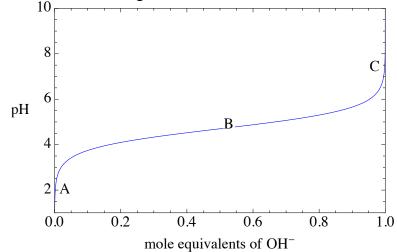
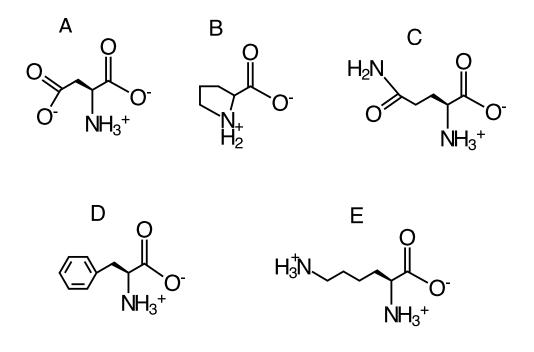
THE UNIVERSITY OF MANITOBA

 October 23, 2012
 Mid-Term EXAMINATION

 PAPER NO: _1_
 LOCATION: 224 / 290 Education
 PAGE NO: 1 of 5


 DEPARTMENT & COURSE NO: CHEM / MBIO 2770
 TIME: 1 HOUR

 EXAMINATION: Elements of Biochemistry I
 EXAMINER: J. O'Neil


Instructions

- Please mark the Answer Sheet using PENCIL ONLY.
- Enter your NAME and STUDENT NUMBER on the Answer Sheet.
- The exam consists of multiple-choice questions. Enter your answers on the Answer Sheet.
- *There is only 1 correct answer for each question.*
- PLEASE READ ALL THE QUESTIONS CAREFULLY!
- The last page is scratch paper.
- 1. The Second Law of thermodynamics states:
 - A) the energy of the universe becomes more concentrated over time.
 - B) the entropy of the universe increases.
 - C) like dissolves like.
 - D) heat naturally flows from a cold body to a hot body.
 - E) the energy of the universe is constant.
- 2. If the enthalpy and entropy of a reaction are positive
 - A) the reaction is at equilibrium.
 - B) the reaction will proceed from reactants to products.
 - C) the reaction will proceed from products to reactants.
 - D) the direction of the reaction cannot be predicted.
 - E) the reaction is exergonic.
- 3. Which statement about covalent bonds is **incorrect**:
 - A) The single covalent bond between C and O is longer that the double covalent bond between C and O.
 - B) Covalent bonds are stronger than H-bonds.
 - C) Covalent bonds usually require hundreds of kJ to break.
 - D) Covalent bonds involve the sharing of a H atom between electronegative atoms.
 - E) Covalent bonds are stronger than van der Waal's attractions.
- 4. Identify the **correct** statement about the van der Waal's interaction.
 - A) It is an induced dipole attraction.
 - B) It is a covalent attraction between polarized molecules containing O-H, N-H, or F-H.
 - C) It is formed between oppositely-charge ions.
 - D) It is the same as a hydrophobic interaction.
 - E) It explains why ice is less dense than liquid water.

5. Which statement about the following titration curve is correct?

- A) The compound being titrated is an amino acid.
- B) Point "B" is the good buffering region.
- C) The pK_a of the compound is about 2.
- D) At point "C" the fraction of conjugate base is low.
- At point "B" the compound exists mainly in the weak acid form. E)
- 6. The pH of milk is about 6.6. What is the hydroxide ion concentration?
 - 2.51x10⁻⁷ M A)
 - 3.98x10⁶ M B)
 - 3.98x10⁻⁸ M C)
 - 2.51x10⁷ M 1.0x10^{-6.6} M D)
 - E)
- 7. 0.2 moles of NaOH were added to a solution containing 0.4 moles of a weak acid and 0.4 moles of its conjugate base. After mixing, the pH of the solution was found to be 5.24. What is the pK_a of the weak acid?
 - 4.76 A)
 - 4.94 B)
 - C) 5.72
 - D) 5.76
 - 5.24 E)
- 8. Proteins, DNA, RNA, polysaccharides, and lipids are degraded in organelles called lysosomes that contain about 50 different enzymes. The pH of the lysosome is about 5. How much more acid is present in a cell lysosome compared to the cytoplasm where the pH is 7.2?
 - 6.3×10^{-3} A)
 - 2.2 B)
 - C) 0.45
 - D) 50
 - 158 E)
- 9. Histamine, synthesized by basophils and mast cells, is involved in regulating the immune response and inflammation. What is the pH of a solution of histamine in which the imidazole group, having a pK_a of 5.80, is 85% dissociated?
 - A) 5.05
 - B) 6.55
 - C) 5.73
 - D) 5.87
 - E) 5.80
- 10. The pancreatic enzyme *lipase* has a pH optimum of about 8.0. What would be the buffer of choice to study this enzyme?
 - succinate ($K_a = 2.34 \times 10^{-6}$) A)
 - lactic acid ($K_a = 1.38 \times 10^{-4}$) B)
 - tris-hydroxymethyl aminomethane ($K_a = 8.32 \times 10^{-9}$) C)
 - bicarbonate (K_a = 6.3×10^{-11}) boric acid (K_a = 5.75×10^{-10}) D)
 - E)

- 12. Identify the **correct** statement:
 - A) Aspartame is a sugar.
 - B) Aspartic acid is 150x sweeter than sugar.
 - C) Aspartame contains a basic side-chain.
 - D) Aspartame is a dipeptide.
 - E) Aspartame contains 3 chiral carbons.
- 13. Identify the incorrect statement regarding ion exchange chromatography of amino acids:A) Sulfonic acid is a strong acid and is anionic at pH 2 whereas all amino acids
 - are cationic.
 - B) A mixture of AA is applied in a buffer at pH 2 and bind to the sulfonic acid.
 - C) The AA are removed by washing the beads with buffers at higher pH.
 - D) When the pH reaches the pI of an AA it unbinds from the beads and washes out of the column.
 - E) The basic amino acids elute from the column first.
- 14. In a mixture of the five proteins listed below, which should elute first in gel-sieving (size-exclusion) chromatography?

A)	cytochrome c	$M_{ m r}$	=	13,000
B)	immunoglobulin G	$M_{\rm r}$	=	145,000
C)	calmodulin	$M_{\rm r}$	=	16,700
D)	RNA polymerase	$M_{\rm r}$	=	450,000
E)	serum albumin	$M_{\rm r}$	=	68,500

- 15. Reaction of the peptide, Val-Lys-Leu-Met, with phenylisothiocyanate (PITC) at pH 8.0 followed by mild acidification (first cycle of Edman method) would release:
 - A) The dipeptides Val-Lys and Leu-Met.
 - B) PTH-Val, PTH-Lys, PTH-Leu and PTH-Met.
 - C) PTH-Met and the peptide Val-Lys-Leu.
 - D) The peptide Val-Lys-Leu-Met -PTH.
 - E) PTH-Val and the peptide Lys-Leu-Met.
- 16. In a Ramachandran diagram
 - A) ψ -angles are plotted along the vertical axis and ω -angles are plotted along the horizontal axis.
 - B) α -helices are located in the lower right quadrant.
 - C) β -strands are located in the upper right quadrant.
 - D) quaternary structures are indicated by Greek letters.
 - E) many combinations of ϕ and ψ angles are not allowed because of steric interactions.

- 17. In an α helix, the side-chains on the amino acid residues
 - A) alternate between the outside and the inside of the helix.
 - B) stack within the interior of the helix.
 - C) are found on the outside of the helix spiral.
 - D) cause only right-handed helices to form.
 - E) generate the hydrogen bonds that form the helix.

18. Collagen

- A) is found in hair, feathers, and nails, and is formed by 2 right-handed α -helices that form a left-handed supercoil.
- B) is made from stacked antiparallel β -sheets rich in Gly and Ala that permit close packing of the sheets.
- C) contains Gly-Xxx-Pro repeated over and over.
- D) is strengthened by covalent cross-links between cysteines.
- E) is a globular enzyme containing a metal cofactor.
- 19. Which statement correctly describes the flow of electrons during the hydrolysis of a peptide bond by chymotrypsin?
 - A) Electrons do not flow during enzyme-catalyzed reactions.
 - B) Electrons flow from the catalytic triad into the amide nitrogen of the substrate.
 - C) The enzyme behaves as a base-catalyst only.
 - D) Electrons flow out of the catalytic triad and into the substrate, and then back again.
 - E) Electrons flow out of the substrate and into the enzyme, and then back again.
- 20. The binding site on an enzyme where _____ binds and catalysis occurs is called the ______ site.
 - A) Substrate; active
 - B) Coenzyme; substrate
 - C) Coenzyme; regulatory
 - D) Regulatory; active
 - E) None of the above
- 21. What factor does **not** explain how allosteric enzymes work?
 - A) Often they are oligomeric proteins.
 - B) The subunits can exist in different conformations with low and high affinity for the substrate.
 - C) Activators stabilize the low-affinity conformation making the velocity vs substrate concentration curves more sigmoidal.
 - D) They exhibit cooperativity in the binding of substrate.
 - E) Their initial velocity vs substrate concentration curves are sigmoidal.
- 22. Which version of the Michaelis-Menton equation is incorrect?

A)
$$V_0 = \frac{k_{cat}[E_{tot}][S]}{[S] + K_M}$$

B)
$$V_0 = \frac{V_{\max}[S]}{[S] + k_{cat}}$$

C)
$$V_0 = \frac{k_2[ES][S]}{[S] + \frac{k_{-1} + k_2}{k_1}}$$

D)
$$V_0 = \frac{V_{\max}[S]}{[S] + K_M}$$

E)
$$\frac{1}{V_0} = \frac{K_M}{V_{\text{max}}} * \frac{1}{[S]} + \frac{1}{V_{\text{max}}}$$

- 23. In the absence of a catalyst at 25°C the forward rate constant for the hydration of carbon dioxide is 0.039 M⁻¹s⁻¹ and the reverse rate constant is 23 M⁻¹s⁻¹. What is the equilibrium constant for this reaction? $H_2O + CO_2 \rightarrow HCO_3^- + H^+$
 - A) 8.97×10^{-1} .
 - B) 5.89×10^2 .
 - C) 1.69×10^{-3} .
 - D) 0.897 M.
 - E) 0.062.
- 24. An enzyme catalyzes a reaction with an initial velocity of 50 micromoles/litre-seconds when the substrate concentration is 5 micromolar and 80 micromoles/litre-seconds when the substrate concentration is 10 micromolar. The V_{max} and K_m of this enzyme are:
 - A) 50 micromoles/litre-seconds; 5 micromolar
 - B) 80 micromoles/litre-seconds; 10 micromolar.
 - C) 200 micromoles/litre-seconds; 15 micromolar
 - D) 100 micromoles/litre-seconds; 12.5 micromolar
 - E) 10 micromoles/litre-seconds; 1 micromolar
- 25. In the presence of an inhibitor the V_{max} for the enzyme-catalyzed reaction in question 24 remained unchanged but the K_m increased. What type of inhibition was occurring?
 - A) Competitive.
 - B) Non-competitive.
 - C) Uncompetitive.
 - D) Anticompetitive.
 - E) Allosteric.

SCRATCH