

Hydrates of Carbon: $C_m(H_2O)_n$

Saccharides: Latin: *Saccharum* = Sugar

- 1. Energy transport and storage.
- 2. Structural *e.g.* bacterial cell walls, cellulose.
- 3. Information *e.g.* signals on proteins and membranes.

Naming: Monosaccharide, 1 unit; disaccharide, 2 units ...

addition of – ul – Rib	ose – Kibulose	Xylose \rightarrow Xylulose
Abbreviations		
Glucose	Glc	
Glucosamine	GlcN	
Glucuronic Acid	GlcA	
Fructose	Fru	
Galactose	Gal	
Galactosamine	GalN	
N-Acetylglucosamine	GlcNAc	
Mannose	Man	
Ribose	Rib	

These are called "<u>Haworth</u>" diagrams. They illustrate some aspects of the stereochemistry of these molecules.

4. The 6-membered ring is much more stable than the 5-membered ring.

5. They are called pyranoses because of pyran:

6. C1 is a new asymmetric C: Isomers that differ only at the hemiacetal or hemiketal C are called <u>anomers</u> and the C is the <u>anomeric C</u>.

7. α-anomer: OH on C1 is on the opposite side of the ring to C6.β-anomer: OH on C1 is on the same side of the ring as the C6.

8. OH on asymmetric C on the "<u>right</u>" in the Fisher diagrams are "<u>down</u>" in the Haworth Diagrams.
9. Fisher diagrams (straight chain) are correct for sugars with 3 or 4 C, otherwise ring structures are more stable.

 $\alpha =$ 📥 Chain 🔫 ► β 10. In water all three forms of 36% 0.01% glucose exist in equilibrium: α 1000 The interconversion is called Mutarotation and can be θ measured by the rotation of plane-polarized light. 20⁰ Time

Mannitol and sorbitol are used as low calorie sweeteners. They are only very slowly metabolized to glucose and stimulate little insulin secretion, a property helpful to diabetics.
They have a positive heat of solution giving them a "cool" sensation.
Any excess, unabsorbed sugar alcohols have a laxative effect as they prevent absorption of water.
Monosaccharides are <u>reducing agents</u>.
They give up electrons and are themselves oxidized. Oxidation of aldols yields the <u>Aldonic acid</u> family. This can be detected in

an alkaline solution of Copper.

10

11

It is made from starch by the enzyme *amylase*.

Notes: 1. The left Glc is an acetal. It is non-reducing and non-mutatrotating.

2. The right glucose is a hemiacetal. It has a reducing end and mutarotates.

3. Glycosidic bonds join sugars.

