ICP-MS for elemental analysis

Components of ICP-MS

ICP-MS

- Developed in the early 1980's
- On-line combination of ICP and MS
- Capable of multi-element trace analysis
- Analysis of liquid samples (solutions) and solids (laser ablation)
- For most elements (90%) of the periodic table

Elements in white: cannot be measured due to poor ionization efficiency.

http://crustal.usgs.gov/laboratories/icpms/intro.html

Example: stable isotopes of Zr

Sample Introduction System

- Involves nebulizer, spray chamber and gas flow
- Nebulizer converts sample into aerosol droplets
- Spray chamber removes larger droplets \rightarrow waste
- Smaller droplets are swept through plasma

ICP torch

- Aerosol particles mixed with Ar gas
- Ar flow carries vapourized sample into ICP torch where atomization and ionization occur
- Excited atoms and ions enter the interface
- Only ions ions can be analyzed, not neutrals

ICP-MS Interface

- Plasma products flow into a vacuum system passing through a few interface skimmer cones
- Skimmer cones are crucial to not disrupt MS vacuum

- Mass Spectrometer
 - Quadrupole analyzers are most commonly used

ICP-MS steps

Example of application

- Validate the concentrations of elements in human whole blood, plasma, urine and hair
- Assess 27-32 trace elements in samples ranging from 0 to 1000 ng/mL
- 100 healthy volunteers

Available online at www.sciencedirect.com

Forensic Science International 153 (2005) 39-44

www.elsevier.com/locate/forsciint

Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair Reference values

Jean-Pierre Goullé^{*}, Loïc Mahieu, Julien Castermant, Nicolas Neveu, Laurent Bonneau, Gilbert Lainé, Daniel Bouige, Christian Lacroix

Laboratoire de Pharmacocinétique et de Toxicologie Cliniques, Groupe Hospitalier, BP 24, 76083 Le Havre, France

Table 1

The plasma, the urine and the whole blood sample preparation

	Plasma (ml)	Urine 1 (ml)	Whole blood (ml)	Urine 2 (ml)
Sample	0.3	0.4	0.4	0.6
HNO ₃ 0.65% (w/v)	2.7	3.6	3.5 (triton 0.1%)	2.3
Triton 0.01% (v/v)				
Butanol 0.5% (v/v)				
Rh (internal standard)				
Standard addition	_		0.1	0.1
Centrifugation after	No	No	Yes	No
hemolysis				
Calibration	Di	rect	Matrix standard	addition

Analytical validation

According to the French Society of Clinical Biology [18] each element has to show linearity (from limit of detection to 25 ng/ml or to 250 ng/ml depending on the metal) with a correlation coefficient higher than 0.99.

27 elements in whole blood

Table 2 One hundred blood multi-elementary healthy volunteers analytical validation and proposed reference range $(ng/ml = \mu g/l)$

Compound	r	LOD	LOQ	CV% (1)	CV% (2)	Median	Reference range 5th-95th percentile
Beryllium	Beryllium 0.9996		0.14	2.61	2.78	0.02	0.02-0.09
Boron	0.9995	1.33	4.4	3.55	5.18	26	14-44
Aluminum	0.9995	2.55	8.1	4.56	8.97	1.3	1.28-6.35
Manganese	0.9999	0.027	0.09	2.22	3.33	7.6	5.0-12.8
Cobalt	1.0000	0.017	0.06	2.52	7.34	0.25	0.04-0.64
Nickel	0.9999	0.188	0.63	3.71	9.99	2.1	0.09-4.18
Gallium	0.9997	0.013	0.04	1.24	7.23	3.5	2.65-4.71
Germanium	0.9999	0.05	0.17	2.18	9.39	16	10.8-19.5
Arsenic	0.9998	0.032	0.11	3.36	5.35	5.0	2.6-17.8
Selenium	0.9996	0.49	1.6	1.70	2.39	119	89-154
Rubidium	0.9994	0.019	0.06	1.65	7.00	1680	1289-2358
Strontium	1.0000	0.007	0.02	1.02	2.36	16	9-41
Molybdenum	0.9993	0.02	0.07	4.66	9.74	2.9	0.77-7.86
Palladium	0.9998	0.012	0.04	2.59	9.28	0.08	0.01-0.71
Silver	0.9995	0.081	0.27	4.09	6.10	1.4	0.69-4.51
Cadmium	1.0000	0.011	0.04	2.18	2.87	0.31	0.15-2.04
Tin	0.9999	0.022	0.07	3.46	6.74	1.1	0.11-1.75
Antimony	0.9997	0.008	0.03	1.61	3.79	0.08	0.05-0.13
Tellurium	1.0000	0.019	0.06	3.02	5.83	0.16	0.11-0.45
Barium	0.9998	0.057	0.19	1.38	5.45	59	46.4-77.6
Tungsten	0.9999	0.008	0.03	1.58	7.33	0.006	0.004-0.082
Platinum	0.9994	0.004	0.01	1.85	5.83	0.002	0.002-0.010
Mercury	0.9998	0.079	0.26	3.09	4.23	3.0	0.94-8.13
Thallium	0.9999	0.002	0.005	2.76	3.43	0.02	0.011-0.035
Lead	0.9998	0.019	0.07	2.92	4.77	26	11.4-62.8
Bismuth	0.9997	0.002	0.007	3.00	2.62	0.001	0.001-0.007
Uranium	0.9999	0.001	0.002	1.89	3.59	0.004	0.002-0.006

r: correlation coefficient, LOD: limit of detection, LOQ: limit of quantification, CV% (1) = intra-assay imprecision, CV% (2) = inter-assay imprecision.

27 elements in plasma

Table 3 One hundred plasma multi-elementary healthy volunteers analytical validation and proposed reference range $(ng/ml = \mu g/l)$

Compound r Lithium 0.9999		LOD	LOQ	CV% (1)	CV% (2)	Median	Reference range 5th-95th percentile			
		0.19	0.63	1.03	5.71	3.4	1.8-18.8			
Beryllium	0.9999	0.03	0.10	0.85	5.20 0.015		0.015-0.103			
Boron	0.9997	1.26	4.2	1.66	3.26	36	19-79			
Aluminum	0.9991	2.30	7.7	1.25	13.8	3.1	1.2-17.3			
Manganese	0.9999	0.024	0.08	0.60	2.59	1.12	0.63-2.26			
Cobalt	0.9997	0.085	0.28	0.86	4.24	0.49	0.30-1.02			
Nickel	0.9874	0.08	0.28	1.58	5.13	2.20	0.04-5.31			
Copper	0.9978	0.14	0.47	0.49	2.35	1075	794-2023			
Zinc	0.9982	0.63	2.1	0.27	2.36	726	551-925			
Gallium	0.9992	0.16	0.52	0.74	3.57	6.24	5.03-8.82			
Germanium	0.9996	0.026	0.09	0.89	3.22	5.06	3.70-6.17			
Arsenic	0.9997	0.038	0.13	0.22	3.44	6.2	4.4-14.2			
Selenium	0.9998	0.66	2.0	1.42	1.61	112	79–141			
Rubidium	0.9995	0.014	0.05	0.26	3.06	147.8	101-358			
Strontium	0.9998	0.016	0.05	0.35	2.14	28.8	18-75			
Molybdenum	0.9997	0.026	0.09	1.09	2.46	0.956	0.67-1.68			
Cadmium	0.9998	0.008	0.03	2.64	2.88	0.03	0.01-0.05			
Tin	0.9979	0.29	0.97	0.86	2.03	1.82	0.15-2.70			
Antimony	0.9996	0.006	0.02	3.23	4.03	0.11	0.03-0.15			
Tellurium	0.9999	0.013	0.04	1.18	2.35	0.057	0.02-0.13			
Barium	0.9998	2.09	7.0	0.75	2.91	111	90-154			
Tungsten	0.9997	0.19	0.62	2.17	4.05	0.239	0.09-0.75			
Platinum	0.9977	0.007	0.02	0.97	4.50	0.3855	0.016-0.92			
Thallium	0.9996	0.003	0.01	1.51	4.43	0.06	0.01-0.24			
Lead	0.9991	0.028	0.10	1.96	6.70	0.062	0.014-0.25			
Bismuth	0.9994	0.004	0.01	1.88	5.19	0.002	0.002-0.401			
Uranium	0.9997	0.001	0.002	2.28	5.70	0.007	0.004-0.011			

r. correlation coefficient, LOD: limit of detection, LOQ: limit of quantification, CV% (1) = intra-assay imprecision, CV% (2) = inter-assay imprecision.

30 elements in urine

Table 4

One hundred urine multi-elementary healthy volunteers analytical validation and proposed reference range $(ng/ml = \mu g/l)$

Compound	ompound r		LOQ	CV% (1)	CV% (2)	Median	Reference range 5th-95th percentile
Lithium	0.9998	0.006 0.02 0.23 6.03 12		12	4.6-219		
Beryllium	0.9998	0.015	0.05	3.74	7.44	0.01	0.008-0.042
Boron	0.9997	0.25	0.82	4.47	3.42	647	282-2072
Aluminum	0.9996	0.32	1.1	2.02	7.14	1.9	0.16-11.2
Vanadium	0.9999	0.04	0.15	2.19	3.40	3.3	1.4-10.2
Manganese	0.9999	0.010	0.03	1.22	5.14	0.31	0.11-1.32
Cobalt	0.9999	0.017	0.06	1.15	2.87	0.30	0.16-1.14
Nickel	0.9999	0.063	0.21	1.59	3.50	1.8	0.59-4.06
Copper	0.9999	0.047	0.16	1.40	3.35	6.9	4.3-12.1
Zinc	0.9999	0.506	1.7	1.09	8.25	195	44 499
Gallium	0.9999	0.006	0.02	2.02	3.88	0.07	0.02-0.28
Germanium	0.9994	0.023	0.08	2.40	8.87	2.0	1.17-3.37
Arsenic	0.9999	0.030	0.10	0.72	3.91	19	2.3-161
Selenium	0.9995	0.647	2.2	3.55	5.52	20	10.5-45.5
Rubidium	0.9992	0.018	0.06	2.77	5.46	1211	433-2698
Strontium	0.9995	0.004	0.01	2.15	2.84	90	20-413
Molybdenum	0.9999	0.060	0.20	8.87	7.85	20	7-50
Palladium	0.9995	0.14	0.45	0.83	7.31	0.07	0.07-0.64
Cadmium	0.9999	0.007	0.02	1.06	2.95	0.16	0.06-0.79
Tin	0.9997	0.008	0.03	0.80	1.96	0.32	0.05-2.28
Antimony	0.9999	0.003	0.009	0.74	3.13	0.04	0.02-0.08
Tellurium	0.9999	0.021	0.07	1.43	7.02	0.23	0.10-0.52
Barium	0.9999	0.022	0.07	1.54	7.72	0.89	0.17-3.85
Tungsten	0.9999	0.012	0.04	1.90	3.77	0.03	0.01-0.09
Platinum	0.9999	0.004	0.01	2.89	5.75	0.005	0.002-0.036
Mercury	0.9996	0.29	0.95	5.26	5.44	0.59	0.14-2.21
Thallium	0.9997	0.14	0.47	4.91	3.45	0.15	0.07-0.84
Lead	0.9999	0.017	0.06	4.71	3.39	0.55	0.01-2.14
Bismuth	0.9997	0.0009	0.003	4.07	4.36	0.001	0.0005-0.009
Uranium	0.9994	0.0003	0.001	5.41	5.58	0.002	0.0002-0.008

r: correlation coefficient, LOD: limit of detection, LOQ: limit of quantification, CV% (1) = intra-assay imprecision, CV% (2) = inter-assay imprecision.

32 elements in hair

Table 5

Forty five hair multi-elementary healthy volunteers analytical validation and proposed reference range (ng/mg)

Compound r		LOD	LOQ	CV% (1)	CV% (2)	Median	Reference range 5th-95th percentile
Lithium	0.9999	0.002	0.007 6.5 6.1		0.016	0.003-0.042	
Beryllium	0.9998	0.002	0.007	3.9	8.8	0.007	0.003-0.012
Boron	0.9991	0.14	0.46	3.6	8.9	0.54	0.26-1.87
Aluminum	0.9993	0.02	0.08	2.3	7.7	1.63	0.26-5.30
Vanadium	0.9998	0.001	0.003	1.7	9.0	0.016	0.001-0.051
Chromium	0.9999	0.06	0.20	3.5	9.3	0.20	0.11-0.52
Manganese	0.9996	0.001	0.004	1.7	6.6	0.067	0.016-0.57
Cobalt	0.9998	0.0003	0.001	2.3	7.9	0.023	0.004-0.14
Nickel	0.9998	0.01	0.05	1.8	6.4	0.23	0.08-0.90
Copper	0.9999	0.01	0.03	1.3	10.4	20.3	9.0-61.3
Zinc	0.9996	0.01	0.04	1.1	8.1	162	129-209
Gallium	0.9998	0.0003	0.0009	2.2	8.9	0.011	0.002-0.068
Germanium	0.9999	0.001	0.002	1.8	7.6	0.004	0.001-0.039
Arsenic	0.9997	0.01	0.02	3.5	6.4	0.05	0.03-0.08
Selenium	0.9997	0.02	0.06	2.6	7.8	0.54	0.37-1.37
Rubidium	0.9995	0.0003	0.001	2.0	5.8	0.006	0.003-0.03
Strontium	0.9995	0.0002	0.0007	1.0	7.0	0.89	0.17-4.63
Molybdenum	0.9998	0.0004	0.001	3.9	8.2	0.021	0.01-0.028
Palladium	0.9995	0.001	0.003	2.9	22.3	0.01	0.004-0.049
Silver	0.9998	0.0005	0.002	0.7	9.9	0.08	0.02-1.31
Cadmium	0.9998	0.0003	0.0009	0.7	5.9	0.011	0.004-0.17
Tin	0.9998	0.001	0.002	1.0	5.9	0.046	0.007-0.34
Antimony	0.9998	0.0003	0.001	1.0	5.2	0.008	0.003-0.13
Tellurium	0.9997	0.0006	0.002	6.7	6.1	0.0003	0.0003-0.001
Barium	0.9998	0.001	0.003	0.8	5.5	0.28	0.05-1.58
Tungsten	0.9998	0.0002	0.001	2.1	7.2	0.0013	0.0001-0.007
Platinum	0.9999	0.0001	0.0002	1.5	6.2	0.00035	0.0004-0.0008
Mercury	0.9986	0.004	0.013	0.4	9.5	0.66	0.31-1.66
Thallium	0.9995	0.00005	0.0002	3.7	4.7	0.0002	0.0001-0.0004
Lead	0.9997	0.0003	0.001	0.7	4.4	0.41	0.13-4.57
Bismuth	0.9997	0.0008	0.003	1.4	5.3	0.009	0.0004-0.14
Uranium	0.9998	0.00004	0.0002	2.0	7.2	0.009	0.002-0.03

r: correlation coefficient, LOD: limit of detection, LOQ: limit of quantification, CV% (1) = intra-assay imprecision, CV% (2) = inter-assay imprecision.

Elements observed in study

tychogen 1 H Louro			232	51	25	(A)	18	22.1	853	198	80	1994	253.	1552		22	22 3	2 He
Ľ	4 Be												B	6 C	7 N 14.007	8 0	9 F	10 Ne 20.100
11 Na 22.990	12 Mg												AU AU	14 Si 28.000	phosphonas 15 P 30.074	16 S	17 CI 35.453	18 Ar 30.948
19 K balows	20 Ca		21 Sc 44.920	22 Ti 47.667	V		Mn	26 Fe	Co	N.	Cu	Zŋ	Ga	Ge	As	Se	35 Br 78.901	36 Kr 83.80
Rb	S		39 Y	40 Zr 91224	41 Nb	Mo	43 TC	44 Ru	45 Rh	es Pd	Âg	Cd	49 In	Se	Sb	52 Te	53 1 125.90	54 Xe
55 Cs	Ba	57-70 *	71 Lu	72 Hf	73 Ta 180.95	Ŵ	75 Re	76 OS	77 17 190.22	Pt	79 Au	Hg	T	Pb	Bi	84 Po	85 At	86 Rn
87 Fr 1228	Ra	89-102 * *	103 Lr [267]	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu 12721			114 Uuq				

*Lanthanide series	57	cenum 58	praseodymean 59	neodynaura 60	promethaux 61	somartum 62	63	gadolinium 64	torbium 65	dysproature 66	ficentum 67	orbium 68	fulum 69	ybutum 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
* * Actinide series	89 Ac	90 Th	91 Pa	02 U	netuniun 93 Np	94 Pu	Am	Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No

Conclusions

- Required very small amount of samples
- Each element showed linearity R² ~0.99
- Clinical applications were reported
 - Individual revealed lead exposure
 - Whole blood content showed 120 μ g/l (normal < 63 μ g/l)
 - Home tap water discovered as source of lead: 111 μg/l(normal <25 μg/l)
- ICP-MS used for unexplained cases of deceased individuals when toxicological analysis is negative

Other applications of ICP-MS

- Forensic Sciences
- Geological and Environmental Sciences
- Health Sciences (toxicology)
- Industry (materials)
- Biochemistry (metalloproteins)

Applications in Forensic Science

ICP-MS is used to help solve crimes where microscopic specimens are left behind, or picked up, by criminals.

- glass
- bullets
- Ink
- paint

Advantages

- Information on isotope distribution for each element studied
- Wide elemental coverage
- Simple sample preparation
- Good precision and accuracy
- Very specific

Weaknesses

- Prone to spectral interferences
 - Oxides
 - Small organic molecules
- Cost (MS + high vacuum pumps)
- High maintenance

Additions to ICP-MS

- "Hyphenated" ICP-MS:
- Laser Ablation ICP-MS (LA-ICP-MS)
- Gas Chromatography-ICP-MS (GC-ICP-MS)
- Liquid Chromatography ICP-MS (LC-ICP-MS)

Laser ablation ICP-MS

http://pubs.rsc.org/EN/content/articlelanding/2007/ja/b709489b#!divAbstract

Questions

<u>1.</u>

In ICP, two detectors can be used in line: an OES system and a mass spectrometer. What is the main advantage of this combination?

- a) All elements M produce M⁺ ions and emit light at the same wavelength
- b) Elements that have the same mass emit light at different wavelengths
- c) The OES can be used only in the axial configuration, yielding more intensity
- d) It is not possible to combine ICP with both OES and MS
- e) No calibration is needed

The graph below was obtained by ICP-MS using the method of standard additions. The x-axis represents the different concentrations of standard once added to the unknown, and the y-axis is the measured signal in arbitrary units. Determine the concentration of the unknown.

<u>2</u>

<u>3.</u>

The mass spectrum below was obtained by laser ablation ICP-MS. Interference between Ar and Ca is observed at m/z 40. Assuming that the background Ar⁺ peak remains constant in all analyses, suggest and describe a method for the determination of Ca⁺. Justify.

The mass spectrum of a standard rock sample obtained by laser ablation / ICP-MS.