THE UNIVERSITY OF MANITOBA

October 25, 2005 Mid-Term EXAMINATION

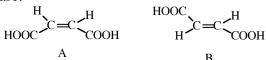
PAPER NO: <u>567</u> LOCATION: 207/306/315 Buller PAGE NO: <u>1 of 4</u>

DEPARTMENT & COURSE NO: Chemistry 2.277 / 60.277 TIME: 1 HOUR

EXAMINATION: Elements of Biochemistry I EXAMINER: J. O'Neil

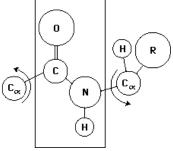
Instructions

- Please mark the Answer Sheet using PENCIL ONLY.
- Enter your NAME and STUDENT NUMBER on the Answer Sheet.
- The exam consists of multiple choice questions. Enter your answers on the Answer Sheet.
- There is only 1 correct answer for each question.
- If the free energy change ΔG for a reaction is -46.11 kJ/mol, the reaction is: 1.
 - A) at equilibrium.
 - B) endergonic.
 - C) endothermic.
 - D) exergonic.
 - E) exothermic.
- 2. Entropy change, ΔS , is
 - A) the sum of heat absorbed and work.
 - B) not a thermodynamic state function.
 - C) a measure of disorder in a system.
 - D) determined by pressure change at a constant temperature.
 - E) equal to the heat transferred at constant pressure and volume.
- 3. Ice melts spontaneously at room temperature
 - A) despite the fact that its free energy change is positive.
 - B) because ice is less ordered than liquid water.
 - C) because heat naturally flows from a cold body.
 - D) because the entropy of water is greater than the entropy of ice.
 - E) in order to maximize the enthalpy content of the ice.
- 4. In micelles:
 - A) polar ends form hydrophobic interactions with water.
 - B) nonpolar ends form hydrophilic interactions with water
 - C) hydrocarbon tails form hydrophobic interactions with water.
 - D) polar ends are hydrophobic and nonpolar ends are hydrophilic.
 - E) hydrocarbon tails are excluded from the water into hydrophobic domains.
- 5. 50 mL of 0.072 M HCl solution is added to 50 mL of pure water. What is the pH of the resulting solution?
 - A) 3.6
 - B) 1.84
 - 1.44 C)
 - D) 7.2
 - $10^{-0.072}$ E)
- Grapefruit juice at pH 3.2 contains about times as much H⁺ as orange juice at pH 4.3. 6.
 - A) 0.9
 - 10^{-7.5} B)
 - 10^{-2} C)
 - D) 12
 - E) 101


- 7. $pH = pK_a$ when:
 - A) $[A^{-}]/[HA] = 0$
 - B) $\log ([A^{-}]/[HA]) = 1$
 - C) $[A^-] \gg [HA]$
 - D) $[A^{-}] = [HA]$
 - E) $\log ([HA]/[A]) = 1$
- 8. Titration of valine by a strong base, for example NaOH, reveals two pK's. The titration reaction occurring at pK_2 ($pK_2 = 9.62$) is:
 - $--COO^- + H_2O$. A) $--COOH + OH^-$
 - B) $--COOH + --NH_2$ \rightarrow —COO⁻ + —NH₂⁺.
 - C) $-\text{COO}^- + -\text{NH}_2^+ \rightarrow -\text{COOH} + -\text{NH}_2.$
 - \rightarrow —NH₂ + H₂O. D) $--NH_3^+ + OH^-$
 - E) $-NH_2 + OH^ --NH^- + H_2O$.
- 9. The enzyme fumarase has a pH optimum of about 7.6. What would be the buffer of choice to study this enzyme?

 - A) lactic acid ($K_a = 1.38 \times 10^{-4}$, p $K_a = 3.86$) B) bicarbonate ($K_a = 6.3 \times 10^{-11}$, p $K_a = 10.24$) C) acetic acid ($K_a = 1.74 \times 10^{-5}$, p $K_a = 4.76$)

 - D) succinate $(K_a = 2.34 \times 10^{-6}, pK_a = 5.63)$
 - E) tris-hydroxymethyl aminomethane ($K_a = 8.32 \times 10^{-9}$, p $K_a = 8.07$)
- To 25 mL of a 0.1 M solution of isoleucine at pH = pK_a for its amino group was added X 10. mL of 0.05M HCl. The new pH was found to be equal to the pK_a for its carboxyl group. What is the value of X?
 - A) 12.5 mL B) 25 mL


 - C) 50 mL
 - D) 100 mL
 - E) The problem cannot be solved without knowing the pK_a value.
- 75 mL of 0.1M HCl were added to 100 mL of 0.1M aspartate solution, pH=pI. What is 11. the new pH? pKa values for aspartate are 1.88, 3.65 (R-group) and 9.60.
 - A) 2.76
 - B) 4.13
 - C) 6.62
 - D) 1.40
 - E) 9.60
- 12. All of the statements about the classification of these amino acids are correct EXCEPT:
 - A) Aspartic acid and asparagine are acidic amino acids.
 - B) Alanine and valine are neutral, nonpolar amino acids.
 - C) Serine and glutamine are polar, uncharged amino acids.
 - D) Lysine and arginine are basic amino acids.
 - E) Tyrosine and phenylalanine are aromatic amino acids.
- 13. Which of the following amino acids has more than one chiral carbon?
 - A) serine
 - B) lysine
 - C) threonine
 - D) cysteine
 - E) aspartic acid

14. Molecules A and B are:

- A) Moronic acid and Fumaric acid
- B) Non-superimposible mirror images
- C) Dextrorotatory and levorotatory
- D) Epimers at C2
- E) Sterioisomers but not enantiomers

15. In the diagram below, the plane drawn behind the peptide bond indicates the:

- plane of rotation around the C_{α} —N bond.
- absence of rotation around the C—N bond because of its partial double-bond character.
- region of steric hindrance determined by the large C=O group.
- D) region of the peptide bond that contributes to a Ramachandran plot.
- E) theoretical space between -180 and +180 degrees that can be occupied by the ϕ and ψ angles in the peptide bond.

16. Which of the following best represents the backbone arrangement of two peptide bonds?

- A) C_{α} —N— C_{α} —C— C_{α} —N— C_{α} —C
- B) C_{α} —N—C—C—N— C_{α}
- C) $C-N-C_{\alpha}-C_{\alpha}-C-N$
- D) C_{α} —C—N— C_{α} —C—NE) C_{α} — C_{α} —C—N— C_{α} — C_{α} —C

17. In an α helix, the R groups on the amino acid residues:

- A) alternate between the outside and the inside of the helix.
- B) are found on the outside of the helix spiral.
- C) cause only right-handed helices to form.
- D) generate the hydrogen bonds that form the helix.
- E) stack within the interior of the helix.

18. All of the following are considered "weak" interactions in proteins, except:

- A) hydrogen bonds.
- B) hydrophobic interactions.
- C) ionic bonds.
- D) peptide bonds.
- E) van der Waals forces.

19. In a mixture of the five proteins listed below, which should elute second in size-exclusion (gel- filtration) chromatography?

A) cytochrome *c* 13,000 B) immunoglobulin G $M_{\rm r} =$ 145,000 $M_{\rm r} =$ C) ribonuclease A 13,700 $M_{\rm r} =$ D) RNA polymerase 450,000 E) serum albumin $M_{\rm r}$ 68,500

- 20. Which of the following is *least* likely to result in protein denaturation?
 - A) Altering net charge by changing pH
 - B) Changing the salt concentration
 - C) Disruption of weak interactions by boiling
 - D) Exposure to detergents
 - E) Mixing with organic solvents such as acetone
- 21. The unique composition of collagen is accommodated in a structure called a:
 - A) β-pleated sheet.
 - B) triple helix.
 - C) helix-turn-helix motif.
 - D) coiled coils.
 - E) all are true.
- 22. The following data were obtained in a study of an enzyme known to follow Michaelis-Menten kinetics:

V ₀ (μmol/min)	Substrate added (M)
0.33	0.001
1.52	0.005
2.5	0.010
8.0	0.050
12.7	0.200
15.3	0.500

The $K_{\rm m}$ for this enzyme is approximately:

- A) 1 mM.
- B) 0.2 M.
- C) 10 mM.
- D) 50 mM.
- E) 15.3 mM.
- 23. Enzymes are biological catalysts that enhance the rate of a reaction by:
 - A) decreasing the activation energy.
 - B) decreasing the amount of free energy released.
 - C) increasing the activation energy.
 - D) increasing the amount of free energy released.
 - E) increasing the energy of the transition state.
- 24. Which statement correctly describes the flow of electrons during the hydrolysis of a peptide bond by chymotrypsin?
 - A. Electrons flow from the catalytic triad into the amide nitrogen of the substrate.
 - B. Electrons flow out of the enzyme and into the substrate, and then return to the enzyme.
 - C. Electrons do not flow during enzyme catalyzed reactions.
 - D. Electrons flow out of the substrate and into the enzyme, and then back again.
 - E. Electrons flow from the oxyanion hole into the substrate, and then return to the hole.
- 25. An enzyme-catalyzed reaction was carried out with the substrate concentration initially a thousand times greater than the $K_{\rm m}$ for that substrate. After 9 minutes, 1% of the substrate had been converted to product, and the amount of product formed in the reaction mixture was 12 µmol. If, in a separate experiment, one-third as much enzyme and twice as much substrate had been combined, how long would it take for the same amount (12 µmol) of product to be formed?
 - A) 1.5 min
 - B) 13.5 min
 - C) 27 min
 - D) 3 min
 - E) 6 min