

CHEM 3590 Final examination 2016 Instructor : Dr. Hélène Perreault Tuesday December 13, 6-9 pm, University College – Great Hall

Questions 1-15 have multiple choices (50 pts). Please answer on the bubble sheet. **Questions 16-25** must be answered in the examination booklet (50 pts).

Question 1: membranes (NOT COVERED)

A city's water demand is 26.5 metric tons/day (1 metric ton = 1000 kg). What is the source water (feed water) flow required for a reverse osmosis system if the plant recovery is 78%, and what is the feed water volume delivered per day?

- a) 21 tons/day, 2100 L/day
- b) 34 tons/day, 34000 L/day
- c) 3 tons/day, 30000 L/day
- d) 26.5 tons/day, 2.65 x 10⁶ L/day

Question 2

In ICP, two detectors can be used in line: an OES system and a mass spectrometer. What is the main advantage of this combination?

- a) All elements M produce M⁺ ions and emit light at the same wavelength
- b) Elements that have the same mass emit light at different wavelengths
- c) The OES can be used only in the axial configuration, yielding more intensity
- d) It is not possible to combine ICP with both OES and MS
- e) No calibration is needed

Question 3

Given the following anions: Cl^- , Br^- , $C_6H_6O_7^{2-}$ (citrate) and HCO_3^- (bicarbonate), predict their migration order in capillary zone electrophoresis (CZE), if the apparatus is operated from + to – at high pH. The order is given from first to last to reach the detector.

- a) Cl⁻, Br⁻, HCO₃⁻, and C₆H₆O₇²⁻ c) C₆H₆O₇²⁻, HCO₃⁻, Br⁻, and Cl⁻
- b) Br⁻, Cl⁻, $C_6H_6O_7^{2-}$ and HCO_3^{--} d) $C_6H_6O_7^{2-}$, Br⁻, HCO_3^{-} , and Cl⁻
- e) These ions would not come out of the capillary

Question 4 (NOT COVERED)

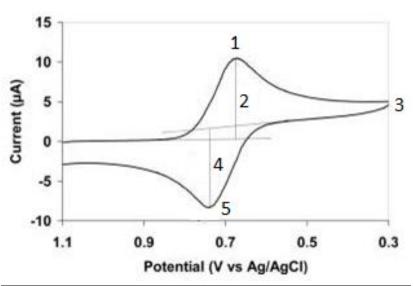
An unstable nucleus decays by beta emission, then two nuclei of the product are combined in a reactor to produce ²⁴Mg plus an alpha particle. Determine the nature of the original isotope.

a) Beryllium b) Lithium c) Carbon d) Nitrogen e) Aluminum

Question 5

Calculate E^o for the reaction:

 $2Ce^{3+} + Br_2 \rightarrow 2Br^- + 2Ce^{4+}$

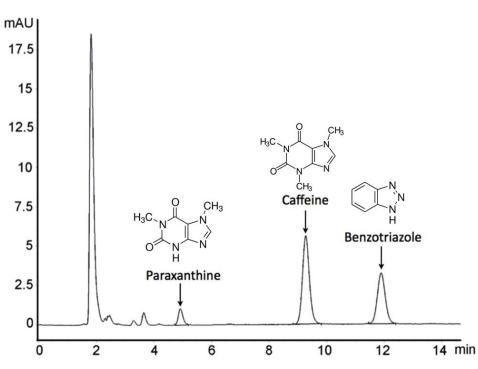

a) -0.37 V b) +2.51 V c) -0.7 V d) -5.59 V e) +0.37 V

Question 6

In a potentiostatic coulometric experiment, the amount of charge used to transform $UO_2^{2^+}$ into U^{4^+} in a 200 mL solution is 5782 C. What is the uranium concentration?

1 Faraday = 96368 C/mol.

a)	0.150 M	b) 0.075 M	c) 0.03 M	d) 0.06 M	e) none of these
----	---------	------------	-----------	-----------	------------------



Question 7

 $E^{o}_{Ag,AgCl}$ = +0.199 V

According to this voltammogram:

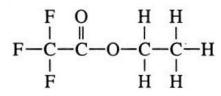
- a) The analyte is first oxidized, then reduced and its reduction potential is 0.67 V
- b) The analyte is neither reduced nor oxidized as the reaction is reversible.
- c) The analyte is first reduced, then oxidized and its reduction potential is 0.90 V
- d) Ag(s) in the reference electrode is oxidized at an oxidation potential of 0.72 V
- e) None of these answers

From the order of elution of compounds in the chromatogram above, what technique was used for separation?

- a) Gas chromatography with flame ionization detection
- b) Normal phase HPLC with fluorescence detection
- c) Reversed phase HPLC with UV detection
- d) Gel permeation chromatography with UV detection
- e) None of these modes

Question 9

When preparing a full 500-mL column for size exclusion chromatography, the gel used swells to 1.75x its volume when mixed with solvent. What volume of dry gel will be needed to fill the column?


a) 50 mL b) 175 mL c) 500 mL d) 88 mL e) 286 mL

Question 10

Given the following compounds, what would be their elution order on an anion exchange column at pH 7? Diethylamine; phosphoric acid; glycine (an amino acid); acetic acid.

- a) phosphoric acid, diethylamine, glycine, acetic acid.
- b) diethylamine, glycine, acetic acid, phosphoric acid
- c) acetic acid, phosphoric acid, diethylamine, glycine
- d) glycine, diethylamine, phosphoric acid, acetic acid
- e) None of these compounds would be retained on an anion exchange resin

Photoelectron spectroscopy: for the following molecule, give the order of increasing binding energies for carbon 1s photoelectrons.

- a) C=O, CF₃, CH₃, CH₂
- b) CH₃, CH₂, C=O, CF₃
- c) CH₂, C=O, CF₃, CH₃
- d) CF₃, C=O, CH₂, CH₃
- e) All 1s binding energies are equivalent

Question 12 (NOT COVERED)

A 1-g sample of pure neutron activated ²⁸Al emits a beta radiation rate of 2500 decays/min.

What would be the radiation rate of ${}^{28}AI$ in 15 g of $AI_2(SO_4)_3$?

a) 5950/min b) 3053/min c) 6150/min d) 2959/min e) unsolvable

Question 13

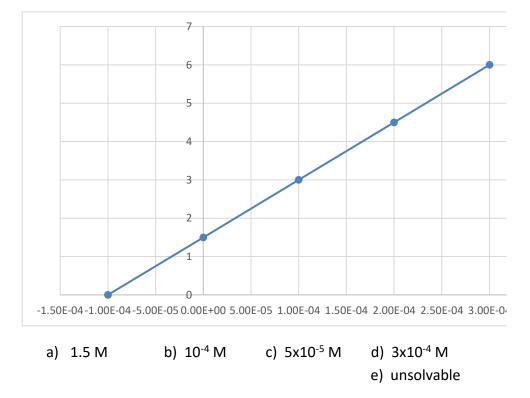
Only one of the following statements is true. Which one?

a) The GC/MS instrument in the MCAL laboratory has a magnetic sector for m/z analysis

b) The ICP-OES apparatus in MCAL vapourizes and atomizes elements in a flame.

c) Electron capture detectors are more sensitive for all compounds than flame ionization detectors

d) In MCAL, the Cary spectrophotometer can measure both absorbance and fluorescence


e) Diode array detectors in general can monitor several absorbance wavelengths at once

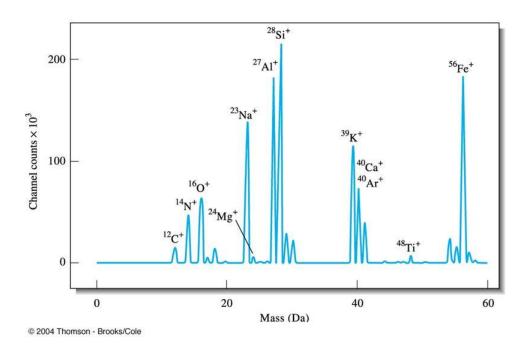
From the following data, determine which system was used for potentiometric analysis.

Conc	: M ⁿ⁺	E _{cell}		
0.0	01	0.281		
0.0	03	0.295		
0.0)5	0.301		
0.0	07	0.306		
0.0	09	0.309		
a)	SHE	Mg ²⁺ Mg(s)		
b)	SHE	Al ³⁺ Al(s)		
c)	SHE	Cu ²⁺ Cu(s)		
d)	SHE	Fe ³⁺ Fe(s)		
e)	SHE	Ag+ Ag(s)		

Question 15

The graph below was obtained using the method of standard additions. The x-axis represents the different concentrations of standard once added to the unknown, and the y-axis is the measured signal in arbitrary units. Determine the concentration of the unknown.

END OF THE MULTIPLE CHOICE SECTION


Trimethyl silylation (TMS) is commonly used for GC analysis of polar compounds.

- a) Show an example of TMS reaction
- b) What is the main advantage of using TMS reagents?

Question 17

The mass spectrum below was obtained by laser ablation ICP-MS with a low resolution mass spectrometer. Interference between Ar and Ca is observed at m/z 40.

Assuming that the background Ar⁺ peak remains constant in all analyses, suggest and describe a method for the determination of Ca⁺. Justify.

The mass spectrum of a standard rock sample obtained by laser ablation / ICP-MS.

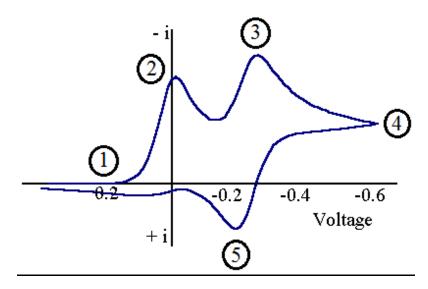
Question 18 (NOT COVERED)

A 0.25 M solution of radioactive ⁴¹CaC₂O₄ (50 mL) is measured for its gamma ray radiation intensity and the value obtained is 5823 units. This solution is poured into a large container of unknown volume and the well water is stirred mechanically. A 50-mL sample of the mixed water is then collected and measured for radiation at an intensity of 48 units.

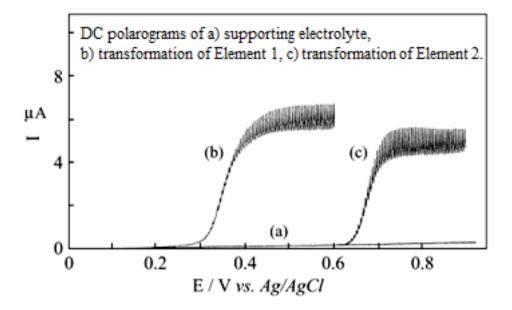
- a) Determine the volume of the container.
- b) Would it matter if rate measurements were made a few minutes apart? Justify.

Polycyclic aromatic compounds are in general non-polar and remain uncharged in solution.

Suggest and describe a capillary electrophoretic method that would make possible the analysis of these compounds by this technique.


Question 20

In an affinity chromatography experiment, the analyte A forms a complex with the ligand L bound on the stationary phase. A and L do not protonate or deprotonate. The mobile phase is made up of aqueous sodium citrate buffer. Citric acid is a triprotic acid, $C_6H_8O_7$.


- a) Write correct mass and charge balance equations for this system.
- b) What is the usefulness of measuring equilibrium concentrations?

Question 21

Describe what you are seeing in the voltammogram shown below at points 1, 2, 3, 4, 5.

Question 22

- a) What type of transformation(s) are Elements 1 and 2 subjected to?
- b) Identify possible elements/ions corresponding to Elements 1 and 2, knowing that E^{o}_{AgCl} is 0.199 V. Justify.

In coulometry, the Karl-Fischer reaction is often used in many field of chemistry for the determination of moisture levels of different materials.

The main reaction is:

 $C_5H_5N \bullet I_2 + C_5H_5N \bullet SO_2 + C_5H_5N + H_2O \rightarrow 2C_5H_5N \bullet HI + C_5H_5N \bullet SO_3$

 I_2 is generated at the electrode from excess of $I^{\scriptscriptstyle -}$ present in the cell compartment.

- a) What would be the total charge consumed (in coulombs) if 5 mg of Nal were used up to complete the coulometric titration? 1 Faraday = 96368 C.
- b) Usually, methanol is added to the reagents. Why?

Question 24 (NOT COVERED)

A sample containing 10 g of ⁵³Mn (half-life 312 days) is irradiated with neutrons.

- a) How many grams of ⁵⁴Mn are left in the sample after 90 days?
- b) ⁵⁴Mn is a beta emitter. What is the product of radioactive decay?

Question 25

Among all the techniques you have seen in this course, either in class or in the lab, which ones (pick 4) would you favour if you had to build your own analytical lab? Justify.

Cathode (Reduction)	Standard Potential	Cathode (Reduction)
Half-Reaction	E° (volts)	Half-Reaction
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.04	IO ⁻ (aq) + H ₂ O(l) + 2e ⁻ -> I ⁻ (aq) + 2OH ⁻ (aq)
$K^+(aq) + e^- \rightarrow K(s)$	-2.92	$Cu^+(aq) + e^- \rightarrow Cu(s)$
$Ca^{2+}(aq) + 2e^{-2} Ca(s)$	-2.76	I ₂ (s) + 2e ⁻ -> 2I ⁻ (aq)
$Na^{+}(aq) + e^{-} > Na(s)$	-2.71	C1027(aq) + H2O(1) + 2e ⁻ -> C107(aq) + 201
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.38	$Fe^{3+}(aq) + e^{-} -> Fe^{2+}(aq)$
Al ³⁺ (aq) + 3e ⁻ -> Al(s)	-1.66	Hg2 ²⁺ (aq) + 2e ⁻ -> 2Hg(1)
$2H_2O(1) + 2e^- > H_2(g) + 2OH(aq)$	-0.83	$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$
$Zn^{2+}(aq) + 2e^{-2} Zn(s)$	-0.76	$Hg^{2+}(aq) + 2e^{-} > Hg(1)$
$Cr^{3+}(aq) + 3e^{-} -> Cr(s)$	-0.74	C10 ⁻ (aq) + H ₂ O(1) + 2e ⁻ -> C1 ⁻ (aq) + 20H ⁻ (
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.41	2Hg ²⁺ (aq) + 2e ⁻ -> Hg ²⁺ (aq)
$Cd^{2+}(aq) + 2e^{-2} Cd(s)$	-0.40	$NO_{3}(aq) + 4H^{+}(aq) + 3e^{-} > NO(g) + 2H_{2}C$
$Ni^{2+}(aq) + 2e^{-} \gg Ni(s)$	-0.23	$Br_2(l) + 2e^- > 2Br(aq)$
$Sn^{2+}(aq) + 2e^{-} -> Sn(s)$	-0.14	$O_2(g) + 4H^+(aq) + 4e^> 2H_2O(1)$
Pb ²⁺ (aq) + 2e ⁻ -> Pb(s)	-0.13	$Cr_2O^2(aq) + 14H^+(aq) + 6e^> 2Cr^{3+}(aq) +$
Fe ³⁺ (aq) + 3e ⁻ -> Fe(s)	-0.04	Cl ₂ (g) + 2e ⁻ -> 2Cl ⁻ (aq)
$2H^{+}(aq) + 2e^{-} > H_{2}(g)$	0.00 (ref)	$Ce^{4+}(aq) + e^{-} -> Ce^{3+}(aq)$
$Sn^{4+}(aq) + 2e^{-} -> Sn^{2+}(aq)$	0.15	$MnO4^{-}(aq) + 8H^{+}(aq) + 5e^{-} -> Mn^{2+}(aq) + 4$
$Cu^{2+}(aq) + e^{-} > Cu^{+}(aq)$	0.16	$H_2O_2(aq) + 2H^+(aq) + 2e^- > 2H_2O(1)$
$C104(aq) + H_2O(1) + 2e^{-} > C103(aq) + 20H(aq)$	0.17	$Co^{3+}(aq) + e^{-} -> Co^{2+}(aq)$
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl(aq)$	0.199 (ref)	$S_2O_8^{2-}(aq) + 2e^{-} -> 2SO_4^{2-}(aq)$
$Cu^{2+}(aq) + 2e^{-} > Cu(s)$	0.34	$O_3(g) + 2H^+(aq) + 2e^- > O_2(g) + H_2O(1)$
$C103^{-}(aq) + H_2O(1) + 2e^{-} -> C102^{-}(aq) + 20H^{-}(aq)$	0.35	$F_2(g) + 2e^- > 2F(aq)$

Standard electrode potentials in aqueous solution at 25°C

Half-Reaction E	E° (volts)
$IO(aq) + H_2O(1) + 2e^ I(aq) + 2OH(aq)$	0.49
$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$	0.52
I2(s) + 2e ⁻ -> 2I ⁻ (aq)	0.54
CIO ₂ (aq) + H ₂ O(l) + 2e ⁻ -> CIO ⁻ (aq) + 2OH ⁻ (aq)	0.59
$Fe^{3+}(aq) + e^{-} > Fe^{2+}(aq)$	0.77
$Hg2^{2+}(aq) + 2e^{-} > 2Hg(1)$	0.80
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	0.80
$Hg^{2+}(aq) + 2e^{-} \rightarrow Hg(1)$	0.85
CIO'(aq) + H ₂ O(l) + 2e ⁻ -> Cl'(aq) + 2OH'(aq)	06.0
$2Hg^{2+}(aq) + 2e^{-} \rightarrow Hg_{2}^{2+}(aq)$	06.0
$NO_3(aq) + 4H^+(aq) + 3e^- > NO(g) + 2H_2O(1)$	96.0
Br ₂ (1) + 2e ⁻ -> 2Br(aq)	1.07
$O_2(g) + 4H^+(aq) + 4e^> 2H_2O(1)$	1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- > 2Cr^{3+}(aq) + 7H_2O(1)$	1.33
Cl ₂ (g) + 2e ⁻ -> 2Cl ⁻ (aq)	1.36
Ce ⁴⁺ (aq) + e ⁻ -> Ce ³⁺ (aq)	1.44
$MnO4(aq) + 8H^{+}(aq) + 5e^{-} - Mn^{2+}(aq) + 4H_{2}O(1)$	1.49
$H_2O_2(aq) + 2H^+(aq) + 2e^- > 2H_2O(1)$	1.78
$Co^{3+}(aq) + e^{-} > Co^{2+}(aq)$	1.82
S ₂ O ₈ ² (aq) + 2e ⁻ -> 2SO ₄ ² (aq)	2.01

2.07 2.87

18 VIIIA 8A 100 10 Neen 10 Neen 18	Ar Migon 39.948	Krypton 84.796	Xe	Radon Radon	18 Juo writectium	E E	d beforenoitee
2 7A 9 110 110 110 110 110 110 110 110 110 1	1.000				10 E -	71 Lucu 55 174.967 103 LC LC LC	ent store
8 64 16 000000 0 15,999 0 16					-	70 70 7123.055 102 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0	
15 15 15					- F	17 Tm 101 Tm 101 Tm 101 To 101	Actinide
t Carbon Carbon 22011	Sancen 28.086	32 Generatur 72.631	50 Sn 118.711	Pb 2072 2072	114 Facewium [289]	67 68 Hon Eetem 164.330 167.259 99 100 ES Fm 25541 257.056	anthanide
13 10 10 11 13	Auminum 26.982	31 Gaitann 69.723	49 Indum 114.818	TT Theman 204.383	Uut Uut unknown	66 67 67 60 00 100 100 100 100 100 100 100 100 10	Noble Gas
ments	38 B 12	30 Zmc 65.38	48 Cdd Cadmum 112.411	BO Mercury 200.592	m coperacium	65 66 66 15 15 15 15 15 15 15 15 15 15 15 15 15	Halogen
e Elei					II1 Rg In Reintgeeiu	64 65 64 65 157.25 1 157.25 15	
ble of th table Symbol Name Atomic Mass					t Dos	63 Eu Euronium 151.964 0 95 95 Am Am Am Am	al Nonmetal
: Table			1		S Mt Metteentur	62 62 6 Samanum 150.36 94 9 94 9 244.064	Semimeta
Periodic Table of the Elements Number Symbol Name Atomic Mass					h HS Hasaun Hasaun	Parameters Promotinem 144.913 93 93 93 93 93 93 93 93 93 93 93 93 93	Basic Metal
Pe		17-1 CC22	A		Seg Bonname Seaborgiana		Transition Metal
					Db Sealty Datarium Sealty	C Store	Alkaline Earth
					RF IDS RF IDS uthertectum Du		Alkali Metal
			39 40 X1 88.905 28	-	89-103 10	57 Lacres 138.9 89 Active 227.0	
22 23 24 24 24 860/10mm 9.012	F				124	Lanthanide Series Actinide Series	
H I IA H IA				-			

ciencempters and