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Abstract

Optimal as well as recursive parameter estimation for semimartingales had been studied in Thavaneswaran
and Thompson [1, 2]. Recently, there has been a growing interest in modeling volatility of the observed
process by nonlinear stochastic processes (Taylor [3]). In this paper, we study the recursive estimates for
various classes of discretely sampled continuous time stochastic volatility models using the Milstein method.
We provide closed form expressions for the recursive estimates for recently proposed stochastic volatility
models. We also give an example of computation of the term structure of zero rates in an incomplete
information environment. In this case, learning about an unobserved state variable is done jointly with the
valuation procedure.
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1. Introduction

In the last three decades, semimartingales have received considerable attention with the emphasis being
placed on state space models. From an econometric standpoint, time-varying volatility models have been
widely developed, recognizing that the volatility and the correlation of assets change over time (see for
example Heston and Nandi [4]). State space models in which the conditional mean of the observed process
is modeled as a stochastic process are useful in parameter estimation. For example, stochastic volatility
models (Kawakatsu [5], Taylor [3]) are widely employed to estimate volatility parameters.

Thavaneswaran and Thompson [2] uses the estimating function approach for the recursive parameter
estimation in models with semimartingales. Thavaneswaran and Thompson [1], Naik-Nimbalkar and Ra-
jarshi [6] and Thompson and Thavaneswaran [7] use the estimating function method for the estimation of
state space models in the Bayesian setup. Parameter estimates obtained in Thavaneswaran and Thompson
[2] involve the evaluation of the stochastic integrals based on the observation of the complete path of the
observed process. However, for continuous time models, it is more appropriate to study parameter estimates
based on discretely observed data. In order to study the inference for diffusion processes based on discretely
observed data, one has to approximate the continuous time diffusion by a discrete process. For some interest
rate models (Vasicek, Cox-Ingersoll-Ross), discrete time approximation has been used to study parameter
estimation (see Thavaneswaran et al. [8], Sorensen [9], and the references therein). However, the recursive
parameter estimation based on discrete approximation has not been studied in the literature. We have to
define recursive par estimation. Also, is it true that people such as Ait-Sahalia have estimated
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parameters in discretised models in the context of approximate likelihood. We need to cite
his main paper I think.

In most realistic situations, the diffusion cannot be observed continuously, so discrete time approxima-
tions to stochastic integrals or a direct approach using discrete time observations is required. For extended
versions of the Cox-Ingersoll-Ross (CIR) model (reference???), closed form expressions for the first four
conditional moments cannot be obtained easily by using Ito’s formula, as was done for the non-extended CIR
model(reference???). Recently, Jeong and Park [10] uses the Milstein method (see Kloeden and Platen
[11]) to obtain the first two conditional moments of a diffusion. For diffusion models with a finite number
of parameters, Koulis and Thavaneswaran [12] use the Milstein method to obtain the first four conditional
moments and to construct the optimal estimating functions for the Vasicek model of the form

dyt = µtdt+ σtdW (t),

with µt = α(β − yt), σt ≡ σ, and α > 0. One of the drawbacks of this one-factor model is that it is
not in general possible to calibrate it so that it fits the presently observed term structure. For example,
Kennedy [13, p. 171] points out that for the above Vasicek model, which depends on three parameters, α, β,
and σ, it is not possible to choose values of those parameters so that the entire observed term structure of
interest rates is fitted exactly by the model. To solve the problem, Kennedy proposes to allow time-varying
parameters in the drift term of the Vasicek model.

Consider a diffusion process given by the time-homogeneous stochastic differential equation of the form

dyt = a(α, yt)dt+ b(β, yt)dW (t) (1.1)

where a and b are the drift and diffusion functions, respectively, and W (t) is the standard Brownian motion.
A special case of (1.1) is the Brownian motion with constant drift and diffusion coefficients:

dyt = αdt+ βdW (t),

where β > 0. In this case, the conditional distribution of yt given y0 = y is a normal with mean y + αt and
variance β2t. If we consider the geometric Brownian motion given by

dyt = νytdt+ ωytdW (t),

with ω > 0, then log(yt) becomes a Brownian motion with drift with α = ν − ω2/2 and β = ω. In this
case, the conditional distribution of log(yt) given log(y0) = log(y) is also normal. The CIR process can be
re-parameterized to the following form:

dyt = (α1 + α2yt)dt+ β
√
ytdW (t).

Extended versions of the CIR process model have been proposed for modeling interest rate processes.
For example, some consider the constant elasticity of variance process of the form

dyt = (α1 + α2yt)dt+ β1y
β2

t dW (t)

or the nonlinear drift diffusion process (Ait-Sahalia [14]) given by

dyt = (α1 + α2yt + α3y
2
t + α4y

−1
t )dt+

√
β1 + β2yt + β3y

β4

t dW (t).

For more general extended models, the diffusion is a function of the observation yt and hence, closed form
expressions of the conditional distributions, as well as closed form expressions for the conditional moments
cannot be easily obtained by solving differential equations obtained by repeated application of Itô’s formula.
However, the Milstein method can be used to obtain the first four conditional moments.

If we consider a discretisation in small intervals of time ti − ti−1 = h, then the Milstein method applied
to (1.1) produces
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yti = yti−1
+ a(α, yti−1

)h+ b(β, yti−1
)
√
hεti +

1

2
b(β, yti−1

)ḃy(β, yti−1
)
(
ε2ti − 1

)
h, (1.2)

where ḃy = ∂b
∂yand εt ∼ N(0, 1), i.i.d.

Unlike the Euler method for diffusion processes, the Milstein method in (1.2) gives a non-Gaussian time
series model for yti − yti−1

. The distribution implied by the Milstein method is a mixture of a normal and
chi-square distribution. Moreover, for the extended CIR model and for more general diffusion processes,
Ito’s approximation cannot be used to obtain closed form expressions for the first four conditional moments.
In this paper, first we use the Milstein method to discretise the continuous time diffusion processes and
then study the recursive estimates of latent state variables. We also show how the proposed method can
be used to derive zero coupon bond prices in the incomplete information environment. In this case, the
valuation exercise and the recursive estimation (learning) of the unobserved state variable are performed
simultaneously by market participants.

2. State Space Models

In order to construct an optimal recursive estimate for non-normal stochastic volatility models, we start
with the following discrete time example.Let the discrete-time state space model of the observed process
{yt}and the state process {θt}be given by:

yt+1 = Aθt + azt+1 + b(z2t+1 − 1) (2.1)

θt+1 = Bθt + cηt+1 + d(η2t+1 − 1)

where A, B, a, b, c and d are positive constants, and possibly measurable with respect to the σ-field Fyt
generated by the observations of {ys} up to and including time t. In addition, {zt} and {ηt} are two standard
Gaussian sequences of identically distributed random variables with Corr(zt, ηt) = ρ. The following lemma
will be used to prove our main Theorem.

Lemma 2.1. Assume that Z1 ∼ N(0, 1) and Z2 ∼ N(0, 1) with Corr(Z1, Z2) = ρ. Then Corr(Z2
1 , Z

2
2 ) = ρ2.

Proof: It follows from the theorem on Normal correlation that the conditional expectation and condi-
tional variance of Z1 given Z2 are give by E [Z1|Z2] = ρZ2 and Var [Z1|Z2] = (1 − ρ2). Using the law of
total expectation, we also have

E
[
Z2
1Z

2
2

]
= E

[
Z2
2 E
[
Z2
1 |Z2

]]
= E

[
Z2
2 (1− ρ2) + ρ2Z4

2

]
= (1− ρ2) + 3ρ2 = 1 + 2ρ2 .

Hence, the correlation between Z2
1 and Z2

2 is given as

Corr(Z2
1 , Z

2
2 ) =

E
[
Z2
1Z

2
2

]
− 1

√
4

= ρ2.

The following theorem establishes the recursive estimation for the state space model (2.1).

Theorem 2.2. Given the state space model (2.1), and the class of all estimators of the form:

θ̂t+1 = Bθ̂t + Ĝt(yt+1 −Aθ̂t) ,

the Gt, which minimizes the mean-square error, γt+1 = E
[
(θt+1 − θ̂t+1)2|Fyt

]
, is given by

Ĝt =
ABγt + ρ (ac+ 2ρbd)

A2γt + a2 + 2b2
.

Moreover, the mean-square error is given as

γt+1 =
(
B −AĜt

)2
γt + c2 + 2d2 + Ĝ2

t (a
2 + 2b2)− 2ρĜt(ac+ 2ρbd).
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Proof: The difference θt+1 − θ̂t+1 is given by

θt+1 − θ̂t+1 = B(θt − θ̂t) + cηt+1 + d(η2t+1 − 1)−Gt
(
Aθt + azt+1 + b(z2t+1 − 1)−Aθ̂t

)
= (B −AGt)(θt − θ̂t) + cηt+1 + d(η2t+1 − 1)− aGtzt+1 − bGt(z2t+1 − 1) .

Squaring the above expression, taking expectations, and using the results of Lemma 2.1 it follows that the
conditional mean-square error at t+ 1 is given by

γt+1 = (B −AGt)2 γt + c2 + 2d2 +G2
t (a

2 + 2b2)− 2ρGt(ac+ 2ρbd) .

Differentiating γt+1 with respect to Gt and setting the first derivative to zero, we have

−2A(B −AGt)γt + 2Gt(a
2 + 2b2)− 2ρ(ac+ 2ρbd) = 0 .

Solving for Gt, we obtain

Ĝt =
2ABγt + ρ(ac+ 2ρbd)

2A2γt + a2 + 2b2
.

Corollary 2.3. Let the state space model be of the form

yt+1 = Aθt + zt+1

θt+1 = Bθt + ηt+1

where {zt} and {ηt} are two sequences of independent and identically distributed random variables having
mean zero and variance σ2

z and σ2
η, respectively. In the class of estimates of the form:

θ̂t+1 = Bθ̂t+1 + Ĝt(yt+1 −Aθ̂t) ,

the Gt which minimizes the mean-square error γt = E
[
(θt − θ̂t)|F yt

]
is given by

Ĝt =
BAγt

A2γt + σ2
z

.

In addition, the mean-square error is given as

γt+1 =
(
B − ĜtA

)2
γt + σ2

η + Ĝ2
tσ

2
z .

Proof: The result follows from Theorem 2.2 by setting a = σz, b = ση, c = d = 0, and ρ = 0.

3. General Model

In the continuous-time setting, consider the general state space model of the form

dyt = A(yt)θtdt+ α(yt)dW1(t),

dθt = B(yt)θtdt+ β(yt, θt)dW2(t)

where W1(t) and W2(t) are two uncorrelated standard Brownian motions. If we consider a discretisation in
small intervals of time ti − ti−1 = h, i = 0, 1, . . ., then the Milstein method gives a non-Gaussian discrete
state-space model of the form:

yti+1
− yti = A(yti)θtih+ α(yti)

√
hzti+1

+
h

2
α(yti)α̇y(yti)

(
z2ti+1

− 1
)
, (3.1)

θti+1
= [1 +B(yti)h]θti + β(yti)

√
hηti+1

+
h

2
β(yti , θti)β̇θ(yti , θti)

(
η2ti+1

− 1
)
,
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where α̇y = ∂α
∂y and β̇y = ∂β

∂θ , and {zti} and {ηti} are two independent standard Gaussian sequences of
independent and identically distributed random variables.

We can relate the discretised model (3.1) to the discrete-time model (2.1) by letting yt+1 ≡ yti+1
− yti ,

θt+1 ≡ θti+1 , zt+1 ≡ zti+1 , and ηt+1 ≡ ηti+1 . In addition, we have A ≡ A(yti), a ≡ α(yti)
√
h, b ≡

h
2α(yti)α̇y(yti), B ≡ [1 +B(yti)h], c ≡ β(yti)

√
h, d ≡ h

2β(yti , θti)β̇θ(yti , θti), and ρ ≡ 0. It now follows from
Theorem 2.2 that the recursive estimator is of the form

θ̂t+1 = [1 +B(yti)h]θ̂t + Ĝt (yt+1 −A(yti) θ̂th) ,

where

Ĝt =
A(yti)[1 +B(yti)h]γt

A2(yti)γt +
(
α2(yti)h+ 1

2h
2α2(yti)α̇

2
y(yti)

) ,
and the mean-square error is given as

γt+1 =
(

1 +B(yti)h−A(yti)Ĝt

)2
γt + β2(yti)h+

1

2
h2β2(yti , θ̂ti)β̇

2
θ (yti , θ̂ti)

+ Ĝ2
t

(
α2(yti)h+

1

2
h2α2(yti)α̇

2
y(yti)

)
.

Example 3.1 (Klebaner’s Model). Klebaner [15] considers a state space model in which the conditional
mean of the observed diffusion process is modeled by the Black-Scholes process (Black and Scholes [16]) and
given by:

dyt = θtdt+ dW1(t),

dθt =

(
µ+

σ2

2

)
θtdt+ σθtdW2(t),

where W1(t) and W2(t) are two independent standard Brownian motions. In this case, the Milstein method
leads to

yti+1 − yti = θtih+
√
hzti+1 , (3.2)

θti+1 = θti +

(
µ+

σ2

2

)
hθti + σθti

√
hηti+1 +

h

2
σ2θti(η

2
ti+1
− 1).

We relate (3.2) to the discrete-time model (2.1) by letting yt+1 ≡ yti+1
− yti , θt+1 ≡ θti+1

, zt+1 ≡ zti+1
,

and ηt+1 ≡ ηti+1 . Also, we put A ≡ h, a ≡
√
h, b ≡ 0, B ≡

[
1 +

(
µ+ σ2

2

)
h
]
, c ≡ σθti

√
h and d ≡ h

2σ
2θti .

It now follows from Theorem 2.2 that the recursive estimator is of the form

θ̂t+1 =

[
1 +

(
µ+

σ2

2

)
h

]
θ̂t + Ĝt(yt+1 − hθ̂t) ,

where

Ĝt =

[
1 +

(
µ+ σ2

2

)
h
]
γt

h (γt + 1)
,

and the mean-square error is given as

γt+1 =

([
1 +

(
µ+

σ2

2

)
h

]
− hĜt

)2

γt + σ2θ̂2tih+
1

2
h2σ4θ̂2ti + Ĝ2

th.

Example 3.2 (Hull and White Model). Hull and White [17] proposed the stochastic volatility model in
which the conditional variance of the observed diffusion process is modeled by a Black-Scholes process and
given by:

dyt = αytdt+ θtytdW1(t),

dθ2t = aθ2t dt+ bθ2t dW2(t).
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where W1(t) and W2(t) are two correlated standard Brownian motions with EdW1(t)dW2(t) = ρdt.
We use Ito’s formula to obtain dθt:

dθt =

(
a

2
− b2

8

)
︸ ︷︷ ︸

µθ

θtdt+
b

2
θtdW2(t).

To simplify Milstein approximation we treat the coefficient on dW1(t) as a function of only yt. In this
case,the Milstein method leads to

yti+1
− yti − αytih = θtiyti

√
hzti+1 +

1

2
θ2tiytih(z2ti+1

− 1),

θti+1
= (1 + µθh)θti +

b

2

√
hθtiηti+1

+
b2

8
θtih(η2ti+1

− 1).

We relate (3.3) to the discrete-time model (2.1) by letting yt+1 ≡ yti+1
− yti − αytih, θt+1 ≡ θti+1

,

zt+1 ≡ zti+1 , ηt+1 ≡ ηti+1 . Also, we put A ≡ 0, a ≡ θtiyti
√
h, b ≡ 1

2θ
2
tiytih, B ≡ (1 + µθh), c ≡ b

2

√
hθti and

d ≡ h
8 b

2θti .
It now follows from Theorem 2.2 that the recursive estimator is of the form

θ̂t+1 = (1 + µθh)θ̂t + Ĝtyt+1 ,

where

Ĝt =
ρb
(

1 + ρbθ̂t
h
4

)
2yt

(
1 + 1

2 θ̂
2
t h
) ,

and the mean-square error is given as

γt+1 = (1 + µθh)2γt +
b2

4
hθ̂2t +

h2

32
b4θ̂2t + θ̂2t y

2
t hĜ

2
t

(
1 +

1

2
θ̂2t h

)
− hρbθ̂2t ytĜt

(
1 + ρbθ̂t

h

4

)
.

When correlation ρ = 0, the model simplifies to

Ĝt = 0

θ̂t+1 = (1 + µθh)θ̂t

γt+1 = (1 + µθh)2γt +
b2

4
hθ̂2t +

h2

32
b4θ̂2t

Example 3.3 (CIR Model). Consider the CIR model for observed process yt given by

dyt = k(θt − yt)dt+ σ
√
ytdW1(t),

and the state process θt follows a diffusion process of the form

dθt = B(yt)θtdt+ β(yt, θt)dW2(t),

EdW1(t)dW2(t) = 0

In this case, the Milstein method for yt and θt leads to

yti+1 − yti + kyti = kθtih+ σ
√
ytihzti+1 +

1

4
σ2h(z2ti+1

− 1), (3.3)

θti+1
= [1 +B(yti)h]θti + β(yti)

√
hηti+1

+
h

2
β(yti , θti)β̇θ(yti , θti)

(
η2ti+1

− 1
)
,

respectively.
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We relate (3.3) to the discrete-time model (2.1) by letting yt+1 ≡ yti+1 − yti + kyti , θt+1 ≡ θti+1 ,

zt+1 ≡ zti+1
, ηt+1 ≡ ηti+1

, and ρ = 0. Also, we put A ≡ kh, a ≡ σ
√
ytih, b ≡ 1

4σ
2h, B ≡ [1 + B(yti)h],

c ≡ β(yti)
√
h and d ≡ h

2β(yti , θti)β̇θ(yti , θti).
It now follows from Theorem 2.2 that the recursive estimator is of the form

θ̂t+1 = [1 +B(yti)h]θ̂t + Ĝt(yt+1 − khθ̂t),

where

Ĝt =
k[1 +B(yt)h]γt

k2hγt + σ2
(
yt + 1

8σ
2
) ,

and the mean-square error is given as

γt+1 =
(

1 +B(yti)h− khĜt
)2
γt + β2(yt)h+

h2

2
β2(yt, θ̂t)β̇

2
θ (yt, θ̂t) + σ2hĜ2

t

(
yt +

1

8
σ2h

)
.

4. Bond Valuation with Recursive Learning under Milstein Approximation

We now present the computation of a zero coupon bond price in the setting of a two-factor CIR model.
In two-factor models, in general, bond yields are deterministic (and usually affine) functions of two factors.
There are at least two reasons for why two-factor (or even multi-factor) models are more preferable to single-
factor models. First, the empirical difficulties of fitting the shape of the term structure of zero rates and
their volatilities and the variation of interest rate spreads in single-factor models are well known. Second,
there are institutional restrictions on the behavior of interest rates that mandate more factors than one.
Central banks tend to target certain levels (or ranges) of interest rates. These levels themselves may change
over time as economic conditions change. As an example we consider a variant of the two-factor CIR model
presented in [18]. The model defines the short rate as a CIR process with long-run mean (also known as
central tendency) being itself a CIR process:

drt = κr(ηt − rt)dt+ σr
√
rtdzr

dηt = κη(θ − ηt)dt+ ση
√
ηtdzη

Edzrdzη = 0

Milstein approximation is readily available

rt+h − rt = κr(ηt − rt)h+ σr
√
rthεr +

σ2
r

4
h
(
ε2r − 1

)
(4.1)

ηt+h − ηt = κη(θ − ηt)h+ ση
√
ηthεη +

σ2
η

4
h
(
ε2η − 1

)
Eεrεη = 0

Note that the new state variable processes are no longer normal. Rather, they are a mixture of normal
and chi-squared random variables.

Because investors do not observe ηt the task of pricing a zero coupon bond is a two-stage exercise. First,
investors estimate the latent central tendency process, η̂t. For that purpose, we assume, they use the rule
described in Theorem 2.2:
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η̂t+h = η̂t + κη(θ − η̂t)h+ Ĝt(rt+h − rt − κr(η̂t − rt)h)

Ĝt =
κrκηhγt

κ2rhγt + σ2
r

(
rt +

σ2
r

8 h
)

γt+h =
(

1− κηh− κrhĜt
)2
γt + σ2

ηh

(
η̂t +

σ2
η

8
h

)
+ Ĝ2

tσ
2
rh

(
rt +

σ2
r

8
h

)

=
(

(1− κηh)
2 − 2κrhĜt + 3Ĝtκrκηh

2
)
γt + σ2

ηh

(
η̂t +

σ2
η

8
h

)
Second, investors value the bond conditional on the pair (rt, η̂t). Thus, investors’ problem is the joint

problem of estimation of the latent state process and simultaneous valuation of the bond.
The fundamental valuation principle in asset pricing states that if there is no arbitrage, then there exists

a positive pricing kernel (also called stochastic discount factor (SDF)) such that the following condition is
satisfied by any h-period return on any asset at any time:

Etmt+hRt+h = 1 (4.2)

In our example we are interested in an h-period return on a zero coupon default-free bond, Rt+h =
Bnt+h/B

n+h
t , where Bnt is the time t price of a zero coupon bond with n periods remaining until maturity.

The complete information version of this model is affine, and the solution for a bond price in the complete
information case is available in continuous time. Here we can start with discrete-time SDF

− lnmt+h = α+ βrt + λ1
√
rthεr + λ2hε

2
r (4.3)

Finding SDF parameter restrictions requires the knowledge of the following integral of an exponential-
quadratic function of a standard normal variable, ε:

Et exp
(
φtε+ ϕtε

2
)

=
1√

1− 2ϕt
exp

(
1

2

φ2t
1− 2ϕt

)
(4.4)

with transversality condition ϕt < 1/2.
The condition that the expectation of an h-period SDF has to give us the h-period short rate allows us

to find SDF coefficient restrictions:

− lnBht = rth = − ln (Et exp (lnmt+h))

= − lnEt exp
(
−α− βrt − λ1

√
rthεr − λ2hε2r

)
Using the fundamental pricing equation (4.2), the SDF expression (4.3), and the expression for the

expectation of the exponential-quadratic function of the standard normal variable in (4.4), we have

− lnBht = rth (4.5)

= α+ βrt + ln
1√

1 + 2λ2h
+

1

2

λ21rth

1 + 2λ2h

For SDF (4.3) to be consistent with restriction (4.5), we must have

α =
1

2
ln (1 + 2λ2h)

β = h

(
1− 1

2

λ21
1 + 2λ2h

)
8



Inserting SDF (4.3) into the pricing equation (4.2), we obtain the following expression for the price of a
zero-coupon bond maturing at time T (let (T − t)/h = N):

Etmt,t+hmt+h,t+2h...mT−h,T = BTt

BTt = exp (−αN)Et exp

(
N−1∑
n=0

(
−βrt+nh − λ1

√
rt,t+nhhεr,t+(n+1)h − hλ2ε2r,t+(n+1)h

))
By definition, the yield on this bond is given by

yTt = − 1

T − t
lnBTt =

1

T − t

(
αN − lnEt exp

(
N−1∑
n=0

(
−βrt+nh − λ1

√
rt,t+nhhεr,t+(n+1)h − hλ2ε2r,t+(n+1)h

)))
Unfortunately, the learning implications of the model render the final bond expression non-affine in the

state variables. The expectation above, however, can be easily computed using Monte Carlo integration.
When constructing the term structure of interest rates we make maturities, T , range from one year to 10

years. The discretisation time step, h, is kept constant at 1/500 of a year. As a base case for our simulations
we take the following parameter values. We choose the speed of mean reversion in both the short rate and
the central tendency to be κr = κη = 2.0, so that they are consistent with high persistence of the state
variables. E.g., for κr = 2.0, the persistence of the non-Gaussian AR(1) short rate process in (4.1) is equal
to 1 − κrh = 0.996. Both κr and κη have virtually identical impact on the term structure of zero yields1.
This influence, however, is strong as we might expect. Intuitively, larger speed of mean reversion pulls the
state variables faster to the long run mean, θ. The result is that all yields are larger with the intermediate
yields being affected the most, which increases the concavity of the term structure as represented in Figure
1.

The shape of the term structure strongly depends on the relative position of the current short rate with
respect to the long run mean of the central tendency, θ.2 Our model produces rich patterns of the term
structure similar to non-discretised CIR models. If the short rate is below the mean, the term structure is
upward-sloping, otherwise, it is inverted. For our numerical results we set the long run mean of the central
tendency at 0.01 in the base case. The level of θ has a strong effect on both the levels and the curvature of
the term structure, with the latter being affected the most by θ than any other parameter of the model (see
Figure 2).

Our numerical simulations show that, interestingly, the instantaneous volatilities of both the short rate
and the central tendency are largely irrelevant for the shape and level of the term structure. We start with
the base case values of the volatilities given by σr = ση = 0.01. As an example, the yields on a 1-year and
10-year zeros in the base case are 2.01% and 3.90%, respectively. If we increase σr substantially to, say,
0.1, the corresponding new yields are identical to those obtained with base case parameters. Likewise, if we
increase ση from 0.01 to 0.1, we do not see any change in any of the yields3.

The base case risk premiums are λ1 = −0.02 and λ2 = 0.001. Zero yields are largely insensitive to the
value of λ1. However, the second risk premium, which is the loading on the non-Gaussian component in the
SDF, has strong influence on the term structure. This non-Gaussian risk premium affects zero rates of all
maturities in the same way leading to parallel shifts in the yield curve. Even though the shape of the term
structure is largely not affected, the yields are very sensitive to the level of the second risk premium. E.g., a
change in λ2 from the base case level of 0.001 to 0.05 add about 980 basis points to yields of all maturities
as shown in Figure 3.

1Due to this finding, we present simulations results only for κr.
2In our simulations we assume that both the short rate and the central tendency start at 0.01. We also assume that the

posterior variance of the central tendency estimate, γt, starts at the level of two instantaneous standard deviations of the
central tendency, ηt, i.e., γt = 2ση

√
ηt per year.

3Only if we increase these volatilities to unrealistic levels by a factor of 1000, do the yields decline. The decline, however,
is minuscule, half a basis point or less.
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5. Conclusion

Recently, it has been demonstrated (McLeish [19]) that the diffusion process can be well approximated
by the Milstein method rather than the Euler’s method. In this paper, we study the recursive estimates for
various classes of discretely sampled continuous time stochastic volatility models using the Milstein method.
We also provide an example of joint valuation of a zero-coupon bond and learning about an underlying state
variable under incomplete information environment.
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