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Asset Pricing Theory with an Imprecise Information Set 

 

Abstract 

This paper provides a novel theoretical platform for the pricing of imprecise 

accounting information as a systematic market risk. Our intertemporal asset pricing 

model shows that systematic information-quality risk is priced through a distinct market 

risk premium and three extra betas associated with an imprecise-information risk. Our 

first information-quality beta is related to the covariance between market-wide imprecise-

information return error and security precise return. Together with the separate market 

information-quality risk premium, this beta provides the theoretical underpinning for a 

separate market information-quality factor in the spirit of empirical multiple-factor model 

prevalent in the literature. The second extra beta (linked to the covariance between firm 

and market-wide imprecise-information return errors), represents the commonality in 

information quality, which is priced by investors seeking to curtail adverse effects of 

imprecise accounting information on their portfolio value. Our third information-quality 

beta (related to the covariance between stock imprecise-information return error and 

overall market return), implies that – for hedging purposes – investors prefer to invest in 

stocks issued by firms that tend to, erroneously or deliberately, release false positive 

information about the firm when the market is bearish. Our model is strongly supported 

by empirical evidence. 
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1. Introduction 

Traditional asset-pricing models are based on the assumption that the financial 

market is informationally efficient and that individuals are well informed (see for 

example, Sharpe, 1964; Lintner 1965; Mossin, 1966; and Merton, 1973). However, there 

is substantial evidence indicating that information releases are noisy (see for example, 

Faust, Rogers, and Wright, 2000; Shapiro and Wicox, 1999; and Wang 1993). With an 

imprecise information set, investors may face information-quality (information-

imprecision) risk. Ignoring this risk may lead to asset mispricing in traditional asset-

pricing models. This paper provides a theoretical platform for the pricing of imprecise 

accounting information as a systematic market risk factor. 

There is a growing body of literature that examines the pricing of different 

manifestations of an imperfect information set, both theoretically and empirically. For 

example, Easley and O’Hara (2004) derive a rational-expectations model under which 

asset returns are affected by the information asymmetry between privately informed and 

publically informed (uninformed) investors. This model implies that, while privately 

informed investors adjust their portfolios based on the arrival of private information, 

uninformed investors hold ex-ante underperforming portfolios. Therefore, uninformed 

investors face systematic asymmetric information risk for which they demand a risk 

premium. In addition, this model also implies that investors demand higher asset returns 

for facing imprecise information. These theoretical predictions suggest that higher 

accounting-information precision reduces the asset risk for uninformed investors, and 

thus results in a lower cost of capital. Consequently, numerous studies empirically test 

the relation between accounting-information precision and the cost of equity capital 

and/or the cost of debt capital.
1
  

Francis , LaFont, Olsson, and Schipper (2004) and Botosan , Plumlee, and Xie 

(2004) relate the cost of equity of a firm to the firm’s information quality. Consistent with 

the prediction of Easley and O’Hara (2004) that information precision is non-

diversifiable, Francis et al. (2005) show that poorer market-wide accrual-quality factor as 

                                                 
1
 See for example, Francis LaFont, Olsson, and Schipper (2004, 2005), Botosan, Plumlee, and Xie (2004), 

Aboody, Hughes.and Liu (2005), Liu and Wysocki (2006), Core et al. (2008), Ogneva (2008), and Kravet 

and Shevlin (2010) for studies focusing on the cost of equity capital. As for studies looking at the cost of 

debt capital, see Francis et al. (2005) Anderson et al. (2004), Graham et al. (2008), and Bhojraj and 

Swaminathan (2007). For a survey of this line of literature see Dechow, Ge, and Schrand (2010). 
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a measure of an information-quality factor is associated with a larger cost of equity 

capital. In other words, firms are exposed to information precision risk with a 

significantly positive factor loading with respect to their market-wide information-quality 

factor, after controlling for the Fama and French (1993) three factors. 

A follow up study by Core, Guaya, and Verdi (2008) confirms that the time-series 

regressions of stock returns on cotemporaneous factor returns used by Francis et al. 

(2005) yield an average positive factor loading with respect to the market information-

quality factor. However, after running a cross-sectional regression of stock returns on the 

estimated (time-series) information-quality factor loadings (while controlling for the 

Fama and French three factor loadings), they show that investors do not demand a return 

premium for this positive exposure to information imprecision. Stated differently, 

information quality is not a priced market factor as implied by Easley and O’Hara (2004) 

model. 

More recent research challenges the conclusion of Core et al. (2008), and 

demonstrates that information precision is priced under certain market conditions. Kravet 

and Shevlin (2010) use the Fama and French (1993) three-factor model, augmented by 

two information precision factors: a market innate accrual quality factor and market 

discretionary component of accrual quality factor. Their findings indicate that during a 

short period following accounting restatement, higher discretionary precision factor 

loadings yield a higher cost of equity capital at the cross section of restatement firms. I.e., 

information precision risk is priced for restatement firms following the restatement 

announcement. Moreover, they show that the discretionary component of information 

risk is also priced at the cross section of firms in the same industries as the restatement 

firms. 

Ogneva (2008) claims that Core et al.’s (2008) rejection of information precision 

as a priced market factor comes about because lower information-quality firms suffer 

from negative future cash flow shocks which depress future returns. Overall, this may 

offset the higher returns one would expect for low information-quality firms.
2
 Her 

                                                 
2
 When controlling for cash flow shocks in the Core et al.’s (2008) regression model, Ogneva (2008) finds 

that stock returns become significantly and positively related to the information-quality factor loadings at 

the cross section. She introduces an additional test, which replaces the standard accrual-quality measure of 

Dechow and Dichev (2002) by a measure of accrual quality, scaled by the average of absolute accruals 
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findings indicate that, after properly controlling for the impact of accrual quality on 

future cash-flow shocks, investors demand a return premium for a positive exposure 

(factor loading) with respect to information imprecision.  I.e., the information-quality risk 

factor is priced. 

While there is some empirical evidence that an information-precision factor is 

systematic and priced, there is still lack of theoretical underpinning for its inclusion in an 

asset-pricing model as a separate market factor. To the best of our knowledge, the only 

two papers incorporating accounting-information precision in an asset-pricing model are 

those of Lambert, Leuz, and Verrecchia (2007) and Lambert, Leuz, and Verrecchia 

(2012).
 
 

The former paper is a pioneer theoretical study on the pricing of imprecise information, 

and the latter presents the first model to show that imprecise accounting information 

alters systematic risk and affects asset prices at the cross section. Note that, neither paper 

provides a theoretical justification for the pricing of an information-quality factor 

separate from the Capital Asset Pricing Model (CAPM) market factor. Our paper 

complements this literature by providing a theoretical foundation for the pricing of 

imprecise accounting information as a systematic market factor.  

Of these two papers, our paper is most closely related to that of Lambert et al. 

(2007) who derive a one-period CAPM-based model to study the effects of imprecise 

accounting information on the cost of capital. In their model, lower precision of 

accounting information about the firm’s future cash flow increases its conditional 

covariance with market cash flows (or the firm’s conditional cash-flow beta) and 

consequently increases the cost of equity. Therefore, the cross-sectional pricing of 

information risk in the Lambert et al. (2007) model is manifested through the imprecise-

information induced measurement error in the estimation of the firm’s cash-flow beta.
 3

 

                                                                                                                                                 
estimated over the previous five years. This new measure is less correlated with future cash flow shocks. 

When she replaces the standard accrual-quality measure with her scaled measure in the Fama and MacBeth 

(1973) procedure used by Core et al. (2008), she finds that the cost of equity capital is significantly and 

positively related to her modified accrual-quality factor. 
3
 In somewhat related finance literature on estimation risk, the source of information about a firm comes 

from its historical time-series of returns (see for example, Barry and Brown, 1985; and Coles et al., 1995). 

Lambert et al. (2007) note that the reliance in this literature on the time-series of returns as the source of 

information affects  a significant portion of the covariance structure. Different from their model, in this 

stream of research “new information is correlated conditionally with contemporaneous observations and 
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Lambert et al. note that this result has strong implications for empirical asset-pricing 

studies incorporating imprecise information. However, their model does not provide the 

theoretical underpinning for an extra separate “information risk” factor in an asset-pricing 

model. For this reason, they suggest that empirical research based on their theory should 

be directed at the relation between information quality and their market beta.  

The second paper addressing asset pricing with imprecise accounting information 

is the model of Lambert et al. (2012). They derive a noisy rational-expectations model 

and study the relation between information asymmetry and the cost of equity capital. 

They show that with perfect competition, information asymmetry is not directly priced 

but the firm’s cost of equity capital is still affected by the average precision of investors’ 

information. However, similar to the result of Lambert et al. (2007), Lambert et al. (2012) 

conclude that the pricing effect of average precision does not justify a separate 

information-related risk factor in a pricing model. 

Our paper is first to provides a theoretical model that is consistent with 

empirically modelling both the standard CAPM market premium and market-wide 

information quality as separate priced risk factors in the context of a multiple-regression 

model.
4
 Different from the model of Lambert et al. (2007), our model distinguishes 

between the standard CAPM (precise) systematic risk (beta) and systematic risk 

associated with imprecise accounting information. Furthermore, we decompose the firm’s 

total systematic risk into the standard CAPM beta and three additional betas associated 

with imprecise-information risk. 

A related theoretical study by Hughes, Liu, and Liu (2007) examines the impact 

of asymmetric information on asset pricing. The source of information friction in their 

study comes exclusively from asymmetric information, rather than information 

imprecision. They use an Arbitrage Pricing Theory (APT) framework to derive their 

model. Their model implies that, at the limit, information asymmetry impacts factor risk 

                                                                                                                                                 
conditionally independent of all other information” (p. 398). Lambert et al.’s (2007) model, as well as our 

model, presents a structure for the information set, which allows different covariance structures. 
4
 This result is in the spirit of multiple-regression models used in the empirical studies of Francis et al. 

(2004, 2005) Botosan et al. (2004) Aboody et al. (2005) Liu and Wysocki (2006) Core et al. (2008) Ogneva 

(2008) and Kravet and Shevlin (2010). 
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premiums, not factor sensitivities. This means that asymmetric-information risk is not 

priced at the cross section.
5
 

In the spirit of Merton (1973), we derive an intertemporal asset-pricing model that 

examines the pricing of risk associated with imprecise accounting information. We model 

the impact of imprecise information on asset returns with an Ornstein-Uhlenbeck mean-

reverting process under which the information-related return error fluctuates around its 

long-term mean, to account for reversals in these errors. In the static version of our 

imprecise-information-adjusted asset-pricing model, information-quality risk has 

systematic and idiosyncratic components, and only the former is priced. Our model 

further demonstrates that systematic information-quality risk is priced through three extra 

asset betas as well as through the alteration of the market risk premium. With an 

imprecise information set, these three distinct systematic risk effects are measured by 

covariance (beta) terms between firm-specific and market-wide imprecise-information 

measures and the precise (fundamental) returns on the asset and the market. 

The first component of systematic imprecise-information risk is a function of the 

covariance of the security’s precise return with the information-imprecision return error 

on the market portfolio. At times when the overall market information-imprecision return 

error is negative, investors prefer to hold securities that pay a higher precise return. 

Therefore, investors demand a premium for this covariance. This covariance provides the 

theoretical underpinning for empirical models testing the cross sectional pricing of the 

factor loading of an imprecise-information factor (see for example, Francis et al., 2005; 

Core et al., 2008; Ogneva, 2008; and Kravet and Shevlin, 2010). In this line of empirical 

literature the imprecise-information factor loading is also related to the covariance of the 

security return with a market information factor, normally measured by the return on a 

long-short mimicking portfolio. Thus, we provide further theoretical support for a 

separate information-quality factor by showing that in equilibrium this market factor 

exists and the extra risk premium required is distinct from the CAPM market risk 

premium. 

In addition to the above manifestation of systematic risk that has been empirically 

researched in recent years, our model introduces two novel aspects of theoretically priced 

                                                 
5
 We further discuss Hughes et al. in section 2.1 and 2.4. 
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systematic imprecise-information risk. First, we have the covariance of the security’s 

imprecise-information return error with the information-imprecision return error on the 

market portfolio. We call the beta related to this covariance the commonality in 

information quality beta. Assets with a negative commonality covariance provide a hedge 

against the risk of a negative return due to information imprecision on the market 

portfolio, and therefore have lower expected returns. Thus, investors expect a higher 

return premium for a security with a positive commonality in information quality beta. 

The second novel form of priced systematic imprecise-information risk in our 

model is the covariance between the security information-imprecision return error and the 

market precise return. Here too, investors prefer a negative covariance as it corresponds 

to higher security information-imprecision return error during a bear market. The 

implication of this preference is that investors may choose to invest in stocks of firms that 

erroneously, or even intentionally, release false positive information about the firm at 

times of a down market. In equilibrium, investors demand a risk premium for stocks that 

do not provide this hedge due to this covariance term being positive. We provide 

empirical evidence which strongly supports our theory. 

The remainder of this paper is organized as follows: in Section 2 we derive an 

imprecise-information-adjusted intertemporal asset-pricing model to obtain an analytical 

asset-pricing framework in the presence of an imprecise-information set. Section 3 

discusses the theoretical and empirical implications of imprecise accounting information 

for asset pricing, while discussing the different channels through which systematic 

information-imprecision risk affects asset pricing. Empirical evidence in support of our 

theory is given in Section 4, followed by robustness tests in Section 5. Section 6 provides 

summary and conclusions. 

  

2. An Intertemporal Asset-Pricing Model with Imprecise Accounting Information 

In the current section we formulate a theoretical asset-pricing model with 

information-quality risk. In particular, we revisit Merton’s (1973) intertemporal CAPM 

by incorporating an imprecise information structure and explore the various channels 

through which information risk may affect expected asset returns.  
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 We maintain Merton’s (1973) assumptions of continuous trading, and that the 

returns and the changes in the opportunity set (the transition probabilities for returns on 

each asset over the next trading interval) are well explained by continuous-time stochastic 

processes. The vector set of stochastic processes describing the investment opportunity 

set and its changes follow a time-homogeneous Markov process.
 6

  In the subsection 

below, we define the imprecise return structure in our model, based on imprecise cash-

flow information available to investors. Based on this imprecise return structure, we 

make two additional assumptions modifying Merton’s framework to allow for imperfect 

information quality. 

 

2.1. The Imprecise Information Set 

 Merton (1973) describes the equity expected return over a period of length s as: 

,
)(

)()()],([

tP

tPstUCPSsttCFPSE 
 

where ),( sttCFPS   is cash flow per share generated by a firm between time t and time t 

+s, )( stUCPS  is the balance of undepreciated capital per share (calculated under 

physical capital depreciation) held by the firm at time t + s, )(tP  is the beginning-of-

period stock price per share. 

Accounting information released by the firm is the principal source of information 

for estimating the cash flow component of the expected return, and the above definition 

of expected equity return relies on precise accounting information. Since accounting 

information is noisy by nature, expected cash-flow estimates, and therefore expected 

returns, are imprecise. Formally, we follow Lambert et al.’s (2007) definition of the noisy 

measure of imprecise cash flow as the sum of the firm’s precise cash flow per share, 

),,( sttCFPS  and an error term that represents the random imprecise cash flow 

component per share misestimated for the period between time t and time t + s, 

                                                 
6
 Merton assumes that all assets have limited liability, and there are no transactions costs, taxes, or 

problems with indivisibilities of assets. There are a sufficient number of investors with comparable wealth 

levels so that each investor can buy and sell unlimited amounts at the market prices, and there exists an 

exchange market for borrowing and lending at the same rate of interest. Investors have homogeneous 

expectations with respect to asset returns. Short-sales of all assets, with full use of the proceeds are 

allowed. Finally, it is assumed that trading in assets takes place continually in time. For specific details see 

Merton (1973). 
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).,( stt   This implies the following imprecise expected return on equity over a period 

s: 

,
)(

)()()],([)],([

tP

tPstUCPSsttEsttCFPSE  
 

Given Merton’s definition of the precise (fundamental) expected return, the imprecise 

expected asset return is the sum of the precise expected return and the expected return 

due to cash flow imprecision: 

,
)(

)],([

)(

)()()],([

tP

sttE

tP

tPstUCPSsttCFPSE 


 
 

 

 We denote the ex-ante return due to cash flow imprecision for the period between 

time t and time t + s with: ),( stt  , such that:  .
)(

),(
),(

tP

stt
stt





  In the 

continuous time framework, for an infinitesimally small time interval s, we denote the 

information-imprecision return error on asset i by i  (for convenience, we drop the time 

subscript). The inclusion of imprecise accounting information about cash flow leads to 

the two additional assumptions below, which modify Merton’s (precise-information) 

framework. 

  

Assumption 1: The information-imprecision return error, ,i   follows an Ornstein-

Uhlenbeck process as follows: iii dzdtd
ii    )( , for every asset i (i = 1, 

2,…n), where ,  ,
i  

i are constants, iz is standard Wiener process, and

dtdzdzE
jiji  ,][  , for every asset i (i = 1, 2,…n) and asset j (j = 1, 2,…n). 

 The drift term )( ii
   gives the expected change in the information-related 

return error. With a positive speed of mean reversion ( 0 ), the level of information-

related return error, ,i  fluctuates around a long-term steady-state mean, 
i , which is 

constant for security i. The parameter 
i  measures the magnitude of the innovation in 

.i  We assume that the information-related return error follows a mean-reverting process 

in order to account for reversals in these imprecise-information induced errors. 
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Assumption 2: Market participants observe the stochastic instantaneous imprecise return, 

iii rr ~ , where ir  is the precise return on asset i. This precise return follows a 

Gaussian process: irri ddtdr
ii
  , for every asset i (i = 1, 2,…n).  

 Applying Itô’s lemma we write the mean of the instantaneous imprecise return as 

iii rr  ~ , which is the sum of the mean instantaneous precise return and the long-

term mean of the return error.
 
The instantaneous imprecise return variance is given by: 

2
~
ir

 ,2 ,

22

iiii rr     where 
iir 

 ,
is the instantaneous covariance between the precise 

return on asset i and the return due to information imprecision related to asset i: 

.,, iiiiii rrr     The term
iir 

 ,
 denotes the instantaneous correlation between the 

precise return on stock i and the information imprecision return errorfor stock i.  

 We further denote the instantaneous correlation coefficient between id  and 
jd

(for two different assets i and j) with ,, ji rr  and the instantaneous correlation coefficient 

between id  and 
jdz with ., jir 

  That is, dtddE
ji rrji ,)(   and dtdzdE

jirji  ,)(  . 

The instantaneous covariance between the imprecise returns on any two assets i and j is 

given by: ,),( ,,,,~,~
jiijjijiji rrrrjjiirr rrCov     where 

ji rr , is the 

instantaneous covariance between the precise returns on the two assets. 

 The above assumptions imply the following Itô processes for the instantaneous 

imprecise return on the asset i ( ir
~ ): 

 irriri ddtrd
iiiiii
  ,

22 2))((~  ,          (1) 
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where i  is a standard Brownian Motion.
7

 Equation (1) implies that 

},2)),({( ,

22

ijrrir iiiiii
    is a sufficient set of statistics for the 

imprecise opportunity set at any given point in time. 

 Note that in the current setup all investors face the same imprecise information 

set. This is similar to the assumption of Lambert et al. (2007) that investors hold 

homogeneous beliefs about future cash flows (and imprecise return moments in our 

model), but different from the setup of Lambert et al. (2012) that allows for asymmetric 

information. In addition, similar to Lambert et al. (2007), our setup facilitates studying 

the pricing effect of firm-specific information imprecision. In Hughes et al. (2007) the 

information structure is based on the firm’s cash-flow component that stems from a factor 

common to all firms. Different from Lambert et al. (2007) and from the current paper, the 

idiosyncratic cash-flow portion is cross-sectionally independent in Hughes et al. (2007). 

Lambert et al. (2007) note that this difference in the information structure leads to 

different results related to the cross-sectional effects on the expected return on equity. 

The same difference applies to our model. 

 

2.2. The Investor’s Problem 

 Following Merton (1973), we assume that there are L investors who maximize 

their expected lifetime utility of wealth given an imprecise information set: 





   ]),(),([]),([max]),(),([

0
0

llllll
T

l TTTWBdssscUΕtttWJ
l

 ,   ,,...2,1 Ll      (2)    

where “ 0Ε ” is the expectation operator, conditional on the current value of the l
th

 

investor’s wealth and the imprecise information set. lU  is the von Neumann-

Morgenstern utility function of consumption for the l
th

 investor, which is strictly concave. 

The initial value of investor l’s wealth is given by .)0( ll WW   lT  is the l
th

 investor’s 

                                                 

7
 Application of Itô’s Lemma implies that: ,

2 ,

22

iiii

ii

rr

iir

i

dzd
d













 and 

dtdzdE

iiii

iiii

rr

rr

ii










,

22

,

2
)(




 . 
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horizon and )(tc l  is the instantaneous consumption flow at time t. Finally, lB  denotes a 

strictly concave utility function of terminal wealth. The terminal value of lifetime utility 

in equation (2) is given by: )),(),((]),(),([ TTTWBTTTWJ   . 

 With n risky assets and one instantaneously riskless asset, and with imprecise 

accounting information incorporated in equation (1), the wealth accumulation equation 

for the l
th

 investor is given by: 

   cdtWrqrWdqdW f

n

i

i

n

i

ii  


)1(~

11

,       (3) 

where iq  is the proportion of the investor’s wealth invested in the i
th

 asset. Following 

Assumptions 1 and 2, the imprecise-information wealth-accumulation process is given by 

(see derivation in Appendix A): 

,2))(( ,

22

11

cdtdWqWdtrrqdW irr

n

i

i

n

i

ffiri iiiiii









 



           

where 
fr is an exogenous instantaneous interest rate on a risk-free bond, and ,11

1 




n

i iq  

where qn+1 is the weight of the riskless asset. Using the above assumptions and wealth-

accumulation process, we solve for an investor’s consumption-investment optimal choice 

which results in the following Hamilton-Jacobi-Bellman (HJB) equation: 

.)(

2

1

)(
2

1

]))([(),(max[0

1 1 ,,

1 ,1

1

2

1 ,,,,

1

 

 

 



 

 

 











n

i

n

j riW

n

i

n

j

n

i

n

j rrrrjiWW

n

i ffriWt

jijij

jijiji

ijjijiji

ii

WqJ

J

WqqJ

WrrqJJtcU

















     (4) 

 The n+1 first-order conditions for each investor derived from (4) are given by: 

),,,(),(0 tWJtcU Wc            (4.1) 

,)(

)()(0

1 ,,

1 ,,,,

2













n

j rW

n

j rrrrjWWfrW

jijij

ijjijijiii

WJ

WqJWrJ








   (4.2) 

 ni ,...2,1  and ,,...2,1 nj  where ),,,(* tWcc   ),,(* tWqq ii   represent the optimal 

level of consumption and the optimal weights for  assets in portfolio.  
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2.3. The Optimal Portfolio Choice 

The assumption of constant risk-free rate in our model allows us to simplify our 

analysis and focus on the market for risky equity securities. Using matrix notation, we 

rewrite equation (4) for the n risky assets: 

,)(0 ,~~,~  WrrrWWfrW JqWJIrJ        (5) 

where 
r  is the vector of mean precise returns of the n risky securities,  is the vector 

of long-term means of information-imprecision return error (which are also the long-term 

return spreads between the precise returns and imprecise returns),   is the vector of firm-

specific information-related return error, 
rr ~,~  is the variance-covariance matrix of 

imprecise return vectors r~ with elements 
ijjijijiji rrrrrr   ,,,,~,~  , and 

,~r  is 

the covariance matrix between the observed imprecise return vector r~ and the 

information-related return-error vector  on risky assets, with components given by 

)( ,,,~
jijiji rr     ,,...2,1 ni  and .,...2,1 nj   From (5), we obtain the vector of 

optimal portfolio weights, 

.)( ,~
1

~,~
1

~,~
*

WW

W

rrrfrrr

WW

W

WJ

J
Ir

WJ

J
q



 


    (5.1) 

We rewrite (5.1) for every asset i as follows: 

,)()( ,,1,1

*

~,~~,~

WW

W

r

n

kjjfr

n

j
WW

W
i

WJ

J
vIrv

WJ

J
q k

kjkjjrirjjjrir



    
  (5.2) 

 ,,...2,1 ni  ,,...2,1 nj   and .,...2,1 nk   
jrir

~,~
  denotes an element in the inverse of the 

variance covariance matrix, 
1
~,~

 rr . 

 Equations (5.1) and (5.2) give the optimal weights (demand) for asset i in the 

presence of imprecise accounting information. The optimal portfolio weight, ,*q  in 

equation (5.1) is the combination of the tangency (market) portfolio with n hedge 

portfolios. This optimal portfolio hedges against imprecise-information risk related to 

each of the n assets, which causes unfavorable changes in the noisy investment 

opportunity set. Note that, the optimal portfolio composition is altered in the presence of 
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imprecise information not only through the hedge portfolios, but also through the 

definition of the tangency portfolio, which is altered as well by imprecise return errors.
8
 

 

2.4. The Equilibrium Pricing Equation 

 The equilibrium asset-pricing equation derived in this section shows that expected 

asset risk premiums with imprecise accounting information arise due to three elements: (i) 

the sensitivity of asset returns to the precise excess market return (as in the standard 

CAPM); (ii) a return sensitivity to a market-wide imprecise information factor; and (iii) 

the asset return sensitivity with respect to n hedge portfolios. The expected excess return 

on a security takes the following form (see derivation in Appendix B): 

,)( i

m

ifr

m

ifr Hrr
mmii
         (6) 

where 
mr

  is the mean precise market return, 
2
~

~,~

m

mi

r

rrm

i



   reflects the i

th
 security return 

sensitivity to the imprecise-information-adjusted market excess returns, mr
~  is the 

imprecise return on the market portfolio,   n

i iim rxr 1
~~ . In the intertemporal model, 

investors hold n hedge portfolios, represented by a vector h, to hedge against the 

fluctuations in imprecise returns that cause random shifts in the imprecise information set. 

This result implies the following extra term in equation (6): 

    n

k

mh

k

h

krr

n

j rr

m

ii khjhjijm
bH 1 ~,~1 ,~,~ )()(

,,
   that represents the risk premium 

associated with the n hedge portfolios. The term: 
mm fr

m r   )( is the market risk 

premium adjusted for imprecise accounting information, 
2
~

~,~
,

m

mkh

r

rrh

k



   is the k

th
 hedge 

portfolio’s return sensitivity to imprecise-information-adjusted excess market returns, 
kh

r
,

~  

is the imprecise return on hedge portfolio k, 
khkh fr

h

k r
,,

)(   is the imprecise 

information adjusted risk premium on the k
th

 hedge portfolio, and 
khjh rrb

,,
~,~  denotes an 

element in the inverse matrix 
1

~

hr

, which is presented in Appendix B.  

                                                 
8
 The optimal portfolio choice varies across investors as reflected in the different derivatives of the 

investor’s expected lifetime utility of wealth, J. 
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Equation (6) is the equilibrium intertemporal capital asset pricing equation with 

information imprecision. It describes the equilibrium relation between the asset risk 

premium and three types of risk: market (systematic) risk, systematic information 

imprecision risk, and the risk of unfavorable shifts in the stochastic investment 

opportunity set. Equation (6) further shows that imprecise accounting information affects 

the risk premium associated with the asset betas (risks). In addition to the standard 

CAPM market risk premium, ),( fr r
m
  investors also demand a premium for asset 

return sensitivity to the market-wide information-quality risk factor, .
m  

 Systematic risk is measured by the sensitivities (betas) with respect to the market 

portfolio, information-quality factor, and the hedge portfolios. The imprecise-information 

related adjustment in m

i and h

k  
highlights a significant difference from the APT model 

of Hughes et al.’s (2007). In their model, risk related to asymmetric information only 

affects factor risk premiums, not factor sensitivities. Unique to our model, the risk 

associated with the imperfect-information attribute we consider (information imprecision) 

affects the risk premiums as well as factor sensitivities. As a result, information 

imprecision is systematic and cross-sectionally priced. We further explore this point and 

explain the way in which imprecise accounting information alters factor sensitivities in 

Section 3.  

 

3. Empirical and Theoretical Implications of Imprecise Accounting Information 

 In this section, we further analyze the implications of our model using a more 

tractable static version of equation (6). To arrive at the static version, we assume that 

every k
th

 hedge portfolio is correctly priced by its return sensitivity to the noisy market 

factor (in other words, ,0kH for every k).
9
 Under this assumption we can write 

equation (6) as follows for every k
th

 hedge portfolio: 

.)(
,, mmkhkh

m

kfr

m

kfr rr   
 

                                                 
9
 Alternative to this assumption, there are two additional assumptions that lead to the static version of our 

model in equation (7). First, one can assume the derived utility function, J, is either additive in wealth and 

return errors. Second, imprecise returns have a factor structure.  
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With the notations used following the discussion of equation (6), this is equivalent to: 

mh

k

h

k    for every k. 
10

 Thus the pricing error on hedge portfolio return, represented 

by ),( mh

k

h

k   becomes zero. This implies that: 

0)()(1 ~,~1 ,~,~
,,

  

n

k

mh

k

h

krr

n

j rr

m

ii khjhjijm
bH    for every asset i, which leads to 

the static version of our imprecise-information-adjusted asset-pricing model: 

,)(
mmi

m

ifr

m

ifi rr          (7)  

where: 

mmmm

mimimimi

m

mi

rr

rrrr

r

rrm

i














,

22

,,,,

2
~

~,~

2


  and .2 ,

222
~

mmmmm rrr    The 

ensuing discussion is based on this static version. 

 

3.1. Empirical Implications of the Imprecise-Information-Adjusted CAPM 

Equation (7) provides the theoretical underpinning for incorporating an 

information-imprecision risk factor in a regression model as a separate market factor. 

Recall that Lambert et al. (2007) do not provide a theoretical justification for the pricing 

of an information-quality factor. In their one-period CAPM-based model, the cross-

sectional pricing of imprecise information manifests through the estimation of the firm’s 

cash-flow beta.
 
They emphasize that their model does not provide the theoretical 

foundation for an extra separate “information risk” factor in an asset-pricing model. 

However, our imprecise-information-adjusted model provides a pricing relation that is 

consistent with empirically modeling both market-wide information-quality risk 

premium(
m ) and the standard CAPM market risk premium (

fr r
m
 ) as separate 

priced risk factors in the context of a multiple-regression model (as in the empirical work 

of Francis et al., 2004, 2005; Botosan et al. (2004); Aboody et al. (2005); Liu and 

Wysocki (2006); Core et al., 2008; Ogneva, 2008; and Kravet and Shevlin,). In addition, 

in our model imprecise accounting information also affects asset prices cross-sectionally 

through its impact on the firm’s imprecise-return beta (rather than the Lambert et al. cash-

flow beta).  

In the next subsection, we decompose our imprecise-return beta and investigate 

                                                 
10

 Note that, m
k and h

k refer to the same thing: hedge portfolios’ return sensitivities to market excess 

returns.  
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the three different channels through which imprecise information is manifested as a 

systematic risk factor in our model, two of which are unique to this paper. We further 

show that one of these channels is closely related to the factor loading of the information-

quality factor that appears in the above body of empirical work. This provides further 

theoretical support for empirically modeling a distinct information-quality factor. 
 

 

3.2. Theoretical Implications of the Imprecise-Information-Adjusted CAPM 

Under the static version of the imprecise-information-adjusted CAPM given in 

equation (7), the three-fund separation of the intertemporal model collapses to the 

standard equation that reflects a two-fund separation in the static CAPM, adjusted for 

imprecise accounting information. The two mutual funds (the riskless asset and the 

market portfolio) allow the investor to create a risk-return profile comparable to that of 

asset i on an instantaneously efficient frontier. Thus, the imprecise-return beta in equation 

(7) measures the risk contribution of asset i (
mi rr ~,~ ) to the total risk of holding the market 

portfolio (
2
~
mr

 ), which consists of a systematic component of imprecise-information risk. 

After expanding the covariance term in equation (7) we can write the asset pricing 

equation as follows:  

.
2
~

,

2
~

,

2
~

,

2
~

,

m

mi

m

mi

m

mi

m

mi

ii

r

rm

r

m

r

rm

r

rrm

fr r






















      (8) 

Recall that 
mm fr

m r   )( , is the imprecise-information-adjusted risk premium on 

the market. The long-term equilibrium imprecise-information-adjusted asset-pricing 

model in Equation (8), provides the framework for understanding the various channels 

through which imprecise-information risk may affect asset returns.
 
 

Unlike the model of Lambert et al. (2007), our model distinguishes between the 

standard CAPM (precise) systematic risk and systematic risk associated with imprecise 

information. This is reflected in equation (8) where we decompose the firm’s total 

systematic risk into the standard CAPM beta and three additional betas associated with 

imprecise-information risk. These four betas are related to the following covariance 

terms: , , , ,,, mimimi rrr  
 
and ., imr   The first term, ,, mi rr  is the standard CAPM 

covariance of the precise returns on the individual asset (ri) and on the market (rm). With 
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an imprecise information set the three distinct betas representing systematic information-

quality risk are related to the following covariance terms: ,, mir 
 ,, mi   

and ., imr   

Below, we show that the first covariance term captures the effect of the information-

quality factor of Francis et al. (2005). The other two covariance terms reveal two novel 

channels that manifest the pricing of systematic risk related to information imprecision. 

The first systematic imprecise-information risk term, ,, mir 
  is the covariance 

between the security’s precise return (ri) and the overall market imprecise-information 

return error ( m ). In the CAPM world investors hold the market portfolio. Investors 

prefer securities for which this covariance has a negative sign so that the security tends to 

pay a positive precise return at times when the market portfolio suffers from a negative 

imprecise-information return error.
11

 Stated differently, when this covariance is negative, 

the security hedges against market losses due to information imprecision. This means that 

investors demand a risk premium when this covariance term is positive. Therefore,  this 

covariance term provides the theoretical framework for the cross-sectional pricing of the 

Francis et al. (2005) information-quality factor loading, which is a function of ., mir 
  

Note that the two remaining betas (covariance terms) represent two new channels that are 

unique to our model, through which systematic imprecise-information risk affects asset 

prices.  

The second imprecise-information beta is related to the term ,, mi   which is the 

covariance between the security’s information-related return ( i ) and the overall market 

imprecise-information return error ( m ). Investors holding the market portfolio prefer 

securities for which this covariance is negative so that the security tends to pay a positive 

imprecise-information return error at times when the market portfolio suffers from a 

negative imprecise-information return error. In other words, when this covariance is 

negative, the favorable imprecise accounting information about this security hedges 

against market losses due to information imprecision. We call the beta related to this 

covariance )( 2
~, mmi r   the commonality in information quality beta. Investors will 

                                                 
11

 The analysis in this paper assumes that the market risk premium, 
m , is positive, which is empirically 

consistent. 
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demand a risk premium for securities with a positive commonality in information quality 

beta.  

The last component of systematic risk related to imprecise information, ,, mi r  is 

the covariance between the security’s return due to information imprecision ( i ) and the 

overall market precise return (rm). In this case, investors prefer to hold securities that 

hedge with a positive imprecise-information return error against a bearish market. This 

means that investors holding the market portfolio prefer securities for which this 

covariance is also negative, so that the security tends to pay a positive imprecise-

information return error at times when the market portfolio suffers from a negative 

precise return.  This implies that – for portfolio hedging purposes – investors may prefer 

to invest in stocks of firm’s that erroneously, or even deliberately, release false positive 

information about the firm at times of a down market. Here again, investors demand a 

risk premium when this last covariance term is positive. 

 Finally, two-fund separation implies that investors hold the market portfolio.  In 

our model, the risk involved in holding the market when information is imprecise is given 

by: .2 ,

222
~

mmmmm rrr     This means that the total systematic risk consists of three 

components:  the precise market-portfolio risk ),( 2

mr
  risk related to imprecise-

information market return ),( 2

m  and the comovement of market precise return and 

imprecise-information market return ).( , mmr   Therefore, the presence of 
2

m and 
mmr  ,  

shows explicitly that imprecise-information risk cannot be diversified away, even in the 

context of a very large portfolio such as the market portfolio. 

The above discussion highlights that our static version of the imprecise-

information-adjusted asset-pricing model presents three distinct channels through which 

this systematic imprecise-information risk is priced. Equation (8) implies that investors 

demand a higher risk premium due to the three additional information-related betas 

representing systematic imprecise-information risk they face. This risk is priced because, 

even when one holds security i within a large portfolio such as the market portfolio, one 

still faces the systematic information-quality risk that security i contributes to the market 

portfolio. Unique to our model, this risk is priced through an altered market risk premium 
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as well as through the factor loadings of the security. In the next section we provide 

empirical evidence in support of our static model. 

 

4.  Empirical Evidence 

In this section we test the empirical validity of an unconditional version of our 

static asset-pricing model. Mechanically, our model is somewhat similar to the liquidity-

adjusted CAPM of Acharya and Pedersen (2005), but the focus of our model is clearly 

different. Contextually, Acharya and Pedersen (2005) derive an overlapping-generations 

model accounting for liquidity risk, while our model is an intertemporal model 

considering information-quality risk. Analytically, although both models are four-beta 

models, the signs of the betas in the pricing equation are different. The similarities 

however enable us to follow an empirical testing procedure in the spirit of Acharya and 

Pedersen (2005).  

We assume constant conditional covariances of innovations in information-

imprecision return errors and returns and derive the following unconditional version of 

our static model based on equation (8)
12

: 
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This unconditional static version 

of our model is the basis the empirical test to follow. 

                                                 
12

 The unconditional version of our model can be derived under an alternative assumption that dividends 

and information-imprecision return errors are independent over time. However, we cannot adopt this 

alternative assumption because empirically our information-imprecision return error proxy is persistent. 
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4.1 Data and Methodology 

We use monthly stock prices, returns, and market capitalization data from CRSP 

for NYSE, Amex, and Nasdaq stocks for the period between January 1970 and December 

2010. Consistent with previous literature, we include only US common stocks (CRSP 

codes of 10 or 11). The accounting data are from the Compustat database. Each month 

we exclude penny stocks and stocks with price greater than $1000 based on beginning-of-

month prices. We further exclude size outliers, defined as observations with market 

capitalization within the upper and lower 2.5 percentiles of our sample.
13

 

 

4.2 Measuring the Information-Imprecision Return Error 

To estimate equation (9), we need a proxy for the information-imprecision return 

error, .it  A significant body of research in accounting and finance suggests measures of 

accrual quality to proxy for firm information quality (see for example, Barth et al., 2001; 

Dechow and Dichev, 2002; McNichols, 2002; Francis et al., 2005; Core et al., 2008, and 

Lee and Masulis, 2009). The premise of this interpretation of accrual quality is that cash 

flow is the primitive element for pricing, and therefore poor accrual quality is a cause for 

weaker mapping between cash flow and price and thus an indication of feeble 

information quality. 

We adopt the modified Dechow and Dichev (DD hereafter, 2002) model and 

estimate an accruals-quality (or information-quality) measure as proxy for the 

information-imprecision return error, .it  DD model current accruals as a function of 

current, past, and future cash flows. This approach views the primary role of the 

matching function of accruals to cash flows in determining accrual quality. The intuition 

                                                 
13

 The estimation of the information-imprecision return error proxy we use below requires companies in our 

sample to have survived for at least four years prior to the estimation year. As a result, the sample is 

systematically biased towards older, larger, and more successful firms, while it excludes recently-listed 

(younger) firms and firms delisted over this sample period (see Core et al., 2008; and Lee and Masulis, 

2009). Since older and larger firms are more likely to have higher information quality, the removal of firms 

with market capitalization within the top 2.5 percentile addresses the structural sample bias towards larger 

firms. At the same time, smaller-size and younger firms are more likely to suffer from poor information 

quality, hence are more likely to agree with the implications of our model. Therefore, to avoid this potential 

bias in favor of our model, we also remove firms with market capitalization within the bottom 2.5 

percentile. 
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behind this measure is that managers have some discretion over the timing or cash flow 

recognition across adjacent accounting periods.
14

 DD suggest that estimation errors in 

accruals and their subsequent corrections are likely to reduce the beneficial role of 

accruals, thus the quality of accruals is decreasing in the magnitude of accrual estimation 

errors. In addition to cash flows, we augment changes in sales revenue and property, 

plant, and equipment because these components are important in forming expectations 

about current accruals, beyond their direct effects on operating cash flows (see 

McNichols, 2002).
15

  The modified DD model is specified as:  

,Rev ,,5,41,3,21,10, tititititititi ePPECFOCFOCFOTCA      (10) 

where 

 total current accruals = ( , 

= change in current assets, 

= change in cash/cash equivalents, 

= change in current liabilities, 

= change in short-term debt, 

= depreciation and amortization expenses, 

= cash flow from operation= , 

= net income before extraordinary items, 

= change in revenue, and 

= gross property, plant, and equipment. 

All variables are drawn from the yearly Computstat database and are scaled by the 

average of total assets between year t-1 and year t. We estimate Equation (10) at the 

cross-section for every year within each industry with at least 20 observations in a given 

                                                 
14

 This is because accruals anticipate future cash collections or payments and reverse when previously 

recognized cash in accruals is received or paid. As a result, the timing of a firm’s economic 

accomplishments and sacrifices often differs from the timing of their related cash flows. Managers can 

benefit from this disparity when they use accruals to adjust cash flow timing, but it comes with a cost, 

namely, an offsetting change in next period’s accruals and earnings. For example, recording a receivable 

accelerates the recognition of a future cash flow in earnings and matches the timing of the accounting 

recognition with the timing of the economic benefits from the sale. However, if net proceeds from a 

receivable are less than the original estimate, then a subsequent entry records both the cash collected and 

the correction of the estimation error. 
15

 McNichols shows that adding these two variables significantly increases the model’s explanatory power 

in the cross-sectional regression, thus reducing measurement error. 
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year, based on two-digit Standard Industrial Classification (SIC) industry groups.
16

 We 

exclude financial institution, insurance, and real estate companies (SIC codes 6000-

6999).  

Recall that in section 2.1 we define the information-imprecision component of 

return as the random misestimated cash-flow component per share, scaled by the share 

price so that it takes the form of a rate of return. Since all variables in the DD regression 

model are scaled by total assets, the DD regression residual, ,,tie is also a rate of return 

(albeit relative to the firm’s assets rather than its market value) representing accrual-

related errors in estimating cash flows. Thus, the raw cash-flow regression residual is the 

most natural proxy for our information-quality return error ).( it Note that the DD 

regression residual term, could be negative or positive, and as a regression error term is 

white noise. To insure that its effect is not lost at the aggregate, our firm-year proxy for 

the information-quality return error is given by: ||ˆ
,tiit eIQ  , which is the absolute 

value of the estimated residual of the DD model. This measure was first suggested by DD 

(see footnote 6 in DD).
 
 

Note that a more popular accrual-quality measure is given by the standard 

deviation of firm’s annual DD regression residuals across time (see for example, Dechow 

and Dichev, 2002; McNichols, 2002; Francis et al., 2005; Core et al., 2008, and Lee and 

Masulis, 2009). However, this standard deviation measure is used in the extant literature 

to proxy for the accrual quality (or quality of information) of the firm, rather than to 

proxy for information-quality return error. Since the latter is an input of our model, the 

absolute value of the DD model residual (IQ) is a more valid proxy for the testing of our 

model’s validity. 

For the purpose of measuring information quality (rather than measuring our 

information-quality return error), the standard deviation of the firm’s DD regression 

residuals is a superior measure. This is because one may consider a firm with a zero mean 

of || ,tie  as a sign of perfect information quality. However, if || ,tie  exhibits great 

variability (even with a zero mean), then in actuality the firm has poor information 

quality. At the same time, when using || ,tie  we must maintain the assumption that its 

                                                 
16

 When there are less than 20 observations, we estimate the model based on one-digit SIC.  
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standard deviation is positive. Otherwise, a positive but deterministic || ,tie  implies that 

all three information-quality betas in our model take a zero value. Given the noisy nature 

of regression residuals, this assumption about our IQ proxy clearly holds empirically.
17

 

Our IQ proxy is estimated with balance-sheet and income-statement information 

rather than statement of cash flows information. Given evidence suggesting that balance-

sheet accruals estimates are potentially biased (see Hribar and Collins, 2002), we repeat 

our tests with an alternative cash-flow statement based IQ proxy. However, for an asset-

pricing test, the increased accuracy resulting from using cash-flow statement data (with 

data starting in 1988), comes at a great cost of a significantly shorter sample period 

relative to the IQ proxy measured with information from the balance sheet and income 

statement (with data starting in 1970). Consequently, we focus our discussion on balance-

sheet IQ proxy based tests. We report our results for the cash-flow statement IQ-based 

tests with the robustness tests findings below. 

  

4.3 Creating Test Portfolios and a Market Portfolio 

To reduce noise related to the individual stock estimated information-precision 

return error proxy, we form 25 test portfolios based on the previous year IQ proxy 

estimated for each individual stock. Portfolio return and portfolio IQ measure are 

calculated both as equal- and value-weighted averages for each of the 25 test portfolios. 

These averages are calculated for each month in our sample period over stocks that are 

included in a given portfolio. We construct value-weighted and equal-weighted test 

portfolios. The DD estimation of our IQ measure requires four consecutive years of data 

that include: the estimation year, two years prior to the estimation year (since lagged 

CFO is a first-difference variables), and one year after the estimation year. The IQ 

estimation is based on data from January 1970 to December 2010. Since our test 

portfolios are formed based on the previous-year IQ proxy, we obtain monthly test-

portfolio IQ measures and returns for the January 1973 to December 2010 (38-year) 

period. 

                                                 
17

 Given the wide use of the standard deviation of firm’s annual DD regression residuals as a measure for 

accrual-quality, we repeat our tests with this popular (albeit less suitable) alternative proxy. These findings 

are reported with the results of the robustness tests below. 
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The market portfolio in our model is a value-weighted portfolio of all risky assets 

in the economy. However, our sample is limited to stocks reported on CRSP and listed on 

the NYSE, Amex, and Nasdaq. This means that we exclude other risky assets, such 

private equity, small-firm stocks, different forms of corporate debt, and real estate.
18

 This 

set of omitted assets is dominated by low information quality assets. In addition, recall 

that the data requirements of the IQ measure estimation procedure systematically 

excludes younger firms and firms delisted over our sample period – both types tend to 

have low information quality. As a result, our universe is biased towards stocks issued by 

larger and stronger firms with high quality information. For this reason, in the spirit of 

Acharya and Pedersen (2005), we counterbalance the over-representation of these high 

information-quality stocks in our sample by calculating equal-weighted averages of 

market portfolio return and market portfolio IQ measure,). These market portfolio 

averages are calculated for each month in our sample period over stocks that are included 

in our sample with a previous-year IQ measure. For robustness, below we also repeat 

results for tests with a value-weighted market portfolio. 

  

4.4 Beta Estimation and Evidence of Imprecise-information Risk in Pricing 

Since our IQ measure is time varying and persistent, we focus on the 

unconditional model in equation (9), in which the beta estimation involves estimating 

four sets of innovations: (i), market portfolio return innovations; (ii), market portfolio IQ 

proxy innovations; (iii), IQ proxy innovations for each portfolio; and (iv), portfolio return 

innovations. We find that an AR(1) or an AR(2) specification is most suitable for 

removing serial correlations and to estimate innovations in the 25 test-portfolio IQ 

measures and in the market portfolio IQ measure. Since the AR(2) specification is a 

better fit for most portfolios, innovations in portfolio returns are estimated using this 

specification with the portfolio IQ measure as a control variable. Market portfolio return 

innovations are also computed using an AR(2) model, adjusted for market characteristics 

at the beginning of each month, which include: market volatility, log of one-month 

                                                 
18

 According to Heaton and Lucas (2000) asset-class proportions of national wealth are allocated as 

follows: private equity corresponds to 13.8%, other financial wealth is 28.2%, real estate (owner-occupied) 

represents 33.3%, and consumer durables correspond to 11.1%. At the same time, stocks represent only 

13.6% of national wealth. 
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lagged market capitalization, lagged book-to-market ratio, average of previous six month 

turnover, the average of previous six months illiquidity reflected by the Amihud (2002) 

measure, and the average of previous six months IQ measure.  

Based on the four sets of innovations, we estimate four betas for each of the 25 

test portfolios: . and , , , 3,2,1, IQ

p

IQ

p

IQ

p

Market

p   We then use alternative cross-sectional 

specifications of the model to identify the potential effect of information-quality 

systematic risk in total, and the effect of each information-quality beta separately. The 

first specification constraints the beta risk premium to be identical for all four betas: 

,)~( All

pftpt rrE  
 

p=1,2,..25,      (9.1)                                      

where ptptpt rr ̂~   representing the observed portfolio return, and 

3,2,1, IQ

p

IQ

p

IQ

p

Market

p

All

p    representing the overall (market and information-

quality) systematic risk in the portfolio.  

To disentangle information-quality risk (at the aggregate) from the standard 

CAPM market risk we test our second specification as follows: 

,)~( IQ

p

IQMarketl

p

Market

ftpt rrE  
 

p=1,2,..25,    (9.2)       

The first beta, ,Market  in model specification (9.2) is the standard CAPM beta reflecting 

the portfolio return sensitivity relative to the market portfolio return. The second beta,
 

3,2,1, IQ

p

IQ

p

IQ

p

IQ

p    represents the portfolio systematic information-quality risk at 

the aggregate. 

To compare the effects of the different dimensions of systematic information-

quality risk on return, we decompose the aggregate information-quality beta into three 

betas:
 

, and , , 3,2,1, IQ

p

IQ

p

IQ

p   as specified in equation (9). Thus, we allow for a unique 

risk premium for each beta in the following equation: 

,)~( 3,3,2,2,1, IQ

p

IQIQ

p

IQIQ

p

IQMarketl

p

Market

ftpt rrE    
 
p=1,2,..25, (9.3) 

Regression model (9.3) represents the unconditional version of our static model 

with the four betas spelled out. Recall that there are three different channels through 

which imprecise information is manifested as a systematic risk factor in our model. The 

first channel is represented by  ,1,IQ

p  reflecting the sensitivity of portfolio return relative 



 26 

to market-wide imprecise-information return error. The second information-quality risk 

component, ,2,IQ

p is the commonality in information quality beta, reflecting the co-

movement between individual portfolio information-imprecision return error and that of 

the market. The last information-imprecision risk channel, ,3

IQ  represents the 

association between the portfolio information-quality return error and the market return.  

Empirically, estimating regression model (9.3) is problematic due to the high 

multicollinearity between the three information-quality risk betas. This is documented in 

the correlation matrix reported in Table A.1 in the appendix. While for the sake of 

exposition we still report the estimated coefficient for regression model (9.3), we caution 

against their interpretation. Note that multicollinearity is not an issue in regression 

models (9.1) and (9.2). 

  

4.5 Results 

We apply GMM to estimate regression models (9.1) – (9.3) cross sectionally over 

our 25 (value- and equal-weighted) test portfolios using our IQ proxy. We also estimate a 

single beta model with each of the four betas from equation (9). Table 1 documents the 

GMM coefficient estimates for test based on an equal-weighted market portfolio. Panel A 

reports results for the 25 IQ-sorted value-weighted portfolios. The estimation of 

regression model (9.1), with a single risk premium for the sum of all four betas, ,All

p  

yields a risk premium for our information-quality adjusted model that is positive and 

significant at a 1% level. In addition, the R
2
 of our model is relatively high (0.554) when 

compared with that of the standard CAPM (0.455).  

Table 1 Here 

Recall that regression model (9.2) allows us to disentangle the impact of 

systematic information-quality risk from that of the standard CAPM systematic market 

risk. For the value-weighted portfolios, Panel A further reports that the aggregate 
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systematic information-quality risk, ,IQ

p  has an estimated risk premium that is positive 

and significant at a 1% level. At the same time, the standard market risk premium in this 

specification (the market beta coefficient) is still significant, but only at a 5% level 

(compared with a 1% significance under the standard CAPM regression).  

When comparing the results for the four single beta regression models, we see 

that the estimated coefficient is significant at the 1% level for all four betas. However, it 

seems like the 
3,IQ

p   model (related to the covariation of portfolio information-quality 

return error with the market return) has the highest explanatory power for the cross-

sectional variation in portfolio returns (R
2
) among the four single-beta models.  

While the estimated coefficients of all three information-quality betas in 

regression model (9.3) are statistically significant, recall that these are not interpretable 

due to the high multicollinearity exhibited for the three estimated betas. This is supported 

by the R
2
 of this specification which is by far the highest of all reported regression 

models (0.709).  

In general, the results for the 25 IQ-sorted equal-weighted portfolios (reported in 

Panel B of Table 1) are consistent with those reported for the value-weighted portfolios. 

The main difference is that for equal-weighted portfolios regression model (9.2) yields an 

insignificant risk premium for the standard market risk, while the information-quality risk 

remains significant at the 1% level. 

Overall, the evidence presented in Table 1 (for tests based on an equal-weighted 

market portfolio), lends strong support for the unconditional version of our information-

quality adjusted asset-pricing model. This is reflected by significant estimated 

coefficients for 
All

p  
and 

IQ

p  with high regression R
2
’s in regression models (9.1) and 

(9.2), respectively, indicating that our model fits the data well. 

 

5. Further Investigations 

Below we report the results of four additional robustness tests to assess the 

empirical performance of our model. First, we report results for tests conducted with a 

value-weighted market portfolio. Second, given the wide use of the standard deviation of 

firm’s annual DD regression residuals as a measure for accrual-quality, we report results 



 28 

of tests using this popular alternative proxy. Third, we report results for the cash-flow 

statement IQ-based tests. Finally, we test whether the pricing of our systematic 

information-quality risk is robust when one considers Acharya and Pedersen (2005) 

systematic liquidity risk. With the exception of the first test, the results for the remaining 

three tests are reported for value-weighted test portfolios with an equal-weighted market 

portfolio.  

  

5.1 Tests Utilizing a Value-Weighted Market Portfolio 

Recall that we follow Acharya and Pedersen (2005) and calculate equal-weighted 

averages of market portfolio return and market portfolio IQ measure in our tests. We do 

this to counterbalance the over-representation of relatively large and high information-

quality stocks in our CRSP sample. However, theoretically the market portfolio in our 

model is a value-weighted portfolio of all risky assets in the economy. Table 2 reports the 

GMM coefficient estimates for test based on a value-weighted market portfolio. Panel A 

documents results for the 25 IQ-sorted value-weighted portfolios. For regression model 

(9.1), with a single risk premium estimated for the sum of all four betas, ,All

p  
the risk 

premium for our information-quality adjusted model is positive and significant at a 1% 

level. Also, the R
2
 of our model is much higher (0.576) than that of the standard CAPM 

(0.281).  

Table 2 Here 

Panel A further reports the results of regression model (9.2) which disentangles 

the impact of systematic information-quality risk from that of the standard CAPM 

systematic market risk. For the value-weighted portfolios, we find that the aggregate 

systematic information-quality risk, ,IQ

p  has an estimated risk premium that is positive 

and significant at a 1% level. At the same time, the standard market beta coefficient is 
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still significant, but only at a 5% level (compared with a 1% significance under the 

standard CAPM regression).  

Moving on to the results for the four single beta regression models, we find that 

the estimated coefficient is significant at the 1% level for all four betas. Similar to the 

results reported for the equal-weighted market portfolio case, the 
3,IQ

p  model has the 

highest R
2
 among the four single-beta models. We again find that the R

2
 of regression 

model (9.3) is the highest among all other specification (0.612). This is combined with 

the result that the only significant coefficient is that of 
3,IQ

p  
with a 5% significance level. 

The regression coefficients of all other three betas are now insignificant. These results are 

once again an artifact the multicollinearity exhibited for the three estimated betas.  

Once again, the results reported in Panel B of Table 2 for the 25 IQ-sorted equal-

weighted portfolios are consistent with those reported for the value-weighted portfolios. 

Overall, the evidence for tests based on a value-weighted market portfolio presented in 

Table 2, provide strong support for the unconditional version of model. Hence, the 

support for our model is robust with respect to whether we use equal- or value-weighted 

market portfolio in our tests. In addition, our conclusion is also insensitive to whether we 

use equal- or value-weighted test portfolios. Therefore, the remainder of the robustness 

tests are conducted with an equal-weighted market portfolio (following Acharya and 

Pedersen, 2005) and with value-weighted tests portfolios (consistent with our theoretical 

model).  

  

5.2 Using an Alternative IQ proxy 

Because of the popularity of the standard deviation of the DD regression residuals 

in research focusing on accrual (or information) quality, we repeat our tests with this 

proxy for robustness. The results of tests utilizing this proxy will indicate the soundness 

of the general idea in our model, that the information-quality effect is manifested in 

priced systematic risk. However, as previously mentioned, tests using the absolute value 

of the estimated residual of the DD model as the IQ proxy provide more direct evidence 

with respect to the empirical validity of our model. Our alternative proxy is given by the 

standard deviation of firm i’s cross-sectional regression residuals across five years: 
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).,,,,(
4321 


tititititi eeeeeQI   We estimated this proxy using balance sheet data. This 

alternative proxy reflects the stability dimension of information quality, implying that 

larger QI   represents a lower predictability of earnings and therefore a lower quality of 

financial reporting.
19

 

Turning to a practical matter, when estimating the standard-deviation proxy based 

on the DD model using annual accounting data, we need eight consecutive years with 

financial accounting data, implying that companies have survived for at least six years 

prior to the estimation year.
20

 Consequently, the sample for estimating the standard-

deviation IQ proxy is even more biased than that of the absolute-value IQ proxy which 

requires four years of consecutive data. Recall that this bias systematically excludes 

recently-listed (younger) firms and firms delisted over this sample period, while it is 

biased towards older, larger, and more successful firms which tend to have higher quality 

of information (see Core et al., 2008; and Lee and Masulis, 2009). 

Table 3 documents the GMM coefficient estimates for test based on an equal-

weighted market portfolio and QI  -sorted value-weighted portfolios. Once again, the 

estimated risk premium in regression model (9.1) is positive and significant at a 1% level. 

In addition, the R
2
 of this model (0.224) is almost double that of the standard CAPM 

(0.144).  

Table 3 Here 

For regression model (9.2), which separates systematic information-quality risk 

from that of the standard CAPM systematic market risk, the estimated risk premium for 

the aggregate systematic information-quality risk is positive and significant at a 5% level. 

At the same time, the standard market risk premium is significant. Recall that the results 

of regression model (9.3) are not interpretable due to the high multicollinearity exhibited 

for the three estimated betas. This is also the case when we use the alternative proxy 

(IQ’). Table 3 reports that while none of the four estimated beta-coefficients are 

                                                 
19

 DD show that firms with larger standard deviations have less persistent earnings, longer operating cycles, 

larger accruals, and more volatile cash flows, accruals and earnings, suggesting lower accruals quality. 
20

 When we estimate equation (10) in year t, we have to include CFO at three years, t-1, t, and t+1. In 

addition, CFO is defined as the difference between net income and total accruals. In other words, CFO at 

time t-1 has to include accounting components at time t-2. Therefore, estimating equation (10) in year t 

requires accounting information from year t-2 through t+1 and estimating this equation at year t-4 requires 

accounting information back to year t-6. In short, estimating the standard deviation proxy with the DD 

model requires a total of eight years of accounting information including six prior years. 
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statistically insignificant the R
2
 of this specification is the highest of all reported 

regression specifications (0.309). Overall, the evidence of tests using the alternative 

information-quality proxy provides strong support for the general idea in our model, that 

the information-quality effect is manifested in priced systematic risk.  

  

5.3 An IQ Proxy based on Statement of Cash Flows Information 

In the above estimation of IQ (the absolute value of the estimated residual of the 

DD model), we use information from the balance sheet and income statement rather than 

from statement of cash flows. However, Hribar and Collins (2002) suggest that studies 

that use balance sheet accruals estimates are potentially biased. The bias is larger around 

major financing events such as mergers and acquisitions, because these events affect the 

numbers in consecutive balance sheets. Therefore, we also estimate equation (10) based 

on information from the statement of cash flows and we use cash flows from operations 

reported under the Statement of Financial Accounting Standards No.95 (SFAS No.95, 

FASB 1987). Following Hribar and Collins (2002), we define  

,OCFEBXI   

where 

EBXI = earnings before extraordinary items and discontinued operations, and 

OCF = operating cash flow (from continuing operations) taken directly from the cash-

flow statement.  

To compute the cash-flow based IQ proxy we require statement of cash flow data 

that are not available prior to 1988. Recall that the estimation based on equation (10) 

requires four consecutive years of data (the estimation year, two years prior to the 

estimation year, and one year after the estimation year). Given that our test portfolios are 

formed based on the previous-year IQ proxy, with the cash-flow based proxy we obtain 

monthly test-portfolio IQ measures and returns for the January 1991 to December 2010 

(20-year) period. This is much shorter relative to the 38-year sample of monthly test-

portfolio data based on the IQ proxy used in the previous section, which is measured with 

information from the balance sheet and income statement. Thus, the increased accuracy 

resulting from using cash-flow statement data comes at a great cost of a significantly 

shorter sample period. 

TCA
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In Table 4 we report results based on the IQ proxy derived from the statement of 

cash flows. The results reported in this table are in line with the results reported in the 

previous section for test portfolios based on data for the balance sheet and income 

statement. Once again, the results provide strong support for the unconditional version of 

model. Hence, the support for our model is robust with respect to whether we sue equal- 

or value-weighted market portfolio in our tests. One apparent difference, is the 

substantially higher R
2
 observed for all model specifications with the cash-flow based IQ 

proxy portfolios compared with that obtained for portfolios formed based on IQ 

computed from balance sheet and income statement data. We attribute this result to the 

shorter (20-year) sample period used here, which is likely to be less noisy relative to the 

38-year sample of monthly test-portfolio data based on the IQ proxy used in the previous 

section.  

Table 4 Here 

  

5.4 Information-Quality Risk vs. Liquidity Risk 

Disparity of information quality and/or quantity across different investors (i.e., 

asymmetric information), can adversely affect market liquidity (see Kyle, 1985; Glosten 

and Milgrom, 1985; and Easley and O’Hara, 1987). Thus, one may expect poor 

information-quality firms to also suffer from weak market liquidity. Given the strong 

support provided by Acharya and Pedersen (2005) for the pricing of systematic liquidity 

risk, the probable association between information quality and liquidity calls for further 

tests. Therefore, our next robustness test examines whether the significant pricing of our 

systematic information-quality risk still stands in the presence of Acharya and Pedersen’s 

(2005) systematic liquidity risk.  

Acharya and Pedersen (2005) use the normalized illiquidity measure of Amihud 

(2002) to estimate systematic-liquidity risk based on their theory.
21

 To test whether our 

empirical support for the pricing of systematic information-quality risk is robust with 

                                                 
21

 Earlier studies examine the systematic nature of liquidity. Chordia, Subrahmanyam, and Anshuman 

(2000) show that stock returns are cross sectionally related to the variability in liquidity, where liquidity is 

proxied by measures such as trading volume and turnover. Chordia, Roll, and Subrahmanyam (2000), 

Huberman and Halka (1999), and Hasbrouck and Seppi (2000) find that individual stock liquidity co-moves 

with market-wide liquidity. Pastor and Stambaugh (2003) show that market-wide liquidity is a priced factor 

for stock returns. 
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respect to the inclusion of systematic liquidity risk, we estimate the following three-beta 

regression model: 

,)~( ILLIQ

p

ILLIQIQ

p

IQMarketl

p

Market

ftpt rrE  
 

p=1,2,..25,  (11)     

where 
ILLIQ

p  is Acharya and Pedersen’s (2005) net illiquidity beta. This regression model 

considers three distinct sources of systematic risk: the standard CAPM market risk 

),( Market

p our systematic (aggregate) information-quality risk ),( IQ

p and Acharya and 

Pedersen’s (2005) systematic liquidity risk ).( ILLIQ

p  

The net illiquidity beta, 
ILLIQ

p , is a linear combination of Acharya and Pedersen’s 

(2005) three liquidity betas. The illiquidity cost used in Acharya and Pedersen (2005) is 

constructed based on the absolute return-to-volume measure of Amihud (2002), which 

captures the price-impact dimension of liquidity, and has often been used in the empirical 

microstructure literature. 
22

 Following Amihud (2002), a market-illiquidity illiquidity 

measure for stock i in month t is given by:  

,
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where 
i

tdR  and 
i

tdV  are the return and dollar volume (in millions) on day d in month t,  

respectively, and 
i

tDays is the number of observation days in month t for stock i. 

To estimate 
i

tILLIQ  and  ,ILLIQ

p  we sample all eligible stocks over a period 

corresponding to the period for which we form our IQ-based test portfolio (so that we 

obtain ILLIQ measures for the January 1977 to December 2010 period). Daily return and 

volume data are obtained from CRSP. Similar to the procedure for forming IQ portfolios 

outlined in the previous section, we form an equally-weighted market portfolio for each 

month t during the sample period, in which market return, market IQ, and market ILLIQ 

are computed.  

                                                 
22

 Hasbrouck (2002) uses microstructure data for NYSE, AMEX, and NASDAQ stocks to compute a 

measure of Kyle’s lambda. He finds that it is highly correlated with Amihud’s (2002) illiquidity measure 

and concludes that Amihud’s measure is the most adequate among several considered market-liquidity 

proxies. 
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We form 25 test portfolios sorted on IQ. We form both value- and equal-weighted 

test portfolios. For each portfolio, we estimate 
Market

p and 
IQ

p  following the procedures 

described in the previous section. We estimate 
ILLIQ

p  following Acharya and Pedersen’s 

(2005). We use an AR(2) specification to test for the autocorrelation pattern of market 

portfolio ILLIQ measure, and the resulting innovations in market portfolio ILLIQ appear 

stationary. 

Table 5 documents the GMM coefficient estimates for regression model (11) for 

both value- and equal-weighted test portfolios. The regression coefficient of our 

systematic information-quality risk )( IQ

p  
is statistically significant at the 1% level for 

both equal-weighted and value-weighted portfolios. At the same time, we find that the 

Acharya and Pedersen’s (2005) systematic liquidity risk )( ILLIQ

p is statistically 

insignificant. These results demonstrate that evidence in support of the pricing of our 

systematic information-quality risk is robust with respect to the inclusion of systematic 

liquidity risk.  

Table 5 Here 

 

6. Summary and Conclusions 

We derive an intertemporal asset-pricing model in the spirit of Merton (1973) that 

allows us to investigate different channels through which systematic risk associated with 

imprecise accounting information affects asset prices. We show that in our model 

imprecise-information risk has systematic and idiosyncratic components, and only the 

former is priced. A static version of our model demonstrates that systematic information-

quality risk is priced through the alteration of the market risk premium as well as through 

three extra asset betas. In our model, a market-wide required excess return due to 

imprecise information is distinct from the CAPM market risk premium. This addresses 

criticism of the lack of theoretical underpinning for the inclusion of a separate 

information-quality factor in empirical multiple-factor models such as that of Francis et 

al. (2005). 

The three extra betas in our model represent three distinct systematic risk effects 

of imprecise accounting information for which investors demand an extra risk premium. 
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Our first information-imprecision beta reflects the security-return sensitivity with respect 

to market-wide information imprecision. This beta provides further theoretical support 

for the cross-sectional pricing of the Francis et al. (2005) information-quality factor 

loading. In the multiple-regression model in their paper, the security return is regressed 

on the market-wide information-quality factor, which means that, like our first 

information-imprecision beta, their information-quality factor loading is a function of the 

covariance between the security return and the market information-quality factor. 

The remaining two information-precision betas are unique to our paper. The 

commonality in information quality beta is the second channel through which imprecise-

information risk affects asset prices in our model. This beta reflects the co-movement 

between the information-imprecision return error of the individual asset and that of the 

market. To hedge against adverse imprecise-information effects on their portfolio, 

investors prefer to include an asset with a negative commonality beta, so that when 

information-imprecision depresses market returns it inflates the asset return.  

The third and last channel, through which risk associated with imprecise 

information affects asset pricing in our model, is the beta that reflects the relation 

between the asset return errors due to imprecise-information and the precise market 

return. To protect their portfolio at times of a bearish market, investors prefer a security 

for which this relation is negative, so that when their portfolio is down the security tends 

to pay a positive imprecise-information return error.  This unique result implies that 

investors may have a preference for investing in stocks issued by firms that erroneously 

or intentionally, release false positive information about the firm at times of a down 

market. This implication of our model raises the question of whether, empirically, at 

times of a depressed market investors prefer to invest in firms performing earnings 

management or management manipulation of management earnings forecast that improve 

expectations about the firm’s future performance. This empirical question is left for 

future research. 

We document strong empirical support for the pricing of our systematic 

information-quality risk. This evidence is robust to the information-imprecision return 

error proxy we use as well as to the test-portfolio and market-portfolio formation 
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methodology. We further document that our systematic information-quality risk does not 

proxy for the well-documented systematic liquidity risk. 
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 Appendix A – Derivation of the Wealth-Accumulation Process 

 Recall that the wealth accumulation equation for the l
th

 investor is given by: 

   cdtWrqrWdqdW f

n

i

i

n

i

ii  

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11

,       (3) 

Substituting for rd~ from equation (2) we rewrite equation (3) as: 
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where 
fr is an exogenous instantaneous interest rate on a risk-free bond, and ,11

1 




n

i iq  

where qn+1 is the weight of the riskless asset. The assumption of constant risk-free rate in 

our model allows us to simplify our analysis and focus on the stock market.  

 The necessary instantaneous optimality condition for solving for an investor’s 

consumption-investment optimal choice is as follows: 
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Equation (3.2) implies a Gaussian process of wealth accumulation. Thus the variance and 

covariance of the instantaneous change in wealth and the instantaneous change in the 

observable noisy return are given by: 
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Substituting equations (3.3) to (3.6) into equation (3.2), we get the following equation, 
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 The n+1 first-order conditions for each investor derived from equation (4) are 

given by: 
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 ,,...2,1 ni   where ),,(* tWcc   and ),,(* tWqq ii   are optimal solutions for 

equations (4.1) and (4.2) as functions of the perceived state variables.  

Using matrix notation, we rewrite equation (4.2) for the n risky assets as follows: 
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where 
r  is the vector of mean precise returns of the n risky securities,  is the vector 

of long-term means of information-imprecision return error (which are also the long-term 

return spreads between the precise returns and imprecise returns),   is the row-vector of 

firm-specific information-related return error, 
rr ~,~  is the variance-covariance matrix of 

imprecise returns with elements 
ijjijijiji rrrrrr   ,,,,~,~  , and 

,~r  is the matrix 

of covariance terms between observed noisy return variables and the information-related 

return errors on risky asset, with components given by ),( ,,,~ jijijir
r  
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Solving equation (5), we obtain the vector of optimal portfolio weights for the n risky 

securities: 
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Equation (5.1) can be written for every asset i as follows: 
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 ,,...2,1 ni   ,,...2,1 nj   and .,...2,1 nk   
jrir
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  denotes an element in the inverse of the 

variance covariance matrix, that is
1

~,~


jrir

. Equation (5.2) gives the optimal weights 

(demand) for risky assets in the presence of imprecise accounting information. 

 

Appendix B – Derivation of Equilibrium Pricing Equation (6) 

Equation (5) can be rearranged as follows: 
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 To compute A and B in terms of first and second moments of the tangency and 

hedge portfolios as well as covariance terms of individual returns with these portfolios, 

we pre-multiply equation (5.4) by  weight vectors, ,T

mx  and ,,

T

khy  ,,...2,1 nk  respectively, 

to yield the following n+1 equations: 
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 is the market-wide weighted imprecise-information-

related return error, and 
mx  is an n×1 vector of security weights in the market portfolio 
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 is the weighted 

expected precise return on hedge portfolio k, the term   n
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mean of imprecise-information return error on hedge portfolio k,   n
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represents the weighted imprecise-information return error inherent in hedge portfolio k, 

and khy ,  is an n×1 vector of security weights in hedge portfolio k with elements .,kiy  

 

Solving for A from equation (5.5), we have: 
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Next, let 
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h  is an n×1 vector with 

elements ,
,kh and h  denotes an n×1 vector with elements .,kh  Substituting the above 
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Assuming that the inverse matrix
1
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
hr

exists, we solve for B  
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where 
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m r   )(  represents the imprecise-information-adjusted market risk 

premium, and 
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h r   )(  is a n×1vector of hedge portfolio risk premiums. 

Substituting solutions (5.7) and (5.8) for A and B into equation (5.4), we obtain the 

following result: 
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where the term ][ mhh    is the vector of mean pricing errors of the hedge portfolios, 

determined by hedge portfolio return sensitivities to the market portfolio. 

 Substituting for 
r~  and ,~

hr  we rewrite Equation (5.9) to obtain our imprecise-

information-adjusted asset-pricing equation: 
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Table A.1 Here 
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alpha

0.002 0.012*** 0.455 

(1.480) (5.910) (0.431)

0.007 1.316*** 0.180 

(5.470) (3.010) (0.145)

0.011 1.803*** 0.348 

(56.970) (6.240) (0.320)

0.011 0.040*** 0.554 

(39.130) (6.680) (0.535)

0.003 0.011*** 0.554 

(2.450) (6.350) (0.435)

0.007 0.006** 0.028*** 0.621 

(3.910) (2.480) (5.990) (0.586)

0.007 0.002 0.934** -1.668* 0.059*** 0.709 

(3.490) (0.710) (2.680) (-2.05) (3.640) (0.651)

0.003 0.007** 0.201 

(1.380) (2.800) (0.167)

0.010 0.001 0.001

(6.150) (0.001) (-0.044)

0.010 1.177*** 0.560 

(81.870) (7.550) (0.436)

0.010 0.022*** 0.512 

(67.820) (7.350) (0.491)

0.004 0.006*** 0.332 

(1.950) (3.110) (0.303)

0.011 -0.002 0.025*** 0.515 

(5.390) (-0.86) (6.920) (0.471)

0.012 0.003 -0.927* -1.658 0.052* 0.618 

(4.220) (0.620) (-1.88) (-1.14) (1.780) (0.542)

CAPM

Panel A: Value-weighted portfolios

9.2

9.3

9.1

Panel B: Equal-weighted portfolios

CAPM

9.1

9.2

9.3

Table 1: IQ-Sorted Portfolios with an Equal-Weighted Market

2R

This table reports the coefficient estimates from cross-sectional regressions of our static model for 25 

value-weighted (Panel A) and equal-weighted (Panel B) portfolios, using monthly data during January 

1970 to December 2010, with an equal-weighted market portfolio. We use GMM to obtain the coefficient 

estimates and t-statistics (in parentheses) based on the following model specifications:  

CAPM ,)~( Marketl

p

Market

ftpt rrE    

(9.1) ,)~( All

pftpt rrE    

(9.2) ,)~( IQ

p

IQMarketl

p

Market

ftpt rrE    

(9.3) ,)~( 3,3,2,2,1, IQ

p

IQIQ

p

IQIQ

p

IQMarketl

p

Market

ftpt rrE    

where 
3,2,1, IQ

p

IQ

p

IQ

p

Market

p

All

p   and .3,2,1, IQ

p

IQ

p

IQ

p

IQ

p    The table also 

reports the R
2
 and the adjusted-R

2
 (in parentheses). *** represents significance at 1%; ** significance at 

5%; and * significance at 10%. 

Market

p
1,IQ

p
All

p
IQ

p
3,IQ

p
2,IQ

p
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alpha

0.002 0.010*** 0.281 

(1.110) (5.360) (0.250)

0.006 0.803*** 0.479 

(5.570) (5.510) (0.456)

0.011 1.014*** 0.380 

(49.560) (5.480) (0.353)

0.011 0.047*** 0.467 

(37.440) (5.730) (0.444)

0.001 0.011*** 0.414 

(0.640) (5.590) (0.389)

0.005 0.006** 0.038*** 0.576 

(2.590) (2.660) (7.320) (0.538)

0.006 0.002 0.420 0.021 0.030* 0.612 

(3.270) (0.620) (1.410) (0.050) (2.080) (0.535)

0.005 0.005** 0.059 

(1.800) (2.200) (0.018)

0.008 0.227 0.056 

(6.360) (1.480) (0.015)

0.010 1.040*** 0.467 

(81.780) (7.640) (0.444)

0.010 0.037*** 0.538 

(71.840) (7.860) (0.518)

0.002 0.008** 0.209 

(0.580) (2.670) (0.175)

0.012 -0.002 0.036*** 0.531 

(4.470) (-0.72) (7.600) (0.488)

0.007 0.006 -0.428* -0.725 0.069*** 0.600 

(2.260) (1.400) (-1.92) (-1.30) (3.610) (0.520)

Panel A: Value-weighted portfolios

CAPM

Panel B: Equal-weighted portfolios

CAPM

9.2 

9.3 

9.1 

9.2 

9.3 

9.1 

2R

Table 2: IQ-Sorted Portfolios with a Value-Weighted Market

Market

p
1,IQ

p
All

p
IQ

p
3,IQ

p
2,IQ

p

This table reports the coefficient estimates from cross-sectional regressions of our static model for 25 

value-weighted (Panel A) and equal-weighted (Panel B) portfolios, using monthly data during January 

1970 to December 2010, with a value-weighted market portfolio. We use GMM to obtain the coefficient 

estimates and t-statistics (in parentheses) based on the following model specifications:  

CAPM ,)~( Marketl

p

Market

ftpt rrE    

(9.1) ,)~( All

pftpt rrE    

(9.2) ,)~( IQ

p

IQMarketl

p

Market

ftpt rrE    

(9.3) ,)~( 3,3,2,2,1, IQ

p

IQIQ

p

IQIQ

p

IQMarketl

p

Market

ftpt rrE    

where 
3,2,1, IQ

p

IQ

p

IQ

p

Market

p

All

p   and .3,2,1, IQ

p

IQ

p

IQ

p

IQ

p    The table also 

reports the R
2
 and the adjusted-R

2
 (in parentheses). *** represents significance at 1%; ** significance at 

5%; and * significance at 10%. 
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alpha

0.004 0.010*** 0.144 

(1.690) (2.990) (0.107)

0.012 -0.075 0.001 

(13.600) (-0.11) (-0.043)

0.011 1.037*** 0.253 

(50.750) (4.180) (0.221)

0.011 0.029*** 0.235 

(50.100) (3.300) (0.201)

0.004 0.009*** 0.224 

(1.960) (3.270) (0.190)

0.008 0.004 0.024** 0.278 

(2.780) (1.140) (2.260) (0.212)

0.007 0.005 0.135 0.573 0.012 0.309 

(2.560) (1.290) (0.200) (0.940) (0.650) (0.171)

CAPM

9.2

9.3

9.1

Table 3: Using an Alternative IQ Proxy

2R

This table reports the coefficient estimates from cross-sectional regressions of our static model for 25 

value-weighted portfolios sorted on IQ’, using monthly data during January 1970 to December 2010, with 

an equal-weighted market portfolio. The alternative proxy is given by the standard deviation of firm i’s 

cross-sectional regression residuals across five years: ).,,,,(
4321 


tititititi eeeeeQI   We estimated 

this proxy using balance sheet data. We use GMM to obtain the coefficient estimates and t-statistics (in 

parentheses) based on the following model specifications:  

CAPM ,)~( Marketl

p

Market

ftpt rrE    

(9.1) ,)~( All

pftpt rrE    

(9.2) ,)~( IQ

p

IQMarketl

p

Market

ftpt rrE    

(9.3) ,)~( 3,3,2,2,1, IQ

p

IQIQ

p

IQIQ

p

IQMarketl

p

Market

ftpt rrE    

where 
3,2,1, IQ

p

IQ

p

IQ

p

Market

p

All

p   and .3,2,1, IQ

p

IQ

p

IQ

p

IQ

p    The table also 

reports the R
2
 and the adjusted-R

2
 (in parentheses). *** represents significance at 1%; ** significance at 

5%; and * significance at 10%. 

Market

p
1,IQ

p
All

p
IQ

p
3,IQ

p
2,IQ

p
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alpha

(0.001) 0.018*** 0.781 

(-0.36) (8.600) (0.771)

0.012 -0.986*** 0.306 

(19.110) (-3.83) (0.276)

0.013 3.021*** 0.567 

(34.790) (5.340) (0.548)

0.010 0.079*** 0.567 

(16.520) (7.260) (0.548)

0.001 0.016*** 0.803 

(1.070) (12.540) (0.795)

0.002 0.014*** 0.025*** 0.807 

(1.280) (6.080) (3.190) (0.789)

0.003 0.013*** -0.062 0.164 0.025* 0.808 

(1.210) (3.280) (-0.23) (0.260) (1.980) (0.770)

9.3

CAPM

9.1

9.2

Table 4: Using Cash-flow Statement Data

2R

This table reports the coefficient estimates from cross-sectional regressions of our static model for 25 

value-weighted portfolios sorted on IQ, using monthly data during January 1988 to December 2010, with 

an equal-weighted market portfolio. The IQ proxy is estimated using information from the statement of 

cash flows (instead of information from the balance sheet and income statement). We use GMM to obtain 

the coefficient estimates and t-statistics (in parentheses) based on the following model specifications:  

CAPM ,)~( Marketl

p

Market

ftpt rrE    

(9.1) ,)~( All

pftpt rrE    

(9.2) ,)~( IQ

p

IQMarketl

p

Market

ftpt rrE    

(9.3) ,)~( 3,3,2,2,1, IQ

p

IQIQ

p

IQIQ

p

IQMarketl

p

Market

ftpt rrE    

where 
3,2,1, IQ

p

IQ

p

IQ

p

Market

p

All

p   and .3,2,1, IQ

p

IQ

p

IQ

p

IQ

p    The table also 

reports the R
2
 and the adjusted-R

2
 (in parentheses). *** represents significance at 1%; ** significance at 

5%; and * significance at 10%. 

Market

p
1,IQ

p
All

p
IQ

p
3,IQ

p
2,IQ

p
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Alpha R
2

0.007 0.006** 0.029*** -0.017 0.622

(3.820) (2.400) (5.460) (-0.39) (0.569)

0.012 -0.003 0.020*** 0.017 0.530 

(5.280) (-0.98) (3.280) (0.800) (0.463)

Panel B: Equal-weighted portfolios

Panel A: Value-weighted portfolios

Table 5: Information-Quality Risk vs. Liquidity Risk

This table reports the coefficient estimates from the cross-sectional regression model (11) for 25 value-

weighted (Panel A) and equal-weighted (Panel B) portfolios, using monthly data during January 1970 to 

December 2010, with an equal-weighted market portfolio. We use GMM to obtain the coefficient estimates 

and t-statistics (in parentheses) based on the following model specifications:  

(11) ,)~( ILLIQ

p

ILLIQIQ

p

IQMarketl

p

Market

ftpt rrE    

where 
Market

p  represents the standard CAPM market risk, 
IQ

p  stands for our systematic (aggregate) 

information-quality risk, and 
ILLIQ

p  represents Acharya and Pedersen’s (2005) systematic liquidity risk. 

The table also reports the R
2
 and the adjusted-R

2
 (in parentheses). *** represents significance at 1%; ** 

significance at 5%; and * significance at 10%. 

Marketp1,IQpAllpIQp

Market

p
IQ

p
ILLIQ

p
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1.000 0.499** 0.556*** 0.644***

(0.011) (0.004) (0.001)

1.000 0.230 0.174 

(0.268) (0.506)

1.000 0.902***

(<.0001)

1.000 

1.000 0.702*** 0.661*** 0.711***

(<.0001) (0.000) (<.0001)

1.000 0.301 0.334 

(0.143) (0.103)

1.000 0.984***

(<.0001)

1.000 

Panel A: Value-weighted portfolios

Panel B: Equal-weighted portfolios

Table A.1: Beta Correlations for the Test Portfolios

All

p
IQ

p3,IQ

p

This table reports the Pearson correlations between the standard CAPM market beta and our three 

information-quality betas for the 25 value-weighted (Panel A) and equal-weighted (Panel B) 

portfolios. The table also reports p-values (in parentheses). *** represents significance at 1%; ** 

significance at 5%; and * significance at 10%. 

Market

p
1,IQ

p
2,IQ

p
3,IQ

p

Market

p
1,IQ

p
2,IQ

p
3,IQ

p

Market

p

1,IQ

p

2,IQ

p

3,IQ

p

Market

p

1,IQ

p

2,IQ

p

3,IQ

p

Market

p
1,IQ

p
2,IQ

p
3,IQ

p
Market

p
1,IQ

p
2,IQ

p
3,IQ

p


