CHEM 3590 Instrumental Analysis University of Manitoba

Test 2, November 62017
Human Ecology $108 \quad$ 10:30-11:30 am \quad Please answer 5 questions out of 7

Question 1:

What is the minimal resolution value for chromatographic peaks to be separated at the baseline?
Find this by drawing a chromatogram and calculating the resolution using both equations available.

Question 2:

Given the gas chromatogram below obtained for n-alkanes, indicate approximate retention times for 2-ethyl butane and 3-methyl pentane and calculate their retention indices.

Question 3:

A mixture of monosaccharides (including glucose, galactose) is analyzed by GC-FID.
a) Propose a derivatization method for monosaccharides for GC.
b) How would this improve the chromatographic performance and the detection limit?

Question 4:

a) What is the main role of the GC-MS interface and how does it accomplish its task?
b) Butyric acid was derivatized with TMS-Chloride for GC-MS, but the reaction was incomplete. The reaction mixture was injected in the GC. The total ion chromatogram (below) showed three peaks. Assign a peak to each component and plot the selected $\mathrm{M}+$ selected ion chromatograms at their correct m / z ratios.

TMS-Cl
MW 108.5
(Si: 28, Cl: 35.5)

Question 5:

Two amino acids, tyrosine and phenylalanine, are being separated by anion exchange chromatography on trimethylbenzylammonium beads ($\mathrm{pKa}=9.8$).

Phenylalanine, $\mathrm{pI}=5.48$
Tyrosine, $\mathrm{pI}=5.66$
a) If the mobile phase is at pH 7 , which amino acid forms the stronger interaction with the beads (and will elute second)? Justify.
b) Describe the effect of a pH gradient on this separation and justify.

Question 6:

The following series of normal phase chromatograms (UV/fluorescence detection) was obtained by varying a single parameter at a time. Suggest a parameter for each step and justify (steps 1 to 5).

Question 7:

a) In a SEC experiment, a porous silica column is used to separate lactose, n-tetracosane and trimethylcoronene (see structures below). Predict their order or elution and justify.

b) What kind of detector(s) would be useful for this separation and why?

Equations

$$
\begin{aligned}
& I=100 \times\left[n+\frac{t_{r(\mathrm{unknown})}-t_{r(n)}}{t_{r(N)}-t_{r(n)}}\right] \\
& I=100 \times\left[n+\frac{\log \left(t_{r(\mathrm{unknown})}^{\prime}\right)-\log \left(t_{r(n)}^{\prime}\right)}{\log \left(t_{r(N)}^{\prime}\right)-\log \left(t_{r(n)}^{\prime}\right)}\right] \\
& k^{\prime}=\frac{t_{r}-t_{m}}{t_{m}} \\
& R=\frac{2 \Delta t_{r}}{w_{2}+w_{1}} \\
& R=\frac{1}{4} \sqrt{N} \times \frac{\propto-1}{\propto} \times \frac{k^{\prime}}{1+k^{\prime}} \\
& \alpha=\mathrm{k}_{1}^{\prime} / \mathrm{k}_{2} \\
& N=\frac{L}{H} \\
& N=16\left(\frac{t_{r}}{W}\right)^{2}
\end{aligned}
$$

