CHEM 3590 Test 1, October 5, 2018; 10:30-11:25 a.m; 124 Machray Hall; Instructor: H. Perreault.
Please answer all questions directly on exam paper. Each question is worth 20 points.
Name: \qquad Ensures Student number: \qquad

VERSION B

1. a) What are the main advantage and the main disadvantage of using axial viewing detection in ICPOBS?
b) What is the role of the nebulization chamber in ICP-OES instruments?
c) Why not measure the absorbance of elements rather than their emission in the plasma torch?
a) advantage: more sensitivity, as more light ns neared. disadvantage: Less selectivity, as no height aelustment is possible.
b) To select droplets by size from the rebulizes. Only, the smallest droplets viol reach the plasma.
c) In absorbance measurewents, a mono A light goes through a sample of known pathlength and tranimittane is measked, along the axis of the mordent light. In ICP DES, the torch us so intense that along the sans aye ut is imporible to detect ar T change whether the sangle is in or not. the sample is the ely it rounce in this experiment as eriesin is newnded.
2. a) Four standard solutions are measured by UV spectrophotometry at 254 nm , of concentrations 1, 2, 4 and $8 \mathrm{mg} / \mathrm{mL}$ with corresponding absorbance values of $0.02,0.04 .0 .08$, and 0.16 . What is the path length of the measuring cuvette if the correlation coefficient (slope) is $0.04 \mathrm{mg}^{-1} \mathrm{em}^{-1}$? $\mathrm{m} \mathrm{Lm}_{\mathrm{g}} \mathrm{man}^{-1} \mathrm{Cm}^{-1}$
b) Which cuvette material would be best to use, polyvinyl chloride (PVC), quartz, or ordinary glass? Justify.
a) The sloge obtained by the measurement is $0.02 \mathrm{mLing}^{-1}$

If the cell length is 1 cm . the coefficient obtained was 0.04
\Rightarrow the cell has $1 / 2$ the length, $\Rightarrow 0.5 \mathrm{~cm}$
b) Quartz is the must trasspocent in the 254 nm range. Glass than metal ins that cause absorbonce in theol reuse and PVC is an organic polymer, likely to cause a high background at that wavelength.
3. a) By drawing/writing on the atomic energy diagram given below (left section), show what happens during an X-ray photoelectron emission event.
b) On the right section of the diagram, draw vertical arrows to indicate the binding energy of the electrons in that particular atom.
a)

4. A 8-g sample of lead carbonate (PbCO) is dropped into a $100-\mathrm{L}$ beaker of water. The pH is adjusted to 5 with formic acid (HCOOH). The $\mathrm{K}_{\text {sp }}$ of lead carbonate is 7.4×10^{-14}.
a) Calculate the Pb^{2+} concentration at equilibrium.
b) Would it be possible to lower the pH enough to dissolve the whole sample?

-18
a)

$$
\alpha_{z}=10^{-7} \quad\left[\rho b^{2+}\right]=\sqrt{\frac{k_{s p}}{\alpha_{2}}}=\sqrt{\frac{7.4 \times 10^{-14}}{10^{-7}}}=8.6 \times 10^{-4} \mathrm{M}
$$

b) Whole sample: $\frac{8 g}{267 \text { glad }}=3 \times 10^{-2}$ mole, $\left[9 b^{2-1}\right]=\frac{3 \times 10^{-2}}{100 \mathrm{~L}}=3 \times 10^{-4} \mathrm{M}$

By dinderigg the hole sample, we get a lower unc. than in a) meaning that at PH 5 it is already all dissolved. is needed to
5. a) Given that the radius of Cd^{2+} trajectory in a constant field SIMS magnetic analyzer is 30 cm , calculate the distance between the detection points of $\mathrm{Cd}^{2+}, \mathrm{Al}^{3+}$ and K^{+}after a 180° trajectory. Use the diagram below as example for guidance.

b) Priming ins $\left(\mathrm{CS}_{5}, \mathrm{O}_{2}{ }^{\top}\right)$ Strike the sample for ejection of secoriary lows from the arolyte:

$$
\mathrm{Pb}^{2+}, \mathrm{Al}^{3+}, \mathrm{Na}^{+} .
$$

b) Why are $C d^{2+}, A \beta^{+}$and K^{+}called secondary ions? $\quad m / z=$ constant $\times R^{2}$
a)
for $\mathrm{Cl}^{2+}: \frac{112}{2}=c t \times(35)^{2} \Rightarrow c r=0.046$

$$
\begin{aligned}
& A l^{3+}: \frac{27}{3}=0.046 \times R^{2} \Rightarrow R=14 \mathrm{~cm} \\
& k^{+}: \frac{39}{1}=0.046 \times R^{2} \Rightarrow R=29 \mathrm{~cm}
\end{aligned}
$$

