Chapter 3 - Amino Acids

α-Amino Acids are the main constituents of proteins. But they also can function as neurotransmitters (glutamate, γ-aminobutyric acid), hormones (thyroxine; see right), as bacterial cell wall components (D-alanine) and are intermediates in many metabolic pathways.
e.g. Glycine is a precursor to heme.

Hormones are chemical messengers secreted into the bloodstream by one cell that affect the metabolism of another cell.

They may be hydrophilic such as amino acids and peptides or they may be hydrophobic such as steroids.

Formula for $\alpha-\mathrm{AA}$ at pH 7

AA Side-Chain Classification:

A. Aliphatic, non-polar, hydrophobic

Leucine Leu

Isoleucine Ile

Valine Val

Proline Pro

A cyclic α-imino acid.

Alanine Ala

Glycine Gly

B. Aromatic Amino Acids - in order of hydrophobicity

They absorb ultra-violet light because of conjugated double bonds.

Cysteine Cys

Thiol $\mathrm{pK}_{\mathrm{a}} \sim 8.3$

Two nearby Cys can form a disulphide bond in an oxidizing environment.

D. Hydroxyl Amino Acids - polar

Threonine Thr

Alcohol $\mathrm{pK}_{\mathrm{a}}=13.6$

Serine Ser

Alcohol $\mathrm{pK}_{\mathrm{a}}=13.6$

E. Amide-containing side-chains

Glutamine Gln

Amide side-chains
do not ionize!

F. Acidic AA (negative charge in the side-chain at pH 7)

Glutamic Acid Glu

Carboxyl $\mathrm{pK}_{\mathrm{a}}=4.2$

Aspartic Acid
Asp

Carboxyl $\mathrm{pK}_{\mathrm{a}}=3.9$

Histidine His

Imidazole $\mathrm{pK}_{\mathrm{a}}=6.0$

Histamine

H

Side chains in Groups A and B carry no net electric charge at pH 7 and remain stationary in an electric field.

Average values for AA carboxyl and amino pK_{a} 's are 2.2 and 9.5.

At pH 7, acidic amino acids have lost a proton from their side chains and are anionic. They move toward a positive electrode.

At pH 7 , basic amino acids bind a H^{+}and are cationic. They move toward a negative electrode.
$-\mathrm{NH}_{2}+\mathrm{H}^{+} \rightleftharpoons-\mathrm{NH}_{3}{ }^{+}$

Molecular Conformation refers to differences in the spatial arrangement of groups joined by covalent bonds due to bond rotation.

Isomers have the same molecular formula but a different arrangement of the groups. e.g. Leu, Ile.

All AA except Glycine, have 4 different groups attached to the tetrahedral α C. The $\alpha-\mathrm{C}$ is asymmetric / chiral (handed).

There are 2 possible arrangements of the 4 groups called stereoisomers.

They are non-superimposable mirror images / enantiomers.

L-Ala

(b)

D - and L-glyceraldehyde are reference molecules for assignment of stereochemistry (absolute configuration).

L-Glyceraldehyde

D-Glyceraldehyde

The aldehyde and acid are aligned and the hydroxyl and amino groups are aligned.

These molecules are optically active: they rotate the plane of monochromatic plane-polarized light in opposite directions.

Dextrorotatory (+) or Levorotatory (-), or RS (Rectus, Sinister).

All AA in proteins are L-. Some D - are found in antibiotic peptides.

Thr and Ile contain two chiral C's and 4 stereoisomers.

Thalidomide is a sedative. The + form is therapeutic, the mirror image is teratogenic and causes embryo malformation.

(R)-thallidomide

(S)-thelldomide

R -limonene: fresh citrus, orange-like

(R)

(S)

S-limonene: harsh, turpentine-like, lemon

Titration of Gly with OH^{-}:

The titration curve will have two
buffering regions, one for each group.

$$
\text { Amino } \mathrm{pK}_{\mathrm{a}}=9.6 \text { Carboxyl } \mathrm{pK}_{\mathrm{a}}=2.3
$$

Average values for AA carboxyl and amino pK_{a} 's are 2.2 and 9.5.

Draw Gly at low pH (C).
Add OH^{-}and raise the pH to 2.3:
The strongest acid (lowest pK_{a}) will ionize first.

C
Z

After adding 0.5 equivalents of OH^{-},
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a} 1}=2.3$ and $[\mathrm{C}]=[\mathrm{Z}]$.
After adding 1.0 equivalent of OH^{-}(first end point), Gly is Zwitterionic, and the pH is midway between 2.3 and 9.6.

$$
p H=\frac{2.3+9.6}{2}=6.0=p I
$$

The Isoelectric Point is the pH at which the concentration of the Z-form of an AA is maximum. On average there is no net charge on the AA.

At the pI, the AA is stationary in an electric field.

After addition of 1.5 equivalents
of $\mathrm{OH}^{-}, \mathrm{pH}=\mathrm{pK}_{\mathrm{a} 2}=9.6$
and $\mathrm{A}=\mathrm{Z}$.
After addition of 2.0 equivalents of OH^{-}, the $\mathrm{pH} \sim 12$ and Gly is $100 \% \mathrm{~A}$.

C
A

12 other AA with non-ionizable side chains have titration curves just like Gly and Ala.

Titration of Glutamic Acid

There are 3 buffering regions centred on $\mathrm{pH} 2.2,4.25$, and 9.7.

At $4.25<\mathbf{p H}<9.7$

What is the pI?

At pH 2.2 there is $50 \% \mathrm{C}, 50 \% \mathrm{Z}$. At pH 4.3 there is $50 \% \mathrm{Z}, 50 \% \mathrm{~A} 1$.

At pH 9.7 there is $50 \% \mathrm{~A} 1,50 \% \mathrm{~A} 2$

So $1 / 2$ way between 4.3 and 2.2 there will be $100 \% \mathrm{Z}$.

A1

So $p I=\frac{2.2+4.3}{2}=3.25$
A2

Titration of His:

There are 3 buffering regions centred on $\mathrm{pH} 1.8,6.0$, and 9.2.

At pH 1.8 [C1] = [C2]
At pH 6.0 [C2] = [Z]
At pH $9.1[\mathrm{Z}]=[\mathrm{A}]$

$$
p I=\frac{9.1+6.0}{2}=7.5
$$

Sample Buffer Question:
To 50 mL of 0.1 M acetate buffer pH 4.75 , is added 1 mL of 0.2 M HCl .

What is the new $p H$? The $p K_{a}$ of acetic acid is 4.75.

$\mathrm{HCl}: 0.002$ mole of HCl will neutralize 0.002 mole of buffer (A^{-}).
i.e. $0.0002 \mathrm{H}^{+}$react with $0.002 \mathrm{~A}^{-}$to form 0.0002 new HA.

So $\mathrm{HA}_{\text {new }}=0.0025+0.0002=0.0027$ moles.
$\mathrm{A}^{-}{ }_{\text {new }}=0.0025-0.0002=0.0023$ moles.
Plug into HH: $\quad p H=4.75+\log \left\{\frac{[0.0023 \text { mole } / 0.051 L]}{[0.0027 \text { mmoles } / 0.051 \mathrm{~L}]}\right\}$
$=4.75+\log \{0.85\}=4.75-0.07=4.68$
Near the pK_{a}, a small addition of H^{+}has caused only a small change in pH .

A second question:
To 50 mL of 0.1 M acetate buffer, pH 2.75, is added 1 mL of 0.2 M NaOH . What is the new pH ?

Here we cannot assume that we have equal amounts of HA and A^{-}.
Plugging into HH: $2.75=4.75+\log \left\{\frac{\left[A^{-}\right]}{[H A]}\right\}$ and $-2.0=\log \left\{\frac{\left[A^{-}\right]}{[H A]}\right\}$
Take the antilog of both sides gives:

$$
10^{-2}=\frac{\left[A^{-}\right]}{[H A]} \quad[H A] \bullet 10^{-2}=\left[A^{-}\right]
$$

We also know that $\mathrm{A}^{-}+\mathrm{HA}=0.1 \mathrm{M}$
So $0.01 \mathrm{HA}+\mathrm{HA}=0.1 \mathrm{M}$
We find $\mathrm{HA}=0.099 \mathrm{M}$ and $\mathrm{A}^{-}=0.001 \mathrm{M}$

This is what we started with. Now, what happens when OH^{-}is added?

NaOH: 0.001 L x $0.2 \mathrm{M}=0.0002$ mole
i.e. $0.0002 \mathrm{OH}^{-}+0.0002 \mathrm{HA} \rightarrow 0.0002 \mathrm{~A}^{-}+0.0002 \mathrm{H}_{2} \mathrm{O}$

So moles $\mathrm{HA}_{\text {new }}=(0.099 \mathrm{Mxx} 0.050 \mathrm{~L})-0.0002=0.00475$ mole and $\mathrm{A}^{-}{ }_{\text {new }}=(0.001 \mathrm{M} \mathrm{x} 0.050 \mathrm{~L})+0.0002=0.00025$ mole Plug into HH:

$$
p H=4.75+\log \left\{\frac{[0.00025 \text { mole } / 0.051 \mathrm{~L}]}{[0.00475 \text { mole } / 0.051 \mathrm{~L}]}\right\}
$$

$=4.75+\log \{0.053\} \quad=4.75-1.28=3.47$
Far from the pK_{a}, a small addition of OH^{-}has caused a large change in pH .

Amino Acid Purification:

Amino acids, proteins, and nucleic acids are often purified using methods that separate the molecules based on differences in net charge.

Electrophoresis separates molecules by applying an electric field. Ions move in the field according to their net charge.

In paper electrophoresis the ions move through a buffer solution that permeates the paper.
e.g. a mixture of Ala, Lys, and Asp at pH 6 will have different charges.

AA	Net Charge
Ala	0
Lys	+
Asp	-

Ala will be stationary, Lys will move toward the cathode (-) and Asp will move toward the anode (+).

After electrophoresis

Amino acids can also be separated in thin silica capillaries Capillary Electrophoresis.

Ion-Exchange Chromatography

Polystyrene or silica-based beads have anionic or cationic functional groups attached.

Cation Exchanger

Anion Exchanger

Sulfonic acid is a strong acid and is anionic at pH 2 whereas all amino acids are cationic.

Beads with sulphonic acid are packed into a cylindrical column.

A mixture of AA is applied in a buffer at pH 2 and bind to the sulphonic acid.

The AA are removed by washing the beads with buffers at higher pH .

When the pH reaches the pI of an AA it unbinds from the beads and washes out of the column.

Differences in the pI of each AA cause them to be dissociated at different pHs .

Here is a typical elution profile:

Peptides

The condensation of AA does not occur in neutral water as the OH is not a good leaving group.

You will learn how cells do this
 in CHEM/MBIO 2780.

Polypeptide: more than 20 AA .

Amide / Peptide bond

Protein: 1 or more polypeptides.

Alanyl-Seryl-Lysyl-Glutamate is a tetrapeptide.

1. Repeating backbone is non-ionizable, except the ends.
2. Side-chains vary.
3. pK_{a}, pI of side chains and termini are similar to the AA .
4. Amino terminus at left, carboxyl terminus at right.

Biologically-Active Peptides

Enkephalins are natural analgesics. They bind to specific receptors in the brain and diminish the perception of pain. e.g.
Tyr-Gly-Gly-Phe-Met

Peptides can adopt many conformations because of rotation about single covalent bonds.

Binding to a target receptor may force them to adopt a single conformation.

Aspartame: a synthetic dipeptide 150 X sweeter than sugar.

Nuh-huh. Aspartame

http://vadlo.com/cartoons.php?id=498

