Voltammetric methods

Voltammetric methods: Measurement of current as a function of applied potential between two electrodes.

- At the E^o potential where the redox reaction occurs, a current takes place due to the passage of electrons.
- In the electrochemical cell, a concentration gradient is created (polarization of electrodes).

- A linear relationship should exist between cell voltage and current (V = RI).
- If not: cell is polarized.
- An electrode completely surrounded by ions is called *passive* and cannot accept or donate more electrons than at a limited rate.

• Limiting currents are proportional to analyte concentration, and used for quantitative analysis.

Voltammetric experiments

- A variable potential called *excitation signal* is forced on an electrochemical cell.
- This signal triggers a characteristic polarized current response.

method	potential ramp	polarogram
classical (linear sweep)	E	
triangular wave	E	1

Instrumentation

Cell: Three electrodes in sample solution + support electrolyte

- 1. Working electrode (μ electrode): the potential of this electrode varies with time. Electrode is small, to enhance polarization. For analytical half-reaction.
- 2. Reference electrode (Ag/AgCl or SCE). Potential remains constant throughout the experiment.
- 3. Counter electrode (Pt). Serves to conduct electricity through the solution.

Why use Hg μ electrodes:

- A fresh metallic surface is readily formed by production of a new drop
- Currents measured are very sensitive to impurities

HMDE: Hanging mercury dropping electrode

- 10 cm of a 50 μm i.d. capillary tube
- A new drop forms and breaks every 2-6 s.
- Drop diameter: 0.5-1 mm
- Mechanical knocker

Polarography

- First type of voltammetry developped.
- Uses a dropping Hg electrode

Limiting currents are proportional to analyte concentration.

 $i_l = kCA$ (Ilkovic equation)

Effect of concentration

Standard electrode potentials in aqueous solution at $25^{\circ}\mathrm{C}$

Cathode (Reduction) Half-Reaction	Standard Potential E° (volts)
Li ⁺ (aq) + e ⁻ -> Li(s)	-3.04
K+(aq) + e> K(s)	-2.92
Ca ²⁺ (aq) + 2e ⁻ -> Ca(s)	-2.76
$Na^{+}(aq) + e^{-} \rightarrow Na(s)$	-2.71
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.38
A1 ³⁺ (aq) + 3e ⁻ -> A1(s)	-1.66
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
Zn ²⁺ (aq) + 2e ⁻ -> Zn(s)	-0.76
$Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.74
Fe ²⁺ (aq) + 2e ⁻ -> Fe(s)	-0.41
Cd ²⁺ (aq) + 2e ⁻ -> Cd(s)	-0.40
Ni ²⁺ (aq) + 2e ⁻ -> Ni(s)	-0.23
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} > \operatorname{Sn}(s)$	-0.14
Pb ²⁺ (aq) + 2e ⁻ -> Pb(s)	-0.13
Fe ³⁺ (aq) + 3e ⁻ -> Fe(s)	-0.04
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$	0.00 (ref)
$Sn^{4+}(aq) + 2e^- > Sn^{2+}(aq)$	0.15
$Cu^{2+}(aq) + e^{-} -> Cu^{+}(aq)$	0.16
$C1O_4^{-}(aq) + H_2O(1) + 2e^{-} -> C1O_3^{-}(aq) + 2OH^{-}(aq)$	0.17
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$	0.199 (ref)
Cu ²⁺ (aq) + 2e ⁻ -> Cu(s)	0.34
$C1O_3^{-}(aq) + H_2O(1) + 2e^{-} -> C1O_2^{-}(aq) + 2OH^{-}(aq)$	0.35

Cathode (Reduction) Half-Reaction	Standard Potential E° (volts)
IO ⁻ (aq) + H ₂ O(1) + 2e ⁻ -> I ⁻ (aq) + 2OH ⁻ (aq)	0.49
$Cu^+(aq) + e^- \rightarrow Cu(s)$	0.52
I2(s) + 2e ⁻ -> 2I ⁻ (aq)	0.54
$C1O_2^{-}(aq) + H_2O(1) + 2e^{-} -> C1O^{-}(aq) + 2OH^{-}(aq)$	0.59
$Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$	0.77
$Hg_{2^{2+}(aq)} + 2e^{-} -> 2Hg(1)$	0.80
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	0.80
Hg ²⁺ (aq) + 2e ⁻ -> Hg(1)	0.85
$C1O^{-}(aq) + H_2O(1) + 2e^{-} \rightarrow C1^{-}(aq) + 2OH^{-}(aq)$	0.90
2Hg ²⁺ (aq) + 2e ⁻ -> Hg ₂ ²⁺ (aq)	0.90
$NO_{3}(aq) + 4H^{+}(aq) + 3e^{-} > NO(g) + 2H_{2}O(1)$	0.96
Br2(1) + 2e ⁻ -> 2Br ⁻ (aq)	1.07
$O_2(g) + 4H^+(aq) + 4e^> 2H_2O(1)$	1.23
$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- > 2Cr^{3+}(aq) + 7H_2O(1)$	1.33
Cl2(g) + 2e ⁻ -> 2Cl ⁻ (aq)	1.36
$Ce^{4+}(aq) + e^{-} > Ce^{3+}(aq)$	1.44
$MnO_{4}(aq) + 8H^{+}(aq) + 5e^{-} > Mn^{2+}(aq) + 4H_{2}O(1)$	1.49
$H_2O_2(aq) + 2H^+(aq) + 2e^- > 2H_2O(1)$	1.78
Co ³⁺ (aq) + e ⁻ -> Co ²⁺ (aq)	1.82
S ₂ O ₈ ²⁻ (aq) + 2e ⁻ -> 2SO ₄ ²⁻ (aq)	2.01
$O_3(g) + 2H^+(aq) + 2e^- \rightarrow O_2(g) + H_2O(1)$	2.07
F2(g) + 2e ⁻ -> 2F ⁻ (aq)	2.87

The Ilkovic equation relates the diffusion current (I_d) and the concentration of the analyte (C_A) .

 $I_{d,avg} = 607 \cdot n \cdot D^{1/2} \cdot m^{2/3} \cdot t^{1/6} \cdot C_A$ $I_{d,max} = 708 \cdot n \cdot D^{1/2} \cdot m^{2/3} \cdot t^{1/6} \cdot C_A$

D: diffusion constant of the analyte (cm²/s)

n: number of electrons exchanged in the electrode reaction

m: mass flow rate of Hg through the capillary (mg/sec)

t: drop lifetime in seconds

C_A: concentration in mol/mL

(named after the Slovak chemist, Dionýz Ilkovič (1907-1980)).

Multi element analysis

Cyclic voltammetry

Current response of a small stationary electrode excited by a triangular wave in an unstirred solution.

Cyclic voltammetry

Figure 25-20: 6 mM K₃Fe(CN)₆ in 1 M KNO₃

SCE. Pt

A: Oxidation of water to give oxygen (negative current).

B: start of reduction of hexaferrocyanate (III) into hexaferrocyanate (II).

From B to D: current from diffusion plus surge to attain Nernst equation equilibrium concentrations. At E_{pc} , there is no more Nernst pair and the diffusion current starts to decrease as the diffusion layer is going away from the electrode.

F: Change of scan direction.

Important parameters:

```
Cathodic peak potential E_{pc}
Anodic peak potential E_{pa}
Cathodic peak current i_{pc}
Anodic peak current i_{pa}
```

For a reversible reaction: i_{pc} and i_{pa} are equal in absolute value.

 $E_{pc}-E_{pa} = 0.0592/n$

Figure 18-21 (a) Structure of C_{60} (buckminsterfullerene). (b) Cyclic voltammetry and (c) differential pulse polarography of 0.8 mM C_{60} showing six waves for reduction to C_{60}^{-} , C_{60}^{2-} . C_{60}^{6-} . The acetonitrile/toluene solution was at -10° C with $(n-C_4H_9)_4N^+PF_6^-$ supporting electrolyte. The reference electrode contains the ferrocenel ferricinium redox couple (Section 17-5). [From Q. Xie, E. Pérez-Cordero, and L. Echegoyen, J. Am. Chem. Soc. 1992, 114, 3978.]

Questions

E^o_{Ag,AgCl} = +0.199 V According to this voltammogram:

- a) The analyte is first oxidized, then reduced and its reduction potential is 0.67 V
- b) The analyte is neither reduced nor oxidized as the reaction is reversible.
- c) The analyte is first reduced, then oxidized and its reduction potential is 0.90 V
- d) Ag(s) in the reference electrode is oxidized at an oxidation potential of 0.72 V
- e) None of these answers

2.

Describe what you are seeing in the voltammogram shown below at points 1, 2, 3, 4, 5.

