume the 

following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. Parameters for the assumed stochastic 

processes take the following values: 

%.4  and 3%;r ; ;1  ;8.0  ;5.0 ;5.0  ;3.0 ;3 gy
0 ========= δρρρρσσσµ mymgmymgyggk  

Percentage Pricing Errors with Different Levels of 
Correlation Between EPS and the Mean of EPS Growth Rate 
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when ρ=0.9, E(Price Errors) = -1.21%  when ρ=0.5, E(Price Errors) = -7.05%  

when ρ=0, E(Price Errors) = -15.48% when ρ=1, E(Price Errors) = 0%  

 
 

Appendix:  Sample of Data for Figure 10 
Long Term Mean of 

Pricing Errors 
Percentage Pricing Errors over Learning Horizon (Months) 

t=3 t=6 t=9 t=12 t=15 t=18 t=21 t=24 t=27 t=30 
ρgy=1 0% -0.071 -0.023 -0.007 -0.002 -0.001 0 0 0 0 0 

ρgy=0.9 -1.21% -0.017 -0.043 -0.035 -0.032 -0.017 -0.028 -0.015 -0.018 -0.003 0.014 
ρgy=0.5 -7.05% -0.131 -0.107 -0.121 -0.099 -0.158 -0.135 -0.156 -0.230 -0.123 0.015 
ρgy=0 -15.48% -0.145 -0.195 -0.202 -0.062 -0.170 -0.105 -0.008 -0.119 -0.151 -0.19 

 



 Figure 11 
In this figure, we examine that in an imperfect learning environment (eg., 9.0=gyρ ), how long-term 

steady level of pricing errors are affected by boosting the speed of MEGR, gk , to a higher level. Due to 

imperfect learning, pricing errors will decrease over learning horizon but never converge to zero. But the 

long-term mean of pricing errors would sustain at a relatively lower level (at absolute value) with a higher 

speed gk . Percentage pricing error is defined as the ratio of (Incomplete-Information model price – BC 

Complete-Information model price)/ BC Complete-Information model price.  To generate the figure we 

assume the following initial values: Y(0)=2; G(0)=0.5; Ĝ(0)=0.2; and S(0)=0.5. The other parameters for 

the assumed stochastic processes take the following values: 

%.4  and 3%;r;9.0 ;1  ;8.0  ;5.0 ;5.0  ;3.00 ======== δρρσσσµ mgmymgyg  The value of mean-

reversion speed gk  is assumed to be: 2=gk , 3=gk , and 4=gk , respectively. The sample period covers 

eight years (96 months). 

Percentage Pricing Errors with Different Levels of Speed Kg 
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when kg=2, Long Term Mean of Price Errors = -3.42%  

when kg=3, Long Term Mean of Price Errors = -1.32%  

when kg=4, Long Term Mean of Price Errors = -1.14%  

 
Appendix:  Sample of Data for Figure 11 

Long Term Mean 
of Pricing Errors 

Percentage Pricing Errors over Learning Horizon (Months) 
t=1 t=11 t=21 t=31 t=41 t=51 t=61 t=71 t=81 t=91 

2=gk  -3.42% -0.195 -0.076 -0.036 0.018 -0.069 -0.065 -0.016 -0.010 -0.080 -0.027 
3=gk  -1.32% -0.107 0.021 0.020 -0.030 0.024 -0.030 0.016 -0.009 -0.015 -0.032 
4=gk  -1.14% -0.054 -0.001 -0.017 -0.018 -0.030 0.010 -0.006 -0.007 0.009 -0.027 



Appendix A 

Proof of Theorem 1: 

EPS, denoted by Y, follows an Ito processes: 

yydwdttG
tY
tdY σ+= )(
)(
)(  .                         (A1) 

The mean of EPS follows an Ornstein-Uhlenbeck mean-reverting process: 

gggg ddttGktdG ωσµ +−= ))(()( 0 .    (A2) 

According to standard results from one-dimensional linear filtering (see, for 

example, Liptser and Shiryaev, 1977 and 1978), the solution for the filtered estimate of 

mean growth rate )(ˆ tG , specialized in equations (A1) and (A2), is given by the following 

stochastic differential equation (SDE): 
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variance of the agent’s estimate of )(tG , )](|))(ˆ)([()( 2 tYtGtGEtS −≡ , satisfies the 

following Riccati ordinary differential equation (ODE):  
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Equation (A4) is equivalent to the following,  

dt
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tdS γ=
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21
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Re-arranging equation (A5), we obtain the following ODE: 

dt
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StS

tdS
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Taking integral with respect to time t on both sides of equation (A6), we get, 
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where c denotes a constant. We can think of S(t) as a variance of forecast error based on 

all relevant information up to time t. If an initial forecast error variance is )0(S , then 

solving equation (A7), we obtain: 
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Note that 21 and 0 SS ><γ . Hence, equation (A8) implies that in the long run as more 

information becomes available )(tS  converges to 1S , which is always nonnegative. 

Another bound for )(tS  is denoted by 2S , which is always non-positive and lower than 

1S . Therefore, 2S  is not relevant to our analysis of the long-term value of )(tS . 

Nevertheless, 2S  is one of the parameters determining the speed of convergence of )(tS  

to 1S .  

 

 

Proof of Proposition 1.a: 

When 1=gyρ  we have 02 >==
y
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y
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σ
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σσρ

β  and 0)(2 2 >+= gy kβση . Therefore, 

ODE (4) becomes 

[ ] dt
tStS
tdS γ

η
=

+)()(
)( , 

Thus the two bounds for )(tS  are 01 =S  and 02 <−= ηS . Further, the solution for )(tS  

is given by t

t

Ce
CetS γη

γηη
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1

)( . In the limit, S(t) converges to 01 =S  as ∞→t . 

Q.E.D. 

 

Proof of Proposition 1.b: 
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β , 0=α , ),(*
gg kk += β  and 

).(2 2
gy k+= βση  We consider three cases:  

(i) when β>gk , the effective speed of mean reversion for the process of the 

latent mean growth rate, *
gk  is positive and we have: 0>η .  Similar to 

Proposition 1.a, the two bounds for )(tS  become 01 =S  and 02 <−= ηS . 

Therefore, the solution for )(tS  is 0
1

)( →
−

= t

t

Ce
CetS γη

γηη  as ∞→t . 

(ii) when β<gk , then 0<η , ,01 >−= ηS ,02 =S  and .0* <gk  If the initial value 

of )(tS satisfies η=> 1)0( SS , then )(tS  is given by t
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will increase over time and will converge to η  from below. 

Finally, if η=)0(S , then )(tS  will remain at η  for every t.  

(iii) when β=gk , we have: 0=η ,  ,01 =S  ,02 =S  and 0* =gk . This means that 

ODE (4) becomes: 

dt
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and the solution to this ODE is: 
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Therefore, )(tS  will approach zero hyperbolically as ∞→t , and thus slower 

than in case (i), in which learning is exponential. 

Q.E.D. 

 



Proof of Proposition 2: 

 

We differentiate K with respect to gyρ . Note that *
gk  is positive, therefore: 
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therefore the speed of convergence is positively related to gyρ . 

Q.E.D. 

 

Proof of Proposition 3: 

We differentiate K with respect to gk  and get:  
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Q.E.D. 

 



Appendix B 

Derivation of the Asset Price:  

Our model of learning unobserved state variables is consistent with evidence that 

analysts use past observations of EPS growth to build their forecasts. Due to the 

Markovian nature of the model the valuation procedure by a representative agent takes as 

given the filtered estimate of the mean EPS growth (Genotte, Dothan and Feldman) when 

pricing assets.  

Given the information set available to the agents, the processes for )(tY  and the 

MEGR estimate are given in Theorem 1, 
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Now we derive share price using standard SDE arguments based on stochastic 

discount factor (SDF) approach (see, e.g., Cochrane, 2005). The implicit assumption here 

is that any shock responsible for the difference between tD and Yδ is not priced: 

( )[ ] 0* =+ YdtMMPdEt δ       (B2) 

Evaluating the differential and dividing through by MδY we obtain: 
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    (B3) 

We now guess a solution for the price in the following form:  

P(t, Y, )(ˆ tG , R) = δYZ(t, )(ˆ tG , R)      (B4) 

where Yδ represents dividends-per-share. Operator *
tE  represents an expectation 

with respect to *
ydw , investors’ information set. ),ˆ,( RGtZ  is the time-t price-dividend 

ratio. 

The second and the third terms under the expectation in (B3) follow from a  

simple application of the Itô rule: 
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Collecting all the terms in (B3), taking the expectation, and dividing through by 

dt, we obtain the PDE for the share price: 
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The above PDE satisfies Feynman-Kac conditions, and therefore allows us to 

write the solution which can be written as follows: 
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The integrand solves the same equation as Z with the free term 1 deleted from the 

equation. We look for an integrand solution as 

))(),()(ˆ),(),(exp( tRsttGstst υψϕ −+ . 

Equivalently, we are looking for price-dividend ratio in the form: 

∫
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Inserting the proposed expression for the integrand into its PDE and recognizing that the 

resulting ordinary differential equation (ODE) must hold for arbitrary values of )(ˆ tG and 

R(t), we arrive at the following ODEs for functions ϕ(t,s), ψ(t,s), and υ(t,s) (prime 

denotes ∂/∂t derivative): 

0
22

'

01'

01'

*2
2

*2
2

=+−Σ−++
Σ

+

=+−

=+−

yrrtrgr
r

gg
t

r

g

kk

k
k

λυµψυσρυσψµψϕ

υυ

ψψ

  (B7) 

When s=t (or τ �  s-t = 0), the integrand is equal to zero. Therefore, we have the 

following initial conditions for functions ϕ(t,s), ψ(t,s), and υ(t,s): 
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Subject to these initial conditions, the solution to the decoupled system (B7) is: 
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 (B8) 

The requirement that the integral (B6) exist places certain restrictions on function ϕ(t,s). 

For the integral in (B6) to exist, the integrand should be declining with s sufficiently fast. 

Since functions ψ and υ are bounded, this requirement implies that function ϕ should be 

negative and unbounded at large s. The latter restriction implies certain constraint on 

model parameters (a transversality condition), which we now derive. We need three 

auxiliary results to complete the derivation of the transversality condition: 

a. For any bounded positive function f(u) and positive constant k: 
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In what follows, we ignore non-growing integrals such as (B9) and keep only the 

leading terms that are unbounded in τ. 

b. In equation (6) for the posterior variance of the MEGR estimate, S(t), we 

assume that S(0) > S1. This condition also implies that constant C < 1. Therefore, the 

solution for variance S(t) is  
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c. Using equation (6) for the posterior variance S(t) we have: 
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Using results (B10) and (B11) as well as (B8) to eliminate non-growing integrals 

we obtain the following leading terms in function ϕ:  
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Finally, the transversality condition states that the leading terms must be negative 

for the price integral to exist: 
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Applying Itô’s lemma to )(tP , we obtain a stochastic differential equation (SDE) 

for )(tP , subject to ∞<)(tP : 
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Plugging the SDE for 
)(
)(

tP
tdP into equation (B3), we get the following risk-neutral 

drift of stock return in an incomplete-information environment, 
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Proof of Proposition 4: 

The risk premium for G(t) based on complete-information BC model is defined by BC
gλ , 

given below,  
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The risk premium for )(ˆ tG based on our incomplete-information model is defined by gλ , 

given below, 
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Therefore, the difference in risk premiums between our incomplete-information model 

and complete-information model (BC) is given by, 
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In the long-run limit as 1)( StS → =0, we obtain the following result: 
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term in parentheses above disappears, which implies a zero difference in risk premiums. 
That is .0→∆ gλ  
 
 
Let BC

gµ denote the risk-neutral long-term mean of earnings growth under BC model. 
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neutral long-term mean of EPS growth rate under our incomplete-information model, as 
given below: 
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According to Proposition (1), if 1=gyρ  or 1−=gyρ , )(tS  declines over time and 
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12 The only exception is the case of β<gk . 
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