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Abstract

In this paper we derive the term structure of default-free zero rates under the

Epstein-Zin utility function, non-i.i.d. consumption growth, and incomplete infor-

mation about fundamentals. We extend the continuous-time long-run risks model of

Eraker (2008) to an incomplete information environment in which agents learn about

unobservable persistent component of the conditional mean of consumption growth.

In equilibrium, agents learn about the conditional mean of consumption growth and

price zero-coupon bonds simultaneously under a new measure, which is generated by

information observed by agents. We derive analytic formulas for a zero coupon bond

price and that for spot rates under the new measure.
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1 Related Literature

The Long-run Risk model is firstly proposed by Bansal & Yaron (2004). In the LRR model,

current shock to expected growth have a persistent effect on the expectations about con-

sumption and dividend growth. Furthermore, the conditional volatility of consumption is

time varying. Therefore, investors who are exposed to these two types of risk require higher

premium for holding equities. BY form the LRR model based on an Epstein & Zin (1989)

recursive preferences.

2 Long-Run Risk Model with Learning

Eraker (2008) extends Bansal & Yaron (2004) economy to general affine state variable pro-

cesses. Both Eraker and Bansal and Yaron assume that the conditional mean of consumption

growth, xt, is observable. In our model we assume that agents do not directly observe the

conditional mean of consumption growth, xt. Unlike Eraker (2008), we model how agents

learn about the value of xt by extracting information from observing both consumption

growth and dividend growth. The optimal forecast of the conditional mean of consumption

growth is solved for jointly with equilibrium prices. The Markov property of the state vari-

ables allows us to break down the agent’s optimization problem into two stages. First, we

use a linear version (Kalman-Bucy filter) of a general filter to derive the process of an agent’s

best estimate of xt, x̂t. Second, given the optimal estimate, the model is effectively reduced

to a full-information model in which all expectations are computed under an information set

available to the agents.

We retain main features of models by Bansal & Yaron (2004) and Eraker (2008) such as

recursive preferences and non-i.i.d. consumption and dividend growth. We list the assump-

tions below.

Assumption 1 We assume an infinitely lived representative agent economy with stochastic

differential utility preferences of Duffie & Epstein (1992a):
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J(Gt,Wt, t) = Et

∞∫
t

f(Cs, Js)ds
1 (1)

with the normalized aggregator

f(Ct, Jt) =
β

1− 1
ψ

(1− γ)Jt

( Ct

((1− γ)Jt)
1

1−γ

)1− 1
ψ

− 1

 (2)

where Ct is consumption at time t, Jt is the recursive utility at time t, β is the subjective

discount rate, γ is the relative risk aversion coefficient, and ψ is the elasticity of intertemporal

substitution (EIS).

Assumption 2 Following Eraker (2008), we model the processes of consumption growth and

dividend growth with drift being linear function of the persistent long-run risk component xt:

d ln(C) ≡ dgc = (µc + x− V

2
)dt+

√
V dwc, (3)

dgd = (µd + φx− ϕ2
d

V

2
)dt+ ϕd

√
V dwd, (4)

where wc and wd are standard Wiener processes, Edwcdwd = ρcd, and V is conditional

instantaneous variance of consumption growth.

Assumption 3 The conditional mean of consumption growth is not observed by agents.

They only know that it follows a mean reverting process with zero long-run mean:

dx = −ρxdt+ ϕe
√
V dwe (5)

where we are standard Wiener processes and Edwcdwe = ρcx, Edwedwd = ρxd.

1Duffie & Epstein (1992a) consider a more general case of non-zero variance multiplier:

J(G,W, t) = Et

∞∫
t

(
f(Cs, Js) + 1

2A(Js)σ
2
J(s)

)
ds

where σ2
J is utility variance, and A(Jt) is the variance multiplier. They show how one can transform to

an ordinally equivalent preference structure with zero variance multiplier.
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Assumption 4 We assume that all state variable processes are homoscedastic, i.e., V is

constant over time.

2.1 Optimal Inference about the Conditional Mean of Consump-

tion Growth

Due to the latent nature of process xt, we assume that agents estimate the value of xt from

observations on both the consumption growth and the dividend growth. As a standard

practice, we model the optimal forecast of the latent process by minimizing the posterior

variance of the latent process. As a result, the estimation process is described by Kalman-

Bucy filter. The following theorem summarizes the solution to the optimal filtering problem.

Theorem 1 Assuming that the latent mean of consumption growth is described by (5) and

an agent’s inference is based on the observations of consumption and dividend growth as

described in (3) and (4) the agent’s best estimate of xt, x̂t is given by

dx̂t = −ρx̂tdt+ Σx

 dw∗c

dw∗d

 , (6)

where St = Et[(xt − x̂t)2] is the posterior variance of process xt, and matrix Σx is shown

below:

Σx =
1

1− ρ2
cd

[
St

ϕd
√
V
aT + ϕe

√
V bT

]
(7)

aT =

[
ϕd − φρcd, φ− ϕdρcd

]
(8)

bT =

[
ρcx − ρdxρcd, ρdx − ρcxρcd

]
(9)

Processes w∗c (t) and w∗d(t) are standard Wiener processes under a filtration generated by
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observation on consumption and dividend growth on the interval [0, t], i.e., w∗c (t),w∗d(t) ∈

Fgc,gdt :

 dw∗c

dw∗d

 =

 x−x̂√
V
dt+ dwc

φ(x−x̂)

ϕd
√
V
dt+ ρcddwc +

√
1− ρ2

cddw
⊥
d


where Edwedw

⊥
d = 0.

Proof: see Appendix.

Given the optimal process x̂t, processes gc and gd under the new probability measure

corresponding to the information available to agents have the following form:

dgc = (µc + x̂− V

2
)dt+

√
V dw∗c , (10)

dgd = (µd + φx̂− ϕ2
d

V

2
)dt+ ϕd

√
V dw∗d. (11)

2.2 Value Function

We make a further assumption about the asset composition of the economy.

Assumption 5 There are n traded assets in the economy with price processes described by

following stochastic differential equations (SDEs) under information available to agents:

dSi
Si

= µidt+ σTi

 dw∗c

dw∗d

 , i = 1, n

where σi is a 1× 2 row.

To simplify further discussion we introduce the following notation:
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Σ
n×2

=



σ1

σ2

...

σn


, µ =



µ1

µ2

...

µn


, π =



µ1 − r

µ2 − r

...

µn − r


where r is the risk free rate of return.

An agent’s wealth process (budget constraint) is represented by a self-financing portfolio-

consumption pair ({ω}ni=1 , C) as follows:

dW = W
n∑
i=1

ωi
dSi
Si
− Cdt = WωT

(π + rI) dt+ Σ

 dw∗c

dw∗d


− Cdt

=
(
WωTπ +Wr − C

)
dt+WωTΣ

 dw∗c

dw∗d

 (12)

We also denote the 3× 1 vector of state variables gc, gd, x̂, and W as G. The SDE that

G obeys follows immediately from (3), (4), and (6):

dG =


dgc

dgd

dx̂

 = µ̂Gdt+ ΣG

 dw∗c

dw∗d

 (13)

with obvious definitions for µ̂G and ΣG.

Duffie & Epstein (1992a) prove that the Bellman equation for optimal consumption-

portfolio process is

sup
C,ω

D(C,ω)J (G,W, t) + f(C, J) = 0 (14)

where
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D(C,ω)J (G,W, t) = Jt + µ̂TGJG +
(
WωTπ +Wr − C

)
JW +

1

2
tr(Υ)

with

Υ =

 ΣG

WωTΣ


T  JGG JGW

JWG JWW


 ΣG

WωTΣ


The Bellman optimality condition (14) implies that for a given consumption process the

optimal differential utility satisfies the following PDE:

Jt + µ̂TGJG +
1

2dt
dGTJGGT dG+ f = 0 (15)

J(∞, G) = 02 (16)

In general, this PDE does not have an analytical solution. To this end, we follow Campbell

& Viceira (2002) and Zhu (2006) and use a log-linear approximation of the normalized

aggregator:

f ≈ h(1− γ)J [lnC − 1

1− γ
ln J +H] (17)

where h is the long-term mean of consumption to wealth ratio (see Apprendix for details

of the derivation). There are two shortcomings of the proposed approximation. First, the

elasticity of intertemproal substitiution ψ only appears in H, and has no impact on pricing.

This shortcoming can be overcome by using higher-order terms but at the cost of losing the

closed form expression for the utility function. Second, dividend growth has no direct impact

on the utility function and on pricing results as we show below. The only impact of dividend

growth is through its effect on the optimal estimate of the conditional mean of consumption

growth due to the nature of agents’ learning process.
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Inserting approximation (17) into PDE (15), we look for a solution, J(t, g, d, x̂), of the

PDE in an exponential-affine form:

J(t, g, d, x̂) = exp(ξ0t + ξ1tgt + ξ2tdt + ξ3tx̂t) (18)

where g = lnC and d = gd.

Substitution of this function into (15) leads to an affine function of the state variables,

G, that must evaluate to zero for arbitrary values of the state variables. This situation is

only possible if coefficients the state variables are all zero, which gives rise to a system of

four ordinary differential equations (ODEs) for coefficients ξ0, ξ1, ξ2, and ξ3. Subject to

appropriate initial condition on the lifetime utility function, the ODEs have the following

solutions (see Appendix for details):

ξ1 = 1− γ (19)

ξ2 = 0 (20)

ξ3 =
1− γ
h+ ρ

(21)

As we point out above, dividend growth does not have a direct effect on either the utility

function or the pricing of assets as ξ2 = 0.

2.3 Pricing Kernel and Term Structure of Interest Rates

Duffie & Epstein (1992a) show that the stochastic discount factor π is given by the following

expression:

πt = exp

(∫ t

0

fJds

)
fC (22)

Appling Ito’s lemma to (22) and using the expressions for the normalized aggregator

approximation in (17) and the state processes in (3), (4), and (6), we obtain the process for
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the pricing kernel, πt:

dπ

π
= −

[
h+ µg + x̂+ (ξ1 − 1)V + ξ3

√
V Σ1x

]
dt+

 (ξ1 − 1)
√
V + ξ3Σ1x

ξ3Σ2x


T  dw∗c

dw∗d

 ,
(23)

We derive expressions for Σ1x and Σ2x in Appendix.

The real short term risk-free rate, r, is given by the drift in expression (23):

rt = −E
(
dπ

π

)
/dt

= Ω + x̂ (24)

where Ω ≡ h+ µg + (ξ1 − 1)V + ξ3

√
V Σ1x. For the case of an infinitely lived agent that

we consider in our model ξ1 = 1− γ, which implies that Ω ≡ h + µg − γV + ξ3

√
V Σ1x (see

Appendix for details).

Equation (24) shows that, the real short rate is only a function of time t and the agents’

posterior estimate of the conditional mean of consumption growth, x̂. Ito’s lemma applied

to equation (24) implies that

dr =
•
Ωdt+ dx̂

=

(
•
Ω− ρx̂

)
dt+ Σx

 dw∗c

dw∗d

 (25)

where
•
Ω is the first order derivative of Ω with respect to t.

Now we derive the price of a zero-coupon bond using the pricing kernel in (23). Price,

P , of any asset must satisfy the fundamental pricing equation:
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E

(
dP

P

)
= rdt− E

(
dP

P

dπ

π

)
(26)

Given the affine nature of both the SDE and the short rate, equations (23), (24), and (26)

imply that the solution for the bond price has an exponential-affine form as a function of

posterior mean of conditional consumption growth, x̂ (see Appendix for detailed arguments).

Since x̂ is affine (see (24)) in the short rate, r, then bond price itself is an affine function of

the short rate.

Theorem 2 The price of a zero-coupon bond with face value of $1 and time to maturity

τ = s− t is given by an exponential-affine function of the short rate:

P = exp(A(τ) +B (τ) r).

where functions A(τ) and B (τ) are given by

A(τ) = Ω(Bt + τ) +
b

4ρ3
(e−2ρτ − 4e−ρτ − 2ρτ + 3) +

λ

ρ2
(e−ρτ + ρτ − 1)

B (τ) = −1

ρ

(
1− e−ρ(s−t))

Proof : see Appendix.

Then the yield is simply

y = − 1

s− t
(A+Br) (27)

Since Ω and λ are linear function of ξ1 and ξ3, they are constants as well. So we can

move them out of the integral when we are calculating A in the yield. Therefore, we get a

much simpler expression of A :
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A = (−ΩB) |st − b
∫ s

t

B2

2
du+ Ω

∫ s

t

du− λ
∫ s

t

Bdu

= Ω(Bt + τ) +
b

4ρ3
(e−2ρτ − 4e−ρτ − 2ρτ + 3) +

λ

ρ2
(e−ρτ + ρτ − 1).

The yield turns out to be a linear combination of the correlation between x̂ and g, a, and

the variance of x̂, b :

y = −1

τ
(A+Btr)

= −1

τ

(
Ω(2Bt + τ) +

b

4ρ3
(e−2ρτ − 4e−ρτ − 2ρτ + 3) +

λ

ρ2
(e−ρτ + ρτ − 1) +Btx

)
= m0 +m1b+m2a,

and the conditional variance and unconditional variance of the yield are the same as those

of the full model:

var(yt→s|x̂t−1) =
B2
t b

s2
,

var(yt→s|x̂0) =
1

2ρs2
B2
t b
(
1− e−2ρt

)
,
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where

a =
√
V (C1 + ρgdC2)

b = C12 + 2ρgdC1C2 + C22

τ = s− t

m0 = −1

τ
((h+ µg + (ξ1 − 1)V ) (2Bt + τ) +Btx)

m1 = −1

τ

(
1

4ρ3
(e−2ρτ − 4e−ρτ − 2ρτ + 3) +

1

ρ2
ξ3(e−ρτ + ρτ − 1)

)
,

m2 = −1

τ

(
ξ3(2Bt + τ) +

1

ρ2
(ξ1 − 1)(e−ρτ + ρτ − 1)

)
.

2.4 Model Implication

To calibrate the model, we pick parameters values from Constantinides & Ghosh (2011).

Since our model is continuous-time, the mean-reverting speed of x is different from that in

the discreted-time model. Therefore, we set ρ = − log
(
ρCG

)
so that the first moment of x

in our model matches CG’s estimation.

As one can see from equation, the yield is a linear combination of a, the value of the

covariance between unobserved long-run risk factor x̂ and consumption growth g, and b, the

variance of x̂. Here, we start from examining the properties of a and b.

Value of a is determined by all 3 correlations between state variables ρcx, ρdx, and ρcd.

In figure, we plot value of a for different combinations of values of ρcx, ρdx, and ρcd. For our

parameter values, ρcx’s impact on a changes with ρdx, and ρcd. In general, a is increasing on

ρcx. However, when ρcd is close to zero, a tends to be flatter. And, for large positive value

of ρcd, a can become a monotonically decreasing function on ρcx. This pattern is weaker

when ρdx goes from negative to zero, and for positive ρdx, a is always increasing over ρcx.

a over ρdx in general is hump shaped. When consumption growth and dividend growth are

largely negatively correlated, because of positive definite restriction, we only get right half

of the curve, which is decreasing. When ρcd is large and positive, we get the left half of the
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curve, which is increasing. The impact of ρcd is similar to that of ρdx. When ρdx is large and

positive, increasing ρcd increases a, and the opposite holds for negative ρdx.

Figure demonstrates the impact of change in those key correlations on b. The derivative

of b over ρcx is always positive, which means the higher the correlation between consumption

growth and x, the higher the variance of x̂. The derivative over ρdx is negative when ρdx

is close to -1. It’s increasing and later becomes positive when ρdx is large and positive.

ρcd’s impact on b is similar to that of ρdx. Basically, b is a parabola over ρcd, which is first

decreasing and later becomes increasing. Also, because of positive definite restriction, for

some extreme values of ρdx and ρcx, we only have part of the parabola. For instance, when

ρdx is large and positive, we can only get left half of the curve, which is in general decreasing

on ρcd.

In this simplified model, both ξ1 and ξ3 are all negative constant, so the total risk premium

−λ is simply a linear combination of a and b. In figure, we examine the behavior of the total

risk premium. We find that the total risk premium is always increasing over ρcx for both a

and b are increasing over ρcx. Since h+ ρ is much smaller than 1, −ξ3 is significantly larger

than −ξ1. Because of this, −λ is in general dominated by b. Therefore, change in ρdx affects

the risk premium in the similar way as it affects b. And the same thing holds for ρcd.

To analyze the yield, we still need to examine the properties of loading on a, m2, and

that on b, m2. In table, we show values of m1 and m2 for different parameters values. For

γ = 2, m1 is always positive. Intuitively, for larger the variance of x̂, investors require higher

risk premium, and therefore the yield on a zero coupon bond is higher. m2 is negative for

small τ, which implies that for a zero coupon bond with small time-to-maturity, the yield is

decreasing over the covariance between the consumption growth and x̂. This is due to the

fact that both Ω and λ contains a. While the second term of m2 is always positive, the first

term, which is succeed from Ω, is negative. Intuitively, for a larger value of a, although the

risk premium is higher, the expectation of the risk free rate is lower. And, as τ increases,

the first term becomes less negative, which makes m2 positive for a large τ. For γ = 2, when
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τ > 15, m2 becomes positive. That is for a large time-to-maturity, negative impact of the

expectation on risk free rate is overcome by the positive effect of the risk premium.

Together with our analysis of a and b, we can now say something on the impact of changes

in key correlations on the yield. Figure show yields on 1-year, 5-year, 10-year, and 20-year

zero coupon bonds for different value of ρcx, ρdx, and ρcd. In general, this model produces a

downward-sloping real yield curve. The real yield of a 1-year zero coupon bond is between

2.8% and 2.9%, and that of a 20-year zero coupon bond is between 1.5% and 1.6%. The

impact of ρcx is the most trivial one. Large ρcx leads to larger a and b, which makes the

yield higher for large τ . When τ is small, since m2 is negative, the negative impact of a

compensates that of b, and leads to a flatter yield curve. ρdx’s effect on the yield is similar to

that of ρdx on b. For large τ this is because the yield’s loading on b is much larger than that

on a. For small τ, since m2 is negative, impact of changing a works in the same direction

as that of changing b. When ρdx is negative and large, increasing ρdx moves the whole yield

curve downwards. The opposite holds for positive ρdx. ρdx also affects the impact of ρcd.

If ρdx is around zero, the yield curve first moves downwards then upwards when ρcd goes

from negative to positive. For large positive ρdx, the yield is decreasing over ρcd. And, the

opposite holds for large negative ρdx.

Since both conditional variance and unconditional variance are only function of b, the

impact of changes in key correlations on conditional variance and that on unconditional

variance are again the same as that on b. Figure shows the unconditional variance of the

yield when ρcx = ρdx = ρcd = 0. To produce figure, we set s = 21 and move t from 1 to (s− 1).

The unconditional variance first of all increases, and in our case, for time-to-maturity larger

than 12, it’s decreasing over τ. This is because, although B2 is increasing over τ, (1− e−2ρt)

shrinks as τ goes from 1 to (s− 1) . However, we don’t see such phenomenon in Figure if we

assume period 0 is in the long past, that is t starts from a really large number and s = t+ τ.

In this case, B2 is still increasing over τ, and (1− e−2ρt) is really flat over τ. Therefore,

the unconditional variance is monotonically increasing over τ. The conditional variance of
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the yield is always increasing over τ . And, as being mentioned above, this is because B2

increases over τ.

2.5 Comparison of the Incomplete and Complete Information Mod-

els

In this section, we examine the differences between our learning-based model with the

complete-information model. The purpose of this section is to investigate the impact of

introducing learning into the LRR model on both the risk premium and the yield curve. To

simplify discussion, we still use the simplified model where the agent is infinitely lived.

The key difference between two types of model is that they have different expressions of

a and b. For the complete-information model, a and b have much simpler expression:

anl = ϕeV ρcx,

bnl = ϕ2
eV.

Both Ω and λ are derived via universal approach, so both model with learning and that

without learning share the same expression of the risk premium and the mean of risk-free

rate.

The difference between a and anl is simply S. Figure demonstrates the impact of changes

in key correlations on ∆a = a − anl . ∆a is monotonically decreasing over ρcx. When

ρcx = ρdx(ρcd) = 0, ∆a is a hump-shaped function over ρcd(ρdx). When ρdx (ρcd) is negative

(positive), we tend to get the right (left) half of the curve, which is decreasing (increasing)

over ρcd (ρdx). This pattern is weak when ρcx is large and positive. The interesting finding

is that, b is smaller than bnl. In Figure, we plot the difference between b and bnl against

different combinations of values of key correlations. As we can see, ∆b = b − bnl shrinks as

ρcx goes from -1 to 1. The impact of change in ρcd (ρdx) is similar to that on −∆a.Since

the total risk premium has more loads on b (bnl), ∆λ = −λ − (−λnl) is dominated by ∆b.
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Therefore, the impact of change in ρcx(ρdx or ρcd) on ∆λ is similar to that on ∆b.

Now we can move to the difference in the yield ∆y between two models. Since m0, m1,

and m2 are the same for both models, we can write ∆y as

∆y = y − ynl

= m1∆b+m2∆a.

From the analysis above we know that ∆a is similar in shape to −∆b. Also, we have

mentioned that for small τ, m2 is negative, and when τ is large, m2 is much smaller than

m1. Having these two facts, together with the expression of ∆y above, we conclude that ∆y

has the similar shape to ∆b.

3 Appendix

3.1 The agent’s posterior estimate of the conditional mean of con-

sumption growth, x̂t.

Because the repersentative agent cannot observe the true conditional mean of consumption

growth, x̂t, she seeks to extract new information about the value of xt by observing both

consumption and dividend growth. To this end, we write the (two-dimensional) measurement

(observation) process and the latent process together as

dG0 = µGdt+ Ωdw (28)

where the complete state vector (including both the observed and the unobserved state

variables), G0, its mean, µG, the volatility matrix, Ω, are given by
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G0 =


gc

gd

x



µG =


µc + x− V/2

µd + φx− ϕ2
dV/2

−ρx

 ≡
 ϕ1

2×1

ϕ

 (29)

Ω =
√
V


1 0 0

0 ϕd 0

0 0 ϕe

 ≡
 ψ1

2×3

ψ

 (30)

and dw =


dwc

dwd

dwx

 is a vector of Brownian motion increments with correlation matrix

Λ =


1 ρcd ρcx

ρcd 1 ρdx

ρcx ρdx 1

.

If we Cholesky decompose the correlation matrix, we can simplify expression (28) for the

dynamics of the state variables as follows:

dG0 = µGdt+ ΩΣdw (31)

where Σ is Cholesky decomposition of Λ, i.e.,

Σ =


1 0 0

ρcd
√

1− ρ2
cd 0

ρcx
1√

1−ρ2cd
(ρdx − ρcdρcx)

√
1

ρ2cd−1
(ρdx − ρcdρcx)2 − ρ2

cx + 1
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Now, however, dw in (31) is the vector of independent Brownian motion increments. For

the Cholesky decomposition of Λ to make sense, we need to impose the positive-definite

restriction on Λ, which in this case amounts to the following restriction on correlations:

ρ2
cd + ρ2

cx + ρ2
dx − 2ρcdρcxρdx < 1

To summurize our notation we now write the measurement process as

d

 dgc

dgd

 = ϕ1(x)dt+ ψ1Σdw, (32)

and the latent process as

dx = ϕ(y, x, t)dt+ ψ(y, t)Σdw (33)

where dw =(dwc, dwd, dwe)
T is the vector of intependent Brownian motion increments.

As the agent collects new observations on consumption and dividend growth, she updates

her estimate x̂t of conditional mean of consumption growth according to the linear Kalman-

Bucy filter:

dx̂ = −ρx̂dt+ Et

(
(ϕ1 − ϕ̂1)T x+ ψΛψT1

) (
ψ1ΛψT1

)−1

d
 gc

gd

− ϕ̂1dt

 (34)

where ϕ̂1 = Etϕ1.

Given definitions in (29) and (30) as well as the definition of the correlation matrix Λ,

we arrive at the following intermediate results:
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ϕ1 − ϕ̂1 =

 x− x̂

φ (x− x̂)


Et

(
(ϕ1 − ϕ̂1)T x

)
= S

 1

φ


T

, where S = Et (xt − x̂t)2

(
ψ1ΛψT1

)−1
=

1

V ϕ2
d (1− ρ2

cd)

 ϕ2
d −ϕdρcd

−ϕdρcd 1


ψΛψT1 = V ϕe

(
ρcx ϕdρdx

)

Substituting (32) and (33) into equation (34) we obtain the desired posterior estimate of

the conditional mean of consumption growth, x̂t:

dx̂ = −ρx̂dt+[
St

[
1 φ

]
+ V ϕe

[
ρcx ϕdρdx

]]

× 1

ϕ2
dV (1− ρ2

cd)

 ϕ2
d −ϕdρcd

−ϕdρcd 1


d
 gc

gd

− ϕ̂1dt


= −ρx̂dt+ Σx

 dw∗c

dw∗d
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where

St = Et[(xt − x̂t)2] (35)

Σx =

 1
1−ρ2cd

[
S (ϕd−φρcd)

ϕd
√
V

+ ϕe
√
V (ρcx − ρdxρcd)

]
1

1−ρ2cd

[
S (φ−ϕdρcd)

ϕd
√
V

+ ϕe
√
V (ρdx − ρcxρcd)

]

T

(36)

 dw∗c

dw∗d

 =

 x−x̂√
V
dt+ dwc

dwd + φ(x−x̂)

ϕd
√
V
dt

 =

 x−x̂√
V
dt+ dwc

φ(x−x̂)

ϕd
√
V
dt+ ρcddwc +

√
1− ρ2

cddw
⊥
d

 . (37)

where Edw⊥d dwc = 0. Brownian motion increments in (37) denote the unexpected com-

ponent of the conditional mean of consumption growth conditional on agents’ information

set.

Posterior variance, St, in equation (35) ia a solution of a deterministic ODE, which follows

from applying Ito’s lemma to the definition of the variance in (35) and taking expectations:

dS = Ed (x− x̂)2

= E
[
2 (x− x̂) d (x− x̂) + [d (x− x̂)]2

]
=

{
−αS2 − 2(ρ+ ξ)S + Γ2

}
dt, (38)

where

α =
φ2 + ϕ2

d − 2φϕdρcd
V ϕ2

d (1− ρ2
cd)

ξ =
ϕe

ϕd (1− ρ2
cd)

(φ (ρdx − ρcdρcx) + ϕd (ρcx − ρcdρdx))

Γ2 = V ϕ2
e

(
1− 1

1− ρ2
cd

(ρdx − ρcdρcx)2 − ρ2
cx

)
.

We do all analysis on the assumption of the steady state, i.e., dS
dt

= 0. In this case,

S =
(ρ+ξ)+

√
(ρ+ξ)2+αΓ2

α
.
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3.2 Log-linear approximation of f

Porteus-Kreps aggregator is defined in (2). For further discussion in this section we rewrite

the expression for the aggregator by defining the following function of consumption and

differential utility:

Ψ(C, J) =

(
C

((1− γ)J)
1

1−γ

)1− 1
ψ

(39)

With this definition the normailzed aggregator, f , has the form:

f =
β

1− 1
ψ

(1− γ)J [Ψ− 1] (40)

Solution of the Bellman equation (14) (see P.129 Campbell and Viceira 2001) has

the following form:

J = H(t, G)
W 1−γ

1− γ
(41)

The envelope condition requires that

fC = JW (42)

The form of the Bellman solution in (41) and the first-order optimality condition (42)

imply the following restriction:

β
1− γ
1− 1

ψ

JΨC = (1− γ)J/W (43)

Using the fact that ΨC = (1 − 1
ψ

)Ψ/C and inserting it into the envelope condition (43)

we have

βΨ = ec−w (44)

Next, we expand the consumption-wealth ratio into a Taylor series around its uncondi-

tional mean c0 − w0. As long as the consumption wealth ratio does not vary a lot from its
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long-term mean, the log-linear approximation of βΨ given below will remain approximately

valid:

βΨ = h0 + h ln βΨ (45)

where

h = ec0−w0 (46)

h0 = ec0−w0 [1− (c0 − w0)] (47)

With this in mind, the approximation of the normalized aggregator has the form:

f ≈ 1− γ
1− 1

ψ

J [h0 + h ln β + h ln Ψ− β]

= h(1− γ)J [lnC − 1

1− γ
ln J +H]

where

H =
(h0 + h ln β − β)

h(1− 1
ψ

)
− 1

1− γ
ln(1− γ) (48)

3.3 Derivation of the Value Function, J

Once we substitute the log-linear approximation (17) into the PDE (15), it becomes a

parabolic PDE with coefficients affine in state variables. It is natural to look for a solu-

tion, J(t, g, d, x̂), of (15) in an exponential affine form:

J(t, g, d, x) = exp(ξ0t + ξ1tgt + ξ2tdt + ξ3tx̂t) (49)

Upon the substitution of (49) into (15) the PDE becomes an identity that must hold for

arbitrary values of state variables (symbol ∂t denotes the partial derivative with respect to
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time variable, t):

∂tξ0t + ∂tξ1tg + ∂tξ2td+ ∂tξ3tx̂+ µ̂TG


ξ1t

ξ2t

ξ3t

+
1

2dt
tr

(
dGdGT JGGT

J

)
+
f

J
= 0 (50)

where the expressions for the mean of the state vector, µ̂TG, and the aggregator, f , imme-

diately follow from (29), (17), and (49):

µ̂TG =


µc + x̂− V/2

µd + φx̂− ϕ2
dV/2

−ρx̂


T

=


µc − V/2

µd − ϕ2
dV/2

0


T

+GT


0 0 1

0 0 φ

0 0 −ρ


T

f

J
= h(1− γ)

[
lnC − 1

1− γ
ln J +H

]
= h(1− γ)

H − ξ0t

1− γ
+GT


1− ξ1t

1−γ

− ξ2t
1−γ

− ξ3t
1−γ




Because identity (50) must hold for all values of state variables, coefficients on the state

variables must all be zero.

Collecting terms containing the state variable vector we find that

GT

∂t


ξ1t

ξ2t

ξ3t

+


0 0 1

0 0 φ

0 0 −ρ


T 

ξ1t

ξ2t

ξ3t

+ h(1− γ)


1− ξ1t

1−γ

− ξ2t
1−γ

− ξ3t
1−γ


 = 0

The above identity holds if and only if the following conditions are satisfied:

23



∂tξ1t + h(1− γ)− hξ1t = 0 (51)

∂tξ2t − hξ2t = 0

∂tξ3t + ξ1t + φξ2t − (ρ+ h)ξ3t = 0

subject to termial condition (16), i.e.,

ξ1t(∞) = ξ2t(∞) = ξ3t(∞) = 0

Since ξ0 does not affect any further results, we do not attempt to solve for ξ0 and ignore

it in our further discussions. This is a system of joint ODEs for coefficients ξ1t, ξ2t, and ξ3t.

Solving the system for an infinitely lived agent, we finally have

ξ1 = 1− γ

ξ2 = 0

ξ3 =
1− γ
h+ ρ

3.4 Derivation of the Pricing Kernel in (23)

The normalized Porteus-Kreps aggregator has the following approximate form:

f ≈ h(1− γ)J [lnC − 1

1− γ
ln J +H]

Duffie & Epstein (1992b) show that the SDF can be expressed in terms of the aggregator

as in (22). Applying Ito’s lemma to (22) we have

24



dπ

π
= fJdt+

dfC
fC

=

(
f

J
− h
)
dt− dC

C
+
dJ

J
+

(dC)2

C2
− dJ

J

dC

C
(52)

Recall that the value function, J(t, g, d, x̂), and the consumption process, C, obey the

following SDEs:

dC

C
= (µg + x̂)dt+

√
V dw∗c (53)

dJ = −fdt+ JC
√
V Cdw∗c+Jdϕd

√
V dw∗d+Jx̂Σx

 dw∗c

dw∗d

 (54)

Also, from (18) we have

JC
J

=
ξ1

C
Jd
J

= ξ2 = 0

Jx̂
J

= ξ3

Combining the above results we have the following expression for the pricing kernel:

dπ

π
= −

[
h+ µg + x̂+ (ξ1 − 1)V + ξ3

√
V Σ1x

]
dt+

 (ξ1 − 1)
√
V + ξ3Σ1x

ξ3Σ2x


T  dw∗c

dw∗d


where Σ1x and Σ2x are the two components of 1× 2 vector Σx.
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3.5 Derivation of zero coupon bond price

By the definition of the state-price process

P (t, s) =
Etπs
πt

=
Et
(
fC(s) exp(

∫ s
t
fJ(u)du)

)
fC(t)

(55)

Using the expression for the value function () and differentiating () we have that

fC = h(1− γ) exp(ξ0t + (ξ1t − 1) lnCt + ξ3tx̂t) (56)

fJ(t) = −h (ξ0t + (γ − 1 + ξ1t) lnCt + ξ3tx̂t + 1 + (γ − 1)H) (57)

Upon inserting fC and fJ into the expression for the bond price (55) the latter takes the

following form:

P (t, s) = Et exp

 − (lnCs − lnCt) + (ξ0s − ξ0t) + (ξ1s lnCs − ξ1t lnCt) +

(ξ3sxs − ξ3tx̂t) +
∫ s
t
fJdu

 (58)

Given the dynamics of the consumption process in (3) we can write that

ξ1s lnCs = ξ1s (lnCt + F (x̂)) (59)

where function F is only a funtion of x̂ and τ (τ = s− t). Further, with the help of (59)

the integral in (55) simplifies as follows:
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∫ s

t

fJdu = −h
∫ s

t

(ξ0u + (γ − 1 + ξ1u) lnCu + ξ3ux̂u + 1 + (γ − 1)H) du

= −h lnCt

∫ s

t

(γ − 1 + ξ1u) du︸ ︷︷ ︸
not a function of x̂

−h
∫ s

t

(ξ0u + 1 + (γ − 1)H)− h
∫ s

t

((γ − 1 + ξ1u)F (x̂) + ξ3ux̂u) du︸ ︷︷ ︸
not a function of C

(60)

It is clear now that the bond price in (58) is reduced to an expectation of the product of

two processes completely separable in consumption and the latent state variable:

P (t, s) = Et (ZCZx)

The terms depending on consumption only in the expression for the bond price further

simplify as follows:

ZC = exp

(
lnCt

[
(ξ1s − ξ1t)− h

∫ s

t

(γ − 1 + ξ1u) du

])
= 1 (61)

The last result is a direct consequence of (51).

To sum up, the zero-coupon bond price P is only function of x and τ :

P (t, s) = Et (Zx) = P (τ, x̂t)

P (0, x̂t) = 1

Since r(t) = Ω(t) + x(t), we can rewrite P as a function of r and τ , P (τ, rt). The

fundamental pricing equation then implies the following ODE:

E

(
dP

P

)
= rdt− E

(
dP

P

dπ

π

)
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Ito’s lemma imlies that

We look for solution in exponential affine form

P = exp(A(τ) +B (τ) r)

Plugging into the ODE, we get

At + rBt +B

(
•
Ω− ρx

)
+

1

2
B2(C2

1 + 2ρgdC1C2 + C2
2)− r +Bλ = 0

s.t.

A (t = s) = 0

B (t = s) = 0

where

λ = (ξ1 − 1)
(
C1

√
V + ρgdC2

√
V
)

+ ξ3(C2
1 + 2ρgdC1C2 + C2

2).

Collecting the terms, we have

Bt −Bρ− 1 = 0 (62)

At + ΩBt +B
•
Ω +

1

2
B2(C2

1 + 2ρgdC1C2 + C2
2)− Ω +Bλ = 0 (63)

Solving ODE (??) and (62), we get the expression of B and A :

B = −1

ρ

(
1− e−ρ(s−t))

A = −
(
m0t+m1

eht

h
+m2

e(ρ+h)t

ρ+ h
+m3

eρt

ρ
+m4

e(h+2ρ)t

h+ 2ρ
+m5

e2ρt

2ρ

)
+ con

con = m0s+m1
ehs

h
+m2

e(ρ+h)s

ρ+ h
+m3

eρs

ρ
+m4

e(h+2ρ)s

h+ 2ρ
+m5

e2ρs

2ρ
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where

m0 = −con1

ρ
+

y

2ρ2

m1 = −con2

ρ
e−hT

m2 =
con2

ρ
e−(ρs+hT ) − con3

ρ
e−(h+ρ)T

m3 =
con1

ρ
e−ρs − y

ρ2
e−ρs

m4 =
con3

ρ
e−(ρs+(h+ρ)T )

m5 =
y

2ρ2
e−2ρs

y = C2
1 + 2ρgdC1C2 + C2

2

z = C1 + ρgdC2

v =
√
V

con1 = ρh+ ρµg − γ(vz + v2ρ) +
1− γ
h+ ρ

(ρvz + y)

con2 = (γ − 1)

(
vz + v2ρ+

ρvz + y

ρ
+ hv2 +

vzh

ρ

)
con3 =

(1− γ)h

ρ

(
ρvz + y

h+ ρ
+ vz

)
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