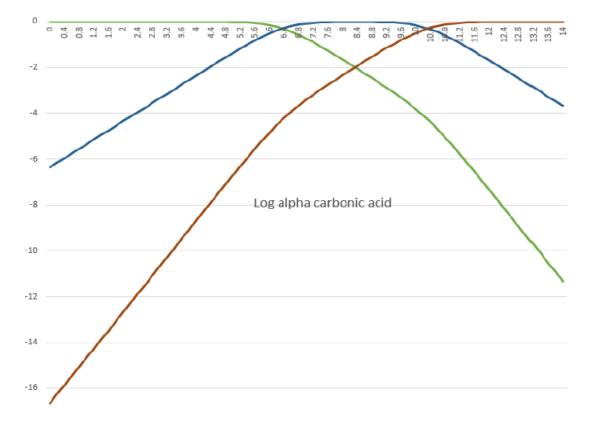
CHEM 3590

Midterm Test 1 Version A Wednesday October 5 2016


Parker 539

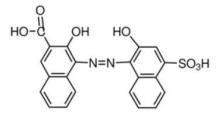
One (1) point per question. Please answer on the bubble sheet.

Question 1:

Calculate the solubility of CaCO₃ at pH 6.5 and 25°C. Use the graph below if needed.

(for CaCO₃ at 25°C K_{sp} = 5.6 x 10⁻⁹, and for carbonic acid k_{a1} = 4.45 x 10⁻⁷; k_{a2} = 4.69 x 10⁻¹¹)

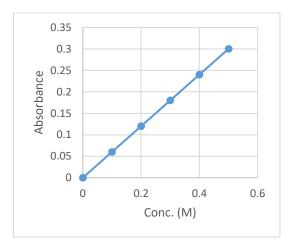
a) 1.01×10^{-4} M b) 4.10 M c) 3.16×10^{-7} M d) 7.10×10^{-3} M e) 8.10×10^{-5} M


Question 2:

If phosphoric acid (H_3PO_4) is used to dissolve a cube of CaCO₃ in water, write the solution's mass (Ca) and charge balance equations. Assume no precipitation of calcium phosphate.

- a) MB $[Ca^{2+}] = [H_3PO_4] + [H_3PO_4^-] + [HCO_3^-] + [H_2CO_3] + [H_2PO_4^{2-}] + [CO_3^{2-}] + [HPO_4^{3-}]$ CB $[Ca^{2+}] + [H_3O^+] = [HCO_3^-] + [CO_3^{2-}] + [OH^-] + [H_3PO_4^-] + [H_2PO_4^{2-}] + [HPO_4^{3-}]$
- b) MB 2[Ca²⁺] = [H₂CO₃] + [HCO₃⁻] + 2[CO₃²⁻] CB [Ca²⁺] + [H₃O⁺] = [HCO₃⁻] + [CO₃²⁻] + [OH⁻] + [PO₄³⁻]
- c) MB $[Ca^{2+}] + [H_3PO_4] = [H_2CO_3] + [HCO_3^-] + [CO_3^{2-}] + [PO_4^{3-}]$ CB $2[Ca^{2+}] + [H_2CO_3] = [HCO_3^-] + [CO_3^{2-}] + [OH^-] + 3[H_3PO_4^-] + 2[H_2PO_4^{2-}] + [HPO_4^{3-}]$
- d) MB $[Ca^{2+}] = [H_2CO_3] + [HCO_3^{-}] + [CO_3^{2-}]$ CB $2[Ca^{2+}] + [H_30^+] = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] + 3[PO_4^{3-}] + [H_2PO_4^{-}] + 2[HPO_4^{2-}]$
- e) None of these answers

Question 3:


In a direct Ca²⁺ titration with EDTA using Patton and Reeder's indicator (see figure), why does the indicator change colours?

- a) When all Ca²⁺ has been captured by EDTA, the indicator is precipitated, changing the colour of the solution.
- b) The A^{2-} form of the indicator takes H^+ ions from H_4Y and becomes H_2A .
- c) The H_2A form of the indicator gives two H^+ ions to Y^{4-} and becomes A^{2-} .
- d) This indicator cannot be used alone and this method requires a back titration.
- e) It gets displaced from Ca²⁺ by EDTA

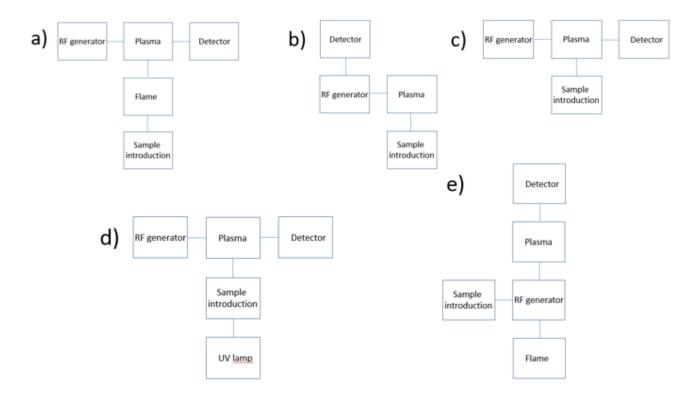
Question 4:

From the generic absorbance calibration curve shown below, determine the % transmittance of a solution of concentration 0.35 M, assuming that $T_0 = 100\%$ (blank).

a) 59.6% b) 0.225 % c) 0.017 % d) 25.1% e) none of these answers

Question 5:

How effective would pH 10 be for precipitation of only Mg^{2+} ions as $Mg(OH)_2$ for a solution containing 600 ppm of soluble $CaCl_2$ and 10 ppm of soluble $MgCl_2$?


Ksp values: Ca(OH)₂ 5.0 x 10^{-6}

Mg(OH)₂ 1.8 x 10⁻¹¹

- a) None of Ca²⁺ and Mg²⁺ would be precipitated: ineffective.
- b) Only Ca^{2+} would be be precipitated: effective but the wrong way.
- c) Only Mg²⁺ would be precipitated: effective.
- d) Both Ca²⁺ and Mg²⁺ would be precipitated: ineffective.
- e) They would both precipitate as carbonates: ineffective.

Question 6:

Which diagram below is correct to describe an ICP-OES instrument?

Question 7:

Which statement is true for ICP-OES instruments?

- a) The nebulizer process allows the elimination of water from droplets.
- b) The nebulizer sprays the liquid sample into a nebulization chamber.
- c) The nebulization chamber selects larger droplets to maximize sample intake.
- d) The nebulizer sprays droplets varying in size according to elements in the sample.
- e) None of the above is true.

Question 8:

Calculate the binding energy of a photoelectron emitted at 550 eV (KE), if the X-ray source used was at 9.88 Angstroms and the work function of the instrument, 15 eV.

h = 6.64 x 10^{-34} J.s c = 3.00 x 10^8 m/s 1 eV = 1.6 x 10^{-19} J 1 Angstrom = 1 x 10^{-10} m

a) 664 eV b) 752 eV c) 1804 eV d) 1789 eV e) 695 eV

Question 9:

For the following, give the order of increasing binding energies for iron 1s photoelectrons.

 $Fe Fe_2O_3 FeCl_2$

- a) Fe Fe₂O₃ FeCl₂
- b) Fe₂O₃ Fe FeCl₂
- c) Fe $FeCl_2$ Fe_2O_3
- d) Fe₂O₃ FeCl₂ Fe
- e) None of these answers

Question 10: NOT COVERED THIS YEAR

In secondary ions mass spectrometry (SIMS), time-of-flight (TOF) analyzers are often used in modern instruments. Calculate the time-of-flight of a calcium ion (Ca^{2+}) if the acceleration potential is 25.0 kV and the length of the tube 2 m.

Ca: 40.078 g/mol Avogadro's number = 6.023 x 10²³ molecules/mole

a) 17 microseconds b) 4 microseconds c) 6 nanoseconds d) 3 seconds e) none of these