Chapter 2-Water

Water exists as a H -bonded network with an average of 4 H -bonds per molecule in ice and 3.4 in liquid.

H-bond: An electrostatic attraction between polarized molecules containing $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$, or $\mathrm{F}-\mathrm{H}$.

H -bonds are strongest when linear i.e. the two heavy atoms and the shared H are in a line.

H-bonding is a Weak Interaction compared to covalent bonding -$8-21 \mathrm{~kJ} / \mathrm{mol}$.

Electrostatic Interactions: Attraction between oppositely charged ions or repulsion between similarly charged ions - up to $200 \mathrm{~kJ} / \mathrm{mol}$.

Some important H-bond donors and acceptors in cells:

Breaking H-bonds requires the addition of enthalpy.

For ice $\Delta \mathrm{H}_{\text {Melting }}=+6 \mathrm{~kJ} / \mathrm{mol}$

So why does water melt so easily at $25^{\circ} \mathrm{C}$?

Because the liquid is more disordered than the solid and
$\mathrm{T} \Delta \mathrm{S}_{\text {melt }}>\Delta \mathrm{H}_{\text {melt }}$.
In fact, at $25^{\circ} \mathrm{C}: \quad \mathrm{T} \Delta \mathrm{S}_{\text {melt }}=6.6 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {melt }}=6.0 \mathrm{~kJ} / \mathrm{mol}$ and
$\Delta \mathrm{G}_{\text {melt }}=\Delta \mathrm{H}_{\text {melt }}-\mathrm{T} \Delta \mathrm{S}_{\text {melt }}=-0.6 \mathrm{~kJ} / \mathrm{mol}$

So melting is an entropy-driven processes.

Biomolecules interact with water by:

1. H-bonding.

2. Electrostatic interactions:
i. When NaCl dissolves in $\mathrm{H}_{2} \mathrm{O}$, enthalpy is required to break Na^{+} Cl^{-}ionic bonds. $+\Delta \mathrm{H}$

ii. Enthalpy is also required to disrupt H -bonding of $\mathrm{H}_{2} \mathrm{O} . \quad+\Delta \mathrm{H}$
iii. Enthalpy is released when new water-ion interactions form.

This is called - "solvation". $-\Delta \mathrm{H}$

iv. The net enthalpy change is small and slightly positive.
v. Solid NaCl is highly ordered. NaCl in solution is highly disordered. So the large entropy increase favours dissolution.

$$
\begin{gathered}
\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
\mathrm{~T} \Delta \mathrm{~S} \gg \Delta \mathrm{H} \text { and } \Delta \mathrm{G}<0
\end{gathered}
$$

3. van der Waals Interactions: A short range very weak attraction $\sim 4 \mathrm{~kJ} / \mathrm{mol}$.

Non-polar He atoms form a liquid at 4 K due to an induced dipole attraction.

Temporary Dipoles

Non-polar hydrocarbons interact with each other by van der Waals interactions.

Hydrogen bond -2 to $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$

van der Waals interaction ~ 0.4 to $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Hydrophobic interaction -3 to $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$

What happens when a non-polar hydrocarbon dissolves in water?

1. Hydrocarbon vdW interactions are broken. $+\Delta \mathrm{H}$
2. Water H-bonds are broken. $+\Delta \mathrm{H}$
3. New water H -bonds are formed in an organized "cage" around the hydrocarbon. This optimizes the vdW interactions between the hydrocarbon and water, and optimizes the H -bonding among the water molecules. $-\Delta \mathrm{H}$

The entropy of water is reduced, disfavouring dissolution of hydrocarbons in water. $-\Delta \mathrm{S}$

This is called the "Hydrophobic Effect".

Amphipathic molecules contain both polar and non-polar groups. E.g. detergents, lipids, proteins, nucleic acids.

Their lowest free energy states have hydrophobic groups clustered together away from the water, raising the water S .

They help organize detergent micelles, membranes, proteins, and DNA.

A detergent: Sodium dodecylsulphate:

It forms a micelle in which the hydrocarbons interact with each other via vdW to form a
hydrophobic core and the hydrophilic groups associate with water.

Other interactions can occur with the ionized forms of water.

$$
\begin{gathered}
\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{H}^{+} \\
\mathrm{K}_{\mathrm{eq}} \frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=1.8 \times 10^{-16} \mathrm{M} @ 25^{\circ} \mathrm{C} \\
{\left[\mathrm{H}_{2} \mathrm{O}\right]=55.5 \mathrm{M}(\mathrm{moles} / \mathrm{L})}
\end{gathered}
$$

$$
\text { So }\left(\mathrm{K}_{\mathrm{eq}} \times 55.5\right)=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \mathrm{M}^{2}=\mathrm{K}_{\mathrm{w}}
$$

Knowing two, you can solve for the third.

A convenient way to express $\left[\mathrm{H}^{+}\right]$is $\mathrm{pH} . \quad \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]$

In pure water: $\quad\left[\mathrm{H}^{+}\right]=10^{-7}$ Molar
So $-\log _{10}\left[10^{-7}\right]=-(-7)=7=\mathrm{pH}$
$\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]$
In pure water $-\left[\mathrm{OH}^{-}\right]=10^{-7}$ Molar
$-\log _{10}\left[10^{-7}\right]=-(-7)=7=\mathrm{pOH}$
When $\mathrm{pH}=\mathrm{pOH}$ we say water is "neutral"

TABLE 2.3 Relation of $\left[\mathrm{H}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]$to pH		
pll	$\left[\mathrm{H}^{4} \mid\right.$ (M)	IOH (M)
0	1	10^{-14}
1	1165^{-1}	10^{-17}
2	16^{-2}	10^{-17}
3	10^{-3}	10^{-11}
4	16^{-4}	10^{-30}
5	10^{-}	10^{-4}
6	10^{+}	10^{-4}
7	30^{-7}	10^{-4}
8	10^{-4}	10^{-6}
9	30^{-4}	10^{-4}
10	10^{-15}	10^{-4}
11	10^{-14}	10^{-7}
12	10^{-12}	10^{-2}
13	10^{-13}	10^{-t}
 ejess Fernon Frenter We (is.		

pH can range from 0 to 14 .

Below pH 7 water is "acidic"gastric juice is pH 1 .

Above pH 7 it is "basic"egg white is pH 8 .

Strong Acids HCl is a strong acid.

$0.1 \mathrm{M} \longrightarrow 0.1 \mathrm{M}+0.1 \mathrm{M}$
The acid dissociates completely and the $\mathrm{pH} \sim 1$.

Strong Bases $\quad \mathrm{NaOH}$ is a strong base.

$$
\begin{gathered}
\mathrm{NaOH} \rightleftharpoons \mathrm{Na}^{+}+\mathrm{OH}^{-} \\
1 \mathrm{M} \longrightarrow 1 \mathrm{M}+1 \mathrm{M}
\end{gathered}
$$

Complete dissociation gives $\mathrm{pOH} \sim 0 \quad \mathrm{pH} \sim 14$.
Remember $10^{0}=1$

Most biological acids and bases are weak. i.e. they undergo incomplete dissociation.

$$
\begin{gathered}
-\mathrm{COOH} \rightleftharpoons-\mathrm{COO}^{-}+\mathrm{H}^{+} \\
\text {Weak Acid } \\
\text { Conjugate Base }
\end{gathered}
$$

A weak acid is a donor of protons.

$$
\begin{array}{ll}
-\mathrm{NH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons & -\mathrm{NH}_{3}^{+}+\mathrm{OH}^{-} \\
\text {Weak base } & \text { Conjugate Acid }
\end{array}
$$

A weak base is an acceptor of protons.

Biochemists choose to express all weak acids and bases as "weak acids", so:

$$
\underset{\text { Weak Acid }}{-\mathrm{NH}_{3}^{+}} \underset{\text { Conjugate Base }}{-}-\mathrm{NH}_{2}+\mathrm{H}^{+}
$$

In general,

$$
\mathrm{HA} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+}
$$

$\mathrm{K}_{\mathrm{eq}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\mathrm{K}_{\mathrm{a}} \quad \mathrm{HA} \rightleftharpoons \mathrm{A}^{-}+\mathrm{H}^{+}$
K_{a} is the acid dissociation constant. $\quad \mathrm{pK}_{\mathrm{a}}=-\log _{10}\left[\mathrm{~K}_{\mathrm{a}}\right]$

The weakest acids have the largest pK_{a}, s .

The pK_{a} of
acetic acid is
4.76, the pK_{a} of ammonia is

TABLE 2.4 Dissociation constants and pk , walues of weak acids in aqueous solutions at $25^{\circ} \mathrm{C}$

Acid	$\mathrm{A}_{3}(\mathrm{M})$	$\mathrm{pH}_{\mathbf{a}}$
HCOOHI thorric axidl	1.77×10^{-4}	3.8
$\mathrm{CH}_{3} \mathrm{COOH}$ (Asaric zid)	1.76×10	4.8
C11,C\%OHOCOH1 (Lactic acid	1.75×10^{-4}	19
$\mathrm{H}_{3} \mathrm{~F}_{4} \mathrm{C}_{4}$ IPhenplocicacal	+.52 $\times 101$	2.2
$\mathrm{H}_{3} \mathrm{FCO}_{4}$ andratroper phosphat iont	4.23×10^{-8}	73
$\mathrm{HPO}_{4}^{\text {O }}$ (SSisitrotrgeo phowbinc ion)	2.20×10^{-11}	127
$\mathrm{H}_{2} \mathrm{CO}_{3}$ (Carbusic achdy	430×10^{-7}	6.4
	560×10^{-31}	10.2
$\mathrm{NH}_{4}{ }^{-}$(Amrsositution)	5.62×10^{-21}	42
$\mathrm{CH}_{1} \mathrm{NH}_{1}$ - $/$ Methylammatiumion!	2.30×10^{-31}	167

Often, biochemical reactions release H^{+}or OH^{-}. How do cells deal with this? With Buffers.

Titration Curves indicate the pH values of different mixtures of a weak acid and its conjugate base. The mixtures are produced by adding different amounts of a strong acid or strong base to the mixture.

The pH of a 0.1 M solution
of $\mathrm{CH}_{3} \mathrm{COOH}$ is about 1.8.

Addition of 10 mL of 0.1 M
NaOH to 100 mL of 0.1 M
$\mathrm{CH}_{3} \mathrm{COOH}$ raises the pH to 3.7.
What happened?

10 mL of 0.1 M NaOH contains 0.001 moles $=1$ millimole of OH^{-}.

$$
\frac{0.1 \mathrm{moles}}{1000 \mathrm{ml}}=\frac{x}{10 \mathrm{ml}} \quad x=10 \mathrm{~m} / \bullet \frac{0.1 \mathrm{moles}}{1000 \mathrm{ml}}=0.001 \mathrm{moles}
$$

100 mL of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ contains 10 millimoles of acid.
So we added 1 millimole or 0.1 equivalent of $\mathrm{OH}^{-}=10 \%$ of the acid present.

Some of the added OH^{-}reacted with H^{+}to yield $\mathrm{H}_{2} \mathrm{O}$.

The Law of Mass Action (AKA LeChatelier's Principle) then caused the HA to ionize to release more protons. This continued until all the added OH^{-}was neutralized.
$\mathrm{HA} \rightleftharpoons \mathrm{A}^{-}+\mathrm{H}^{+}$

So $[\mathrm{HA}]$ has decreased, $\left[\mathrm{A}^{-}\right]$increased, $\left[\mathrm{H}^{+}\right]$decreased, $\left[\mathrm{OH}^{-}\right]$ increased, and pH increased.

The added OH^{-}(a strong base) will neutralize an equal \# of moles of HA (a weak acid). Similarly, a strong acid will neutralize an equal \# of moles of conjugate base (A^{-}).

When 50 mL of NaOH have been added, 5 millimoles of OH^{-} have been added, neutralizing half of the HA.

The acid is half neutralized and so half dissociated $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right]$ i.e. [Weak Acid] = [Conjugate Base]

Remember,

$$
K_{\mathrm{a}}=\frac{\left[H^{+}\right]\left[A^{-}\right]}{[H A]} \quad\left[H^{+}\right]=\frac{K_{\mathrm{a}}[H A]}{\left[A^{-}\right]}
$$

So when $[\mathrm{HA}]=\left[\mathrm{A}^{-}\right], \quad\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a}} \quad$ and $\quad \mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
Near the end of the curve, when there is no more HA to ionize, the pH will rise sharply.

The same graph could have been produced by adding HCl (a strong acid) to a solution of sodium acetate, the conjugate base of acetic acid (a weak base).

Features of titration curves.

1. At the ends of the curves small additions of acid and base result in large changes in pH .
2. In the middle, small additions of strong acid or base cause small changes in pH . The region where $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$ is called the buffering region.

A Buffer is a mixture of WA and CB that resists changes in pH when small additions of strong acid or base are added.

How does it work? Near the $\mathrm{pK}_{\mathrm{a}} \quad[\mathrm{WA}] \sim[\mathrm{CB}]$.

The WA can neutralize added OH^{-}, and the CB can neutralize added H^{+}.

Cells require buffers because high concentrations of H^{+}and OH^{-} can break covalent bonds.

The main buffer system found in cells is:

We can re-write $\left[H^{+}\right]=\frac{K_{a}[H A]}{\left[A^{-}\right]}$in terms of pH and pK_{a}

$$
p H=p K_{a}-\log _{10}\left\{\frac{[H A]}{\left[A^{-}\right]}\right\}
$$

Or

$$
p H=p K_{a}+\log _{10}\left\{\frac{\left[A^{-}\right]}{[H A]}\right\}
$$

Using this Henderson-Hasselbach Equation we can calculate the pH of a WA-CB pair if we know their ratio and the pK_{a}.

WA-CB pairs buffer well as long as: $\frac{1}{10}<\frac{[C B]}{[W A]}<\frac{10}{1}$
$p H=p K_{a}+\log _{10}\left\{\frac{[1]}{[10]}\right\}=p K_{a}-1.0$
$p H=p K_{a}+\log _{10}\left\{\frac{[10]}{[1]}\right\}=p K_{a}+1.0$

For acetic acid the range is: 3.76 to 5.76 .

Example Calculation: What is the pH of a 20 mL solution of 0.1 M Tris base $\left(\mathrm{RNH}_{2}\right)$ after addition of 10 mL of 0.1 M HCl ? The $\mathrm{pK}_{\mathrm{a}}=8.1$

First we calculate that we have 2 mmoles of Tris base and 1 mmole of HCl .

The reaction will be:

$$
2 \mathrm{RNH}_{2}+1 \mathrm{HCl} \longrightarrow 1 \mathrm{RNH}_{2}+1 \mathrm{RNH}_{3}^{+}+1 \mathrm{Cl}^{-}
$$

The above means that 1 mmole of strong acid has neutralized 1 mmole of conjugate base giving 1 mmole of WA and 1 mmole of CB.

From HH: $\quad \mathrm{pH}=8.1+\log \left\{\frac{1 \mathrm{mmol} / 30 \mathrm{ml}}{1 \mathrm{mmol} / 30 \mathrm{ml}}\right\}$
So $\mathrm{pH}=8.1+0=8.1$

