Chapter 8 - Carbohydrates

Hydrates of Carbon: $\quad \mathrm{C}_{\mathrm{m}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{n}}$

Saccharides: Latin: Saccharum = Sugar

1. Energy transport and storage.
2. Structural e.g. bacterial cell walls, cellulose.
3. Information e.g. signals on proteins and membranes.

Naming: Monosaccharide, 1 unit; disaccharide, 2 units ...

Oligosaccharides: several sugar units.

Polysaccharides: long chains of 100s - 1000s.

Triose, tetrose, pentose refers to the \# of C in 1 unit.

2 Families

Aldose
$\mathrm{n}=1-4$

Ketose
$\mathrm{m}=0-3$

The Aldoses derive from D-Glyceraldehyde, the Ketoses from Dihydroxyacetone:

The carbon numbering starts with the end of the molecule nearest the carbonyl carbon.

Aldotrioses and ketotrioses have 3 C's in the backbone.
Aldotetroses and ketotetroses have 4 C's.
Pentoses and hexoses have 5 and 6 C's.

Fig. 8.3 shows
the family of
D-aldoses.

The 4C and 5C ketoses are named after the aldoses with the addition of $-\mathrm{ul}-\quad$ Ribose \rightarrow Ribulose \quad Xylose \rightarrow Xylulose

Abbreviations

Glucose	Glc
Glucosamine	GlcN
Glucuronic Acid	GlcA
Fructose	Fru
Galactose	Gal
Galactosamine	GalN
N-Acetylglucosamine	GlcNAc
Mannose	Man
Ribose	Rib

Except for dihydroxyacetone, all the aldoses and ketoses have asymmetric $=$ chiral carbons.

In nature, most sugars are D - most AA are L-.
D - and L-glyceraldehyde are reference molecules for assignment of stereochemistry (absolute configuration).

L-Glyceraldehyde

D-Glyceraldehyde

These are nonsuperimposable mirror images enantiomers.

The diagrams above are called "perspective formulae".

Fisher projection formulae retain the
 stereochemical information but use lines for the bonds. See fructose below:

Why D-? The chiral C furthest from the $\mathrm{C}=\mathrm{O}$ has the same configuration as D-glyceraldehyde.

D-Fructose

These molecules are optically active: they rotate the plane of monochromatic plane-polarized light in opposite directions. dextrorotatory (+) or levorotatory (-). For example, $D-(+)$-glucose (dextrose) $\quad D$-(-)-fructose (levulose)

Erythrose

$1 \& 2$ are enantiomers. 3 \& 4 are enantiomers.

Diastereomers: Non-mirror image stereoisomers.

$$
1 \& 3 \quad 1 \& 4 \quad 2 \& 3 \quad 2 \& 4
$$

Epimers: Diastereomers that differ in configuration at 1 C .
$1 \& 3 @ \mathrm{C} 21 \& 4$ @ C3 $2 \& 3 @ \mathrm{C} 3 \quad 2 \& 4$ @ C2

Cyclic Forms:

In general,

Aldehyde + Alcohol \rightleftharpoons Hemiacetal

Ketone + Alcohol \rightleftharpoons Hemiketal
A second alcohol can add to form an Acetal / Ketal, respectively.

Notes:

1. New chiral centres have been created.
2. The above reactions are intermolecular.
3. In aldoses and ketoses intramolecular hemiketals / hemiacetals form in solution.

These are called "Haworth" diagrams. They illustrate some aspects of the stereochemistry of these molecules.
4. The 6 -membered ring is much more stable than the 5 -membered ring.
5. They are called pyranoses because of pyran:

6. $\mathbf{C} \mathbf{1}$ is a new asymmetric C : Isomers that differ only at the hemiacetal or hemiketal C are called anomers and the C is the anomeric C.
7. α-anomer: OH on C 1 is on the opposite side of the ring to C 6 .
β-anomer: OH on C 1 is on the same side of the ring as the C 6 .
8. OH on asymmetric C on the "right" in the Fisher diagrams are "down" in the Haworth Diagrams.
9. Fisher diagrams (straight chain) are correct for sugars with 3 or 4 C , otherwise ring structures are more stable.

	$\alpha \rightleftharpoons$	Chain $\sim \beta$
10. In water all three forms of glucose exist in equilibrium:	36%	0.01%

The interconversion is called Mutarotation and can be measured by the rotation of plane-polarized light.

Pure α-D-Glc rotates light $+112{ }^{\circ}$, pure β - D-Glc rotates $+19^{\circ}$, and at equilibrium the mixture rotates light $+53^{\circ}$.

$$
36 \%\left(112^{\circ}\right)+64 \%\left(19^{\circ}\right)=+53^{\circ}
$$

The pyranose rings are not entirely planar. Each configuration (α, β) can exist in 2 "puckered" conformations:

$\mathrm{e}=$ equatorial - The group is in the plane, or parallel to, the planar part of the ring.

There is less steric hindrance if bulky groups go in the e positions.
$\mathrm{a}=$ axial - The group is perpendicular to the planar part of the ring.

The chair is slightly more stable than the boat.

Here are two possible chair conformations of β - D-Glc.

Only β-D-Glc can put all bulky substituents in the equatorial position so it is a very stable and abundant molecule.

The pentoses also form hemiacetals:

7

Cyclic Ketoses

These rings are also puckered.

 called Furan.
D-fructofuranose

Sugar Derivatives

1. Reduction of D-glyceraldehyde yields glycerol, an alcohol.

Reduction of D-glucose yields D-glucitol (Sorbitol).

Glucitol
Reduction of mannose yields mannitol.

Note that Glc and Man
are epimers at C2.

Mannitol and sorbitol are used as low calorie sweeteners. They are only very slowly metabolized to glucose and stimulate little insulin secretion, a property helpful to diabetics.

They have a positive heat of solution giving them a "cool" sensation.

Any excess, unabsorbed sugar alcohols have a laxative effect as they prevent absorption of water.

2. Monosaccharides are reducing agents.

They give up electrons and are themselves oxidized. Oxidation of aldols yields the Aldonic acid family. This can be detected in an alkaline solution of Copper.
Cu^{+}is insoluble and
precipitates from solution as brick-red $\mathrm{Cu}_{2} \mathrm{O}$.
"Benedict’s Test"
Experiment 4.

Only the straight chain forms of the sugars are reactive.

The ketoses will react slowly because they must isomerize to the aldehyde.

Oxidation at C6 produces the Uronic acid family. E.g. Dglucuronic acid.
3. Aldonic and uronic acids form stable intramolecular esters called sugar lactones:

D-glucuronic acid

Vitamin C = L-ascorbic acid a sugar acid lactone:

Primates and fruit bats have lost the ability to make Vitamin C so it is an essential nutrient.

Humans have also lost the ability to oxidise uric acid so some of the antioxidant function of Vitamin C may have been taken over by uric acid. The ancient DNA encoding L-glucuronolactone oxidase is still present in the human genome.
4. Sugar Phosphate esters are intermediates in sugar synthesis that prevent transport of the sugar across hydrophobic membranes.

Glc-1-P

Glc-6-P
5. Amino Sugars

Note that Glc and Gal are epimers at C4.

α - D-glucosamine

α - D-galactosamine
6. Sugar Amides

N -acetyl-glucosamine

7. Deoxy-sugars

This is the sugar component of DNA deoxyribonucleic acid.

Disaccharides

Maltose
A reducing sugar.

$=$ O- α - D-glucopyranosyl-($1 \rightarrow 4$) β - D-glucopyranose

It is made from starch by the enzyme amylase.
Notes: 1. The left Glc is an acetal. It is non-reducing and nonmutatrotating.
2. The right glucose is a hemiacetal. It has a reducing end and mutarotates.
3. Glycosidic bonds join sugars.
3. Glycosidic bonds join sugars.

Iso-maltose is Glc ($\alpha 1 \rightarrow 6$) Glc. It is a reducing sugar.

Made from hydrolysis of dextrans.

Cellobiose

Glc $(\beta 1 \rightarrow 4)$ Glc
A reducing sugar, produced by acid hydrolysis of cellulose.
Lactose:
Milk sugar.
A reducing sugar.
Remember, Glc and Gal are epimers at C4.

Adults without the enzyme lactase cannot digest lactose and are Lactose Intolerant.

In the small intestine, bacteria switch their metabolism to digest lactose (fermentation) producing large amounts of gas and cramping.

Sucrose: A non-reducing sugar.
Table Sugar.
Made by plants.

Glc $(\alpha 1 \leftarrow \rightarrow \beta 2)$ Fru Fru $(\beta 2 \leftarrow \rightarrow \alpha 1)$ Glc

Sucrose rotates light by $+66^{\circ}$. Hydrolysis of sucrose results in a mixture that rotates light at -39°, called "invert sugar".
$\sim 2 x$ sweeter than "sugar". A popular food additive.
$\alpha+\beta-D$-Glc are $+53^{\circ}$ and $\alpha+\beta$ - D Fru are - 92°.
Honey is essentially invert sugar. Here is a picture of crystals of honey viewed with polarized light.

Trehalose
A non-reducing sugar.
www.masterbeekeeper.org/ creamhoney.htm

Energy storage in insects.

Glc $(\alpha 1 \leftarrow \rightarrow \alpha 1)$ Glc

Most sugars are stored as Polysaccharides = $\underline{\text { Glycans }}$

They may be branched or unbranched.
Starch: Storage of D-Glc in plants; 2 types:
I Amylose: Unbranched chains of $\alpha 1 \rightarrow 4$ linked Glc i.e. Maltose; up to 4,000 Glc in one chain.

It forms a tightly coiled helical structure stabilized by H-bonding with 6 residues per turn.

$x=0$

Iodine can insert into the middle of the helix giving starch a blue colour in a potato (right). Apples (left) contain very little starch.

http://www.webexhibits. org/causesofcolor/image s/content/emerald/DSC0 3426Z.jpg

II Amylopectin: Up to 200 amylose chains linked $\alpha 1 \rightarrow 6$ at
"Branch Points".
So just like iso-maltose.

This cannot form the helical structure.

So starch has Maltose and isomaltose units with one reducing end and many non-reducing ends.

Saliva and pancreas secrete α-amylase that randomly cleaves α 1,4 bonds. Plants and bacteria secrete β-amylase that removes maltose units starting at the non-reducing end. Debranching enzymes hydrolyse the $\alpha-1,6$ bonds.

Glycogen: Animal cell storage of Glc.

Similar to amylopectin but more branched. ~15-30 sugars per branch.

Dextrans: Bacterial polysaccharides with $\alpha 1 \rightarrow 6$ links and some $\alpha 1 \rightarrow 2$ and $\alpha 1 \rightarrow 4$ glucose links.

Fructans or Levans are fructose storage forms found in plants.
These are all used for reversible energy storage.

Cellulose: $\left(\right.$ Glc $\beta 1 \rightarrow 4$ Glc) ${ }_{n}$
Linear chain of 10,000-15,000 Glc. See cellobiose.

Figure 8-25a Principles of Bicchemistry, 4/e
02006 Pearson Prentice Hall Inc.

This is a structural polysaccharide. A strong rod-like structure of parallel chains packed side-by-side is formed.

In Pollia condensata the irridescent blue color comes from the interaction of light with the helical rods of cellulose in the outer skin. There is no pigment.

Chitin: arthropod exoskeleton, shells of crustaceans, \& peacock feathers.

www.davidlnelson.md/ Cazadero/Bugs.htm
http://faculty.clintoncc.suny.edu/faculty/michael.gregory/

http://www.photobiology.info/Ball.html
N-acetylglucosamines linked $\beta 1 \rightarrow 4$ in a linear chain.
It is cellulose with a C2 N-acetyl.

Glycoproteins:

Sugars may be O-linked to Ser/Thr/Tyr.

Or N-linked to Asn/Gln.
(a)

Figure 8-35 Principles of Biochemistry, 4/e © 2006 Pearson Prentice Hall, Inc.

A great variety of sequence, branching, and linkage.
$\alpha / \beta ; 1 \rightarrow 2,1 \rightarrow 3,1 \rightarrow 4 \ldots$

The cell walls of bacteria contain a cross-linked network of short peptides and sugars called peptidoglycan.

In animals, extracellular matrix, cartilage, tendons, and skin contain proteoglycans. Proteins with large amounts of carbohydrate.

