Chapter 4 Proteins

Except for water, proteins are the most abundant substance in most cells. 10-20% by weight. Humans manufacture at least 22,000 different proteins.

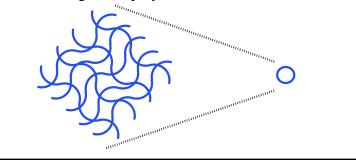
<u>F</u> 1	inction	Example
Ca	atalysis	Enzymes
Tı	ansport	Hemoglobin
St	ructure	Collagen
С	ontractile	Actin
N	utrient	Ovalbumin
D	efense	Immunoglobins
Re	egulatory	Insulin

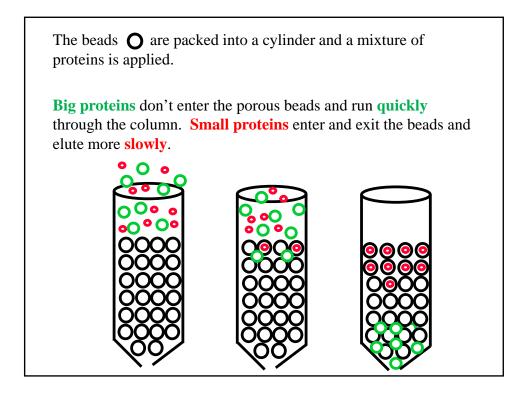
Molecule	#AA	Mass	#Chains
H ₂ O	-	18	-
Insulin	51	5,700	2
Lysozyme	129	13,900	1
Hemoglobin	574	64,500	4
Glutamate Dehydrogenase	8300	1 million	40
Titin	26,926	2,993,000	1

Some proteins are simple, **<u>non-conjugated</u>**.

Others require non-AA <u>cofactors</u> or <u>prosthetic groups</u> for full activity. Cofactors may be inorganic *e.g.* metal, phosphate or organic *e.g.* sugar, lipid, heme, flavin.

They may be covalently or non-covalently attached to the protein.


Enzyme cofactors are called <u>coenzymes</u>.

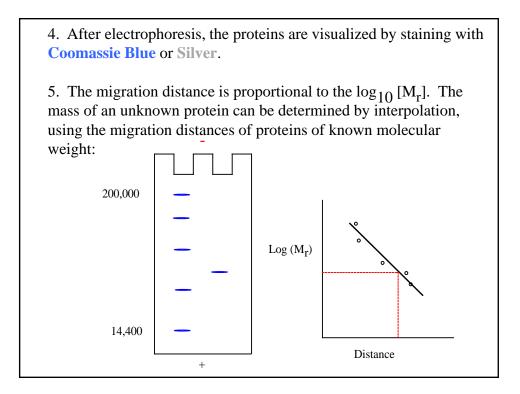

Protein Purification: Proteins may be purified on the basis of differences in size, charge, solubility, affinity for materials.

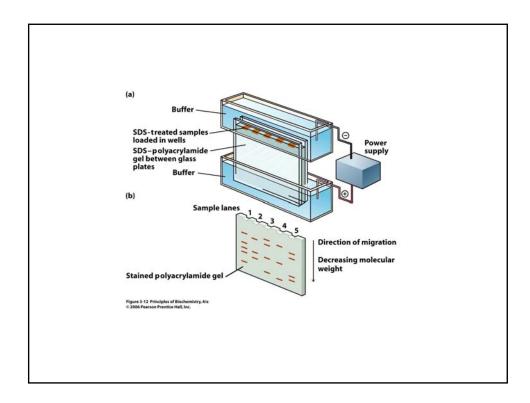

Ion exchange chromatography of AA was discussed earlier. The same principles can be used to separate proteins with different pI's.

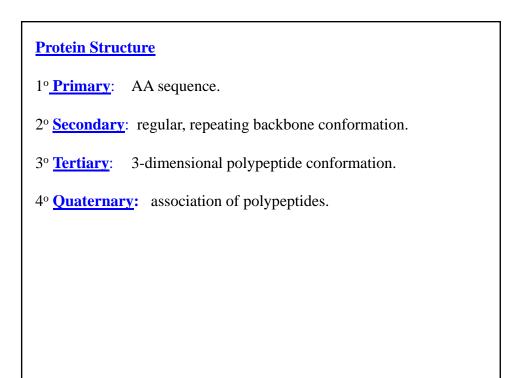
Size-Exclusion or Gel Sieving Chromatography

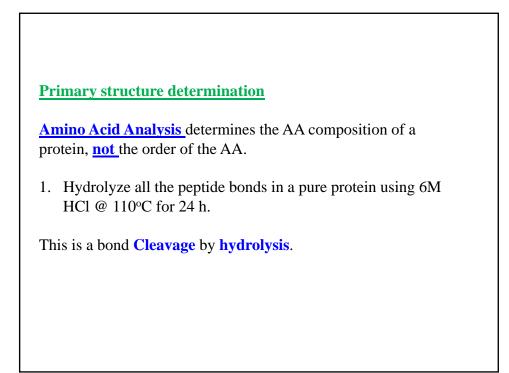
Small beads of polymerized glucose, agarose, or acrylamide are manufactured with different sizes of pore depending on the degree of cross-linking of the polymer.

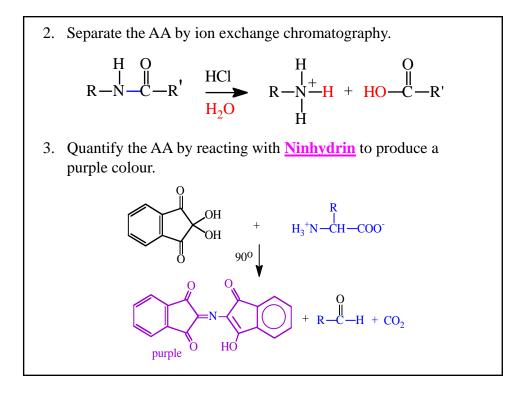
SDS-PAGE

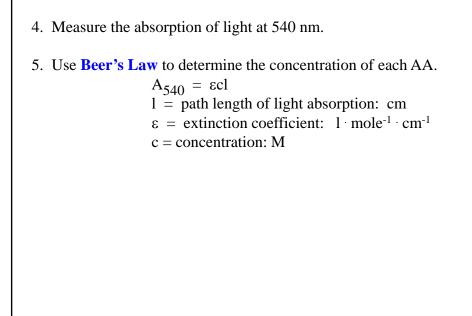

It separates proteins by electrophoresis and then estimates their masses.

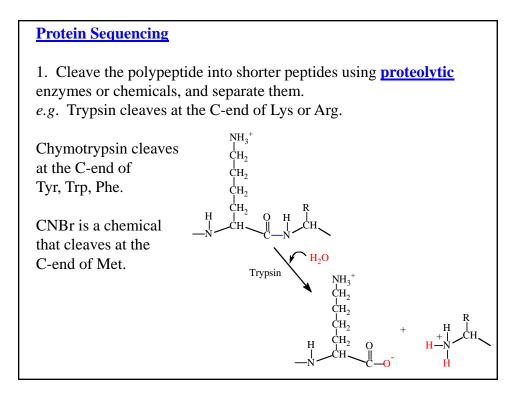

- 1. The gel is a cross-linked polyacrylamide gel molecular sieve.
- 2. The detergent sodium dodecylsulphate binds to the proteins and makes them highly negatively charged.

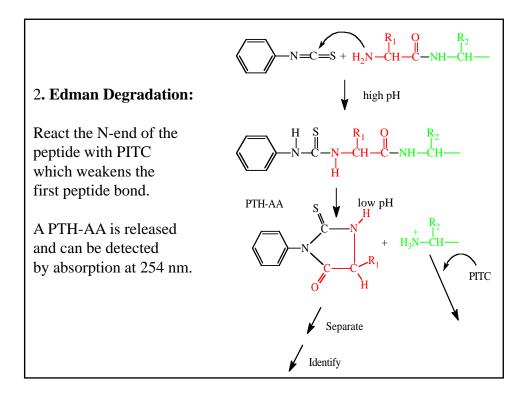

$$CH_3 - (CH_2)_{11} - O - S - O Na^+$$

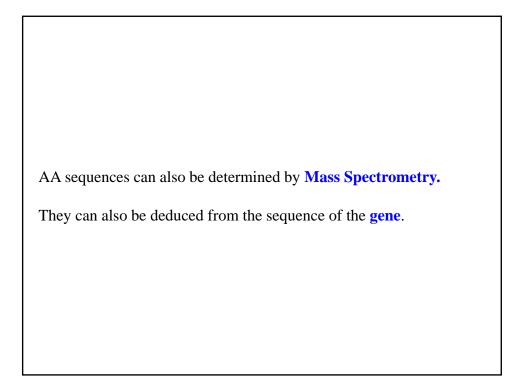

About 1 SDS binds per 2 AA.

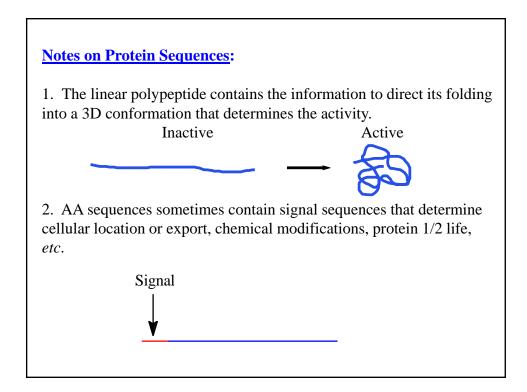

 SDS-coated proteins move through the gel by electrophoresis when an electric potential is applied. The small proteins move quickly and easily through the pores. The big proteins move slowly.











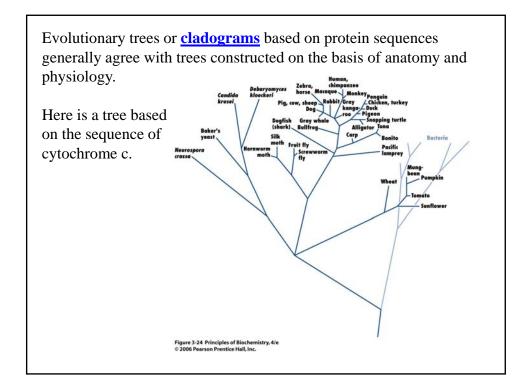
3. Incorrect AA incorporation can lead to a loss or alteration of protein activity or folding and thus disease.

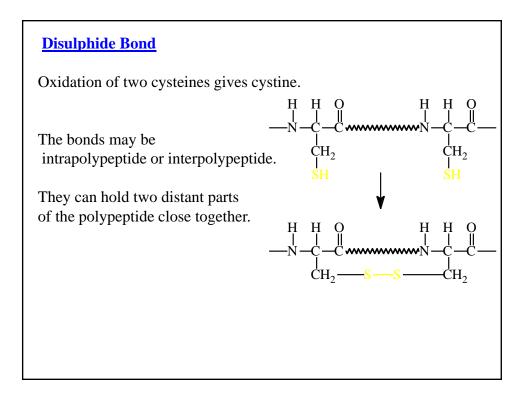
e.g. A single Glu \rightarrow Val **mutation** in the hemoglobin β -chain results in Sickle Cell Anemia.

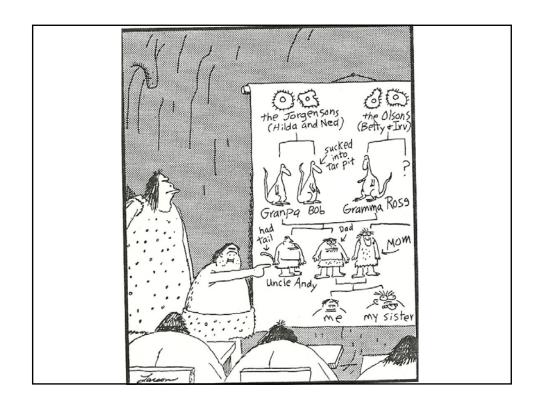
Of 1400 Human Genetic Diseases 1/3 are due to a single AA change.

4. About 30% of human proteins are **polymorphic**. *i.e.* in the human population slightly different sequences may be present but there is little or no difference in activity.

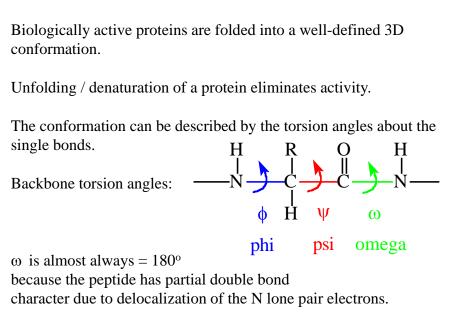
5. Proteins that perform the same function in 2 different species usually have similar sequences.

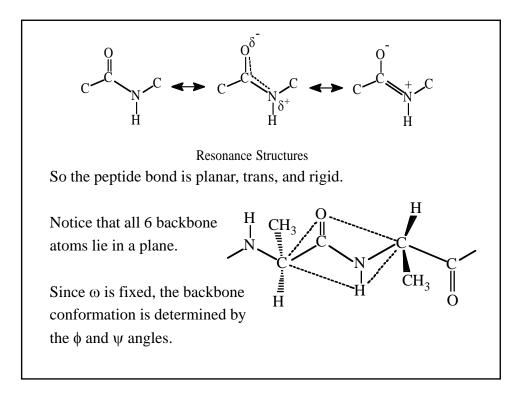

e.g. pig and cow insulin have been used to treat human diabetics.

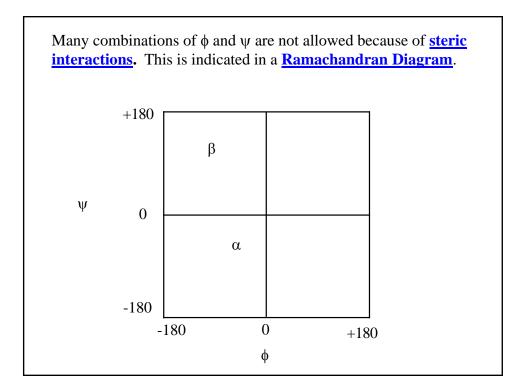

6. The greater the **<u>phylogenetic</u>** (evolutionary history) difference between 2 species, the greater the # of AA differences in their proteins.

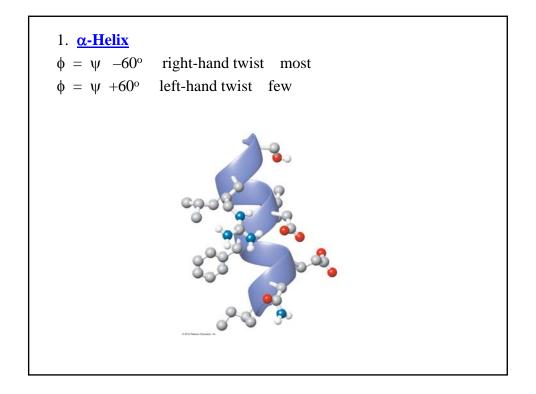

Sequen	ices of o	ytochr	ome c f	rom a v	vide div	versity o	of orgai	usms.			
Human	GDVEKGKKIF					ANKNKGI I WG					ATN
Chimpanzee	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOAPGYSYTA	ANKNKGIIWG	EDTLMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATN
Spider monkey	GDVFKGKRIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GOASGETYTE	ANKNKGIIWG	EDTIMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATN
Macaque	GDVEKGKKIF	IMKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAPGYSYTA	ANKNKGITWG	EDTIMEYLEN	PKKYIPGTKM	IFVGIKKKEE	RADLIAYLKK	ATT
Cow	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAPGFSYTD	ANKNKGITWG	EETIMEYLEN	PKKYIPGTKM	IFAG1KKKGE	REDLIAYLKK	ATN
Dog	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAPGESYTD	ANKNKGITWG	EETIMEYLEN	PKKYIPGTKM	IFAGIKKTGE	RADLIAYLKK	ATK
Gray whale	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAVGESYTD	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	IFAG1KKKGE	RADLIAYLKK	ATN
Horse	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAPGFTYTD	ANKNKGITWK	EETIMEYLEN	PKKYIPGTKM	IFAGIKKKTE	REDLIAYLKK	ATN
Zebra	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAPGESYTD	ANKNKGITWK	EETIMEYLEN	PKKYIPGTKM	IFAGIKKKTE	REDLIAYLKK	ATN
Rabbit	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLPGRKT	GQAVGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFAGIKKKDE	RADLIAYLKK	AT
Kangaroo	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGIFGRKT	GQAPGETYTD	ANKNKGIIWG	EDTIMEYLEN	PKKYIPGTKM	IFAGIKKKGE	RADLIAYLKK	AT
Duck	GDVEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTIMEYLEN	PKKYIPGTKM	IFAGIKKKSE	RADLIAYLKD	ATA
Turkey	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFAGIKKKSE	RVDLIAYLKD	ATS
Chicken	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFAGIKKKSE	RVDLIAYLKD	ATS
Pigeon	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGLFGRKT	GQAEGESYTD	ANKNKGITWG	EDTIMEYLEN	PKKYIPGTKM	IFAGIKKKAE	RADLIAYLKQ	ATA
King penguin	GDIEKGKKIF	VQKCSQCHTV	EKGGKHKTGP	NLHGIFGRKT	GQAEGESYTD	ANKNKGITWG	EDTIMEYLEN	PKKYIPGTKM	IFAGIKKKSE	RADLIAYLKD	AT:
Snapping turtle	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLNGLIGRKT	GQAEGESYTE	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	IFAGIKKKAE	RADLIAYLKD	ATS
Alligator	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKTGP	NLHGLIGRKT	GQAPGESYTE	ANKNKGITWG	EETLMEYLEN	PKKYIPGTKM	IFAGIKKKPE	RADLIAYLKE	ATS
Bull frog	GDVEKGKKIF	VQKCAQCHTV	EKGGKHKVGP	NLYGLIGRKT	GQAAGESYTD	ANKNKGITWG	EDTLMEYLEN	PKKYIPGTKM	IFAGIKKKGE	RQDLIAYLKS	ACS
Tuna	GDVAKGKKTF	VQKCAQCHTV	ENGGKHKVGP	NLWGLFGRKT	GQAEGYSYTD	ANKSKGIVWN	ENTIMEYLEN	PKKYIPGTKM	IFAGIKKKGE	RQDLVAYLKS	ATS
Dogfish	GDVEKGKKWF	VQKCAQCHTV	ENGGKHKTGP	NLSGLFGRKT	GQAQGESYTD	ANKSKGITWQ	QETLRIYLEN	PKKYIPGTKM	IFAGIKKKSE	RQDLIAYLKK	TAA
Starfish	GQVEKGKKIF	VQRCAQCHTV	EKAGKHKTGP	NLNGILGRKT	GQAAGESYTD	ANRNKGITWK	NETLFEYLEN	PKKYIPGTKM	VFAGLKKQKE	RQDLIAYLEA	ATK
Fruit fly	GDVEKGKKLF	VQRCAQCHTV	EAGGKHKVGP	NLHGLIGRKT	GQAAGFAYTD	ANKAKGITWN	EDTLFEYLEN	PKKYIPGTKM	I FAGLKKPNE	RGDLIAYLKS	AT
Silkmoth	GNAENGKKIF	VQRCAQCHTV	EAGGKHKVGP	NLHGFYGRKT	GQAPGESYSN	ANKAKGITWG	DOTLFEYLEN	PKKYIPGTKM	VFAGLKKANE	RADLIAYLKE	ST
Pumpkin	GNSKAGEKIF	KTKCAQCHTV	DKGAGHKQGP	NLNGLFGRQS	GTTPGYSYSA	ANKNRAVIWE	EKTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKE	AT/
Tomato	GNPKAGEKIF	KTKCAQCHTV	EKGAGHKEGP	NLNGLFGRQS	GTTAGYSYSA	ANKNMAVNWG	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQE	RADLIAYLKE	ATA
Arabidopsis	GDAKKGANLF	KTRCAQCHTL	KAGEGNKIGP	ELHGLFGRKT	GSVAGYSYTD	ANKQKGIEWK	DOTLFEYLEN	PKKYIPGTKM	AFGGLKKPKD	RNDLITFLEE	ETN
Mung bean	GNSKSGEKIF	KTKCAQCHTV	DKGAGHKQGP	NLNGL1GRQS	GTTAGYSYST	ANKNMAVIWE	EKTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKE	STA
Wheat	GNPDAGAKIF	KTKCAQCHTV	DAGAGHKQGP	NLHGLFGRQS	GTTAGYSYSA	ANKNKAVEWE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQD	RADLIAYLKK	ATS
Sunflower	GNPTTGEKIF	KTKCAQCHTV	EKGAGHKQGP	NLNGLPGRQS	GTTAGYSYSA	GNKNKAVIWE	ENTLYDYLLN	PKKYIPGTKM	VFPGLKKPQE	RADLIAYLKT	STA
Teast	GSAKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHGIFGRHS	GQAEGYSYTD	ANTKKNVLWD	ENNISEYLTN	PKKYIPGTKM	AFGGLKKEKD	RNDLITYLKK	ACE
Debaryomyces	GSEKKGANLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVVGRTS	GQAQGESYTD	ANKKKGVEWT	EQULSDYLEN	PKKYIPGTKM	AFGGLKKAKD	RNDLITYLVK	ATK
Candida	GSEKKGATLF	KTRCLQCHTV	EKGGPHKVGP	NLHGVFGRKS	GLAEGYSYTD	ANKKKGVEWT	BQTMSDYLEN	PKKYIPGTKM	AFGGLKKPKD	RNDLVTYLKK	ATS
Aspergillus	GDAK - GAKLF	QTRCAQCHTV	EAGGPHKVGP	NLHGLFGRKT	GQSEGYAYTD	ANKQAGVTWD	ENTLF SYLEN	PKKFIPGTKM	AFGGLKKGKE	RNDLITYLKE	STA
Rhodomicrobium	GDPVKGEQNF	KQ-CKICHQV	GPTAKNGVGP	BQNDVFGQKA	GARPGENY SD	AMKNSGLTWD	EATLOKYLEN	PKAWPGTKM	VFVGLKNPQD	RADVIAYLKQ	LSC
Nitrobacter	GDVEAGKAAF	NK-CKACHEI	GESAKNKVGP	ELDGLDGRHS	GAVEGYAYSP	ANKASGITWT	EAEFKEYIKD	PKAKVPGTKM	VFAGIKKDSE	LDNDWAYVSQ	FDK
Agrobacterium	GDVAKGEAAF	KR-CSACHAI	GEGAKNKVGP	QLNGI I GRTA	GGDPDYNY SN	AMKKAGLVWT	PQELRDFLSA	PKKKIPGNKM	ALAGISKPEE	LONLIAYLIF	SAS
Rhodopila	GDPVEGKHLF	HTICLICHT-	DIKGRNKVGP	SLYGVVGRHS	GIEPGYNY SE	ANIKSGIVWT	PDVLFKYTEH	PQKIVPGTKM	GYPG-QPDQK	RADIIAYLET	LK
Figure 3-23	Principles o	f Biochemis	try Ale								

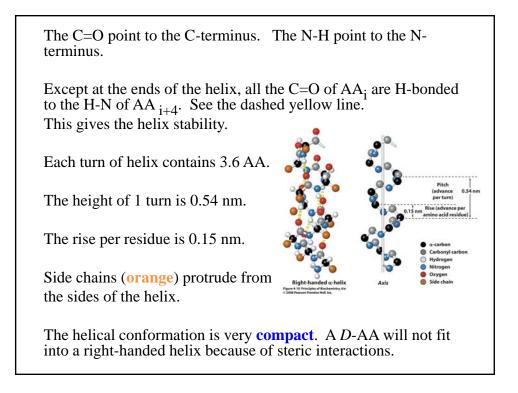
Hydrophobic residues are **blue** and hydrophilic residues are **red**.

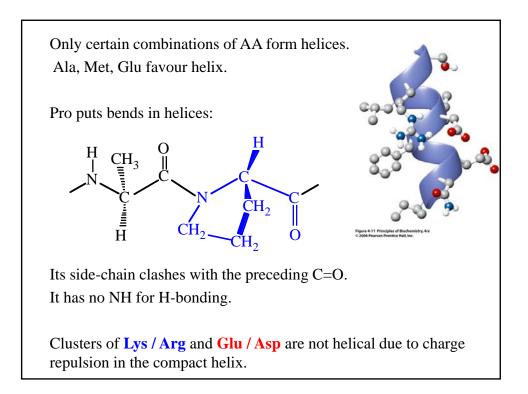

Note that humans and chimpanzees have identical sequences and spider monkeys are only different at 2 positions but human and yeast are very different.

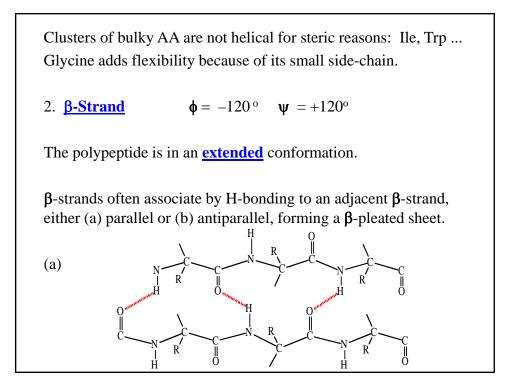


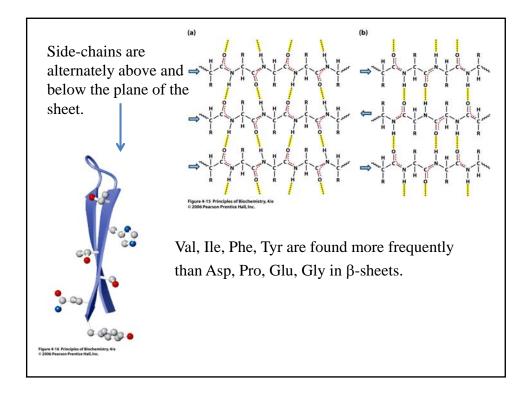


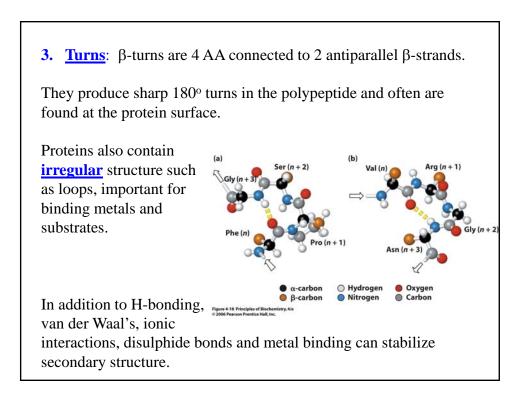


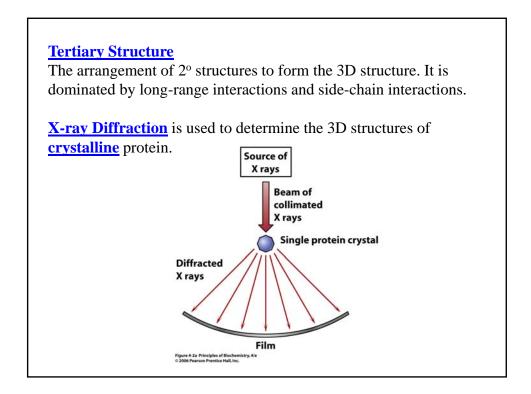

Secondary Structures of Proteins

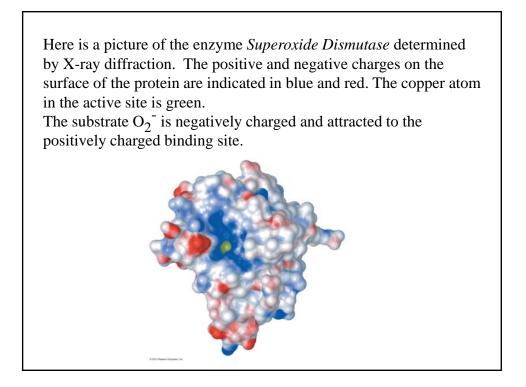




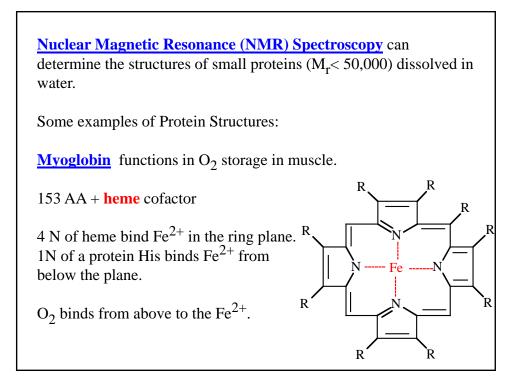


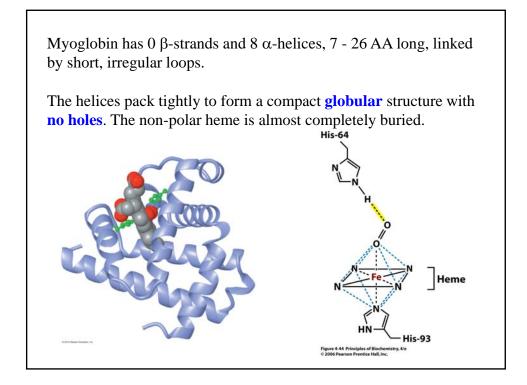


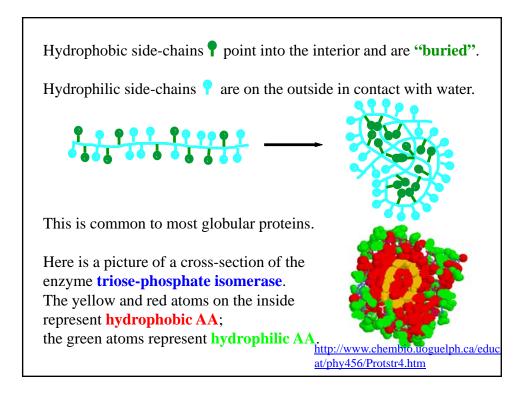


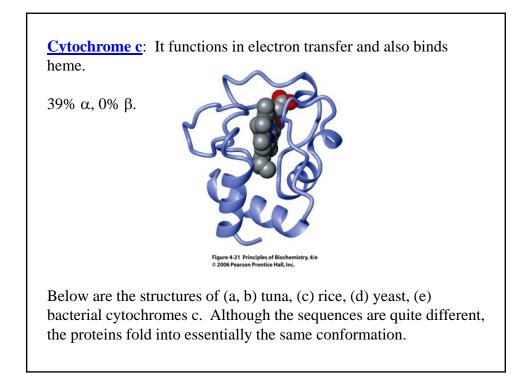


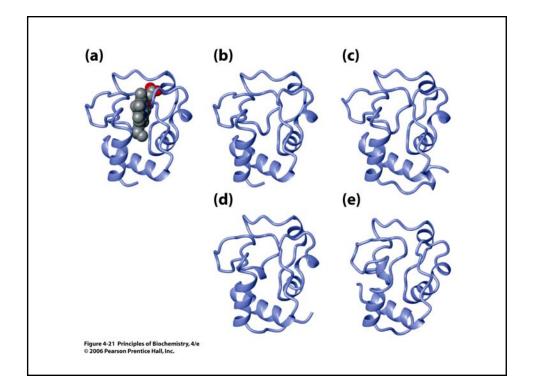


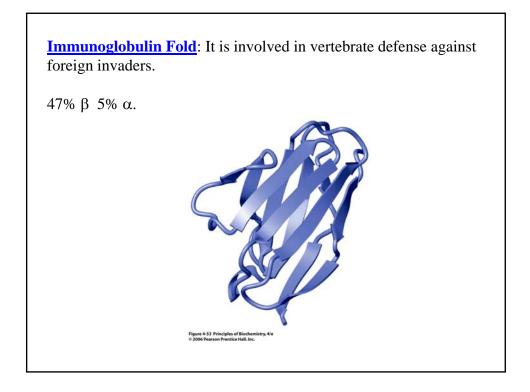


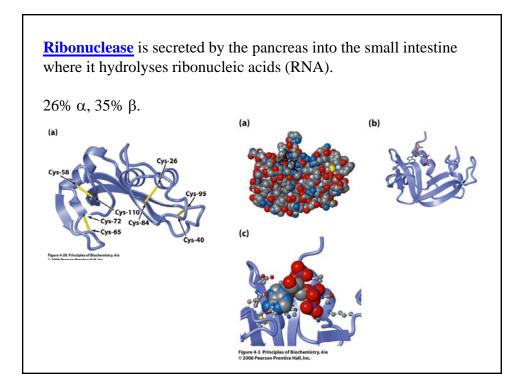












Many different protein sequences fold into a similar conformation giving rise to a small # of structural families. *e.g.* myoglobin & hemoglobin belong to the same family.

Different functions arise from subtle differences in conformation and / or critical AA.

The folded state is maintained by 4 Weak Interactions:

- 1. Hydrophobic (water entropy) effect.
- 2. H-bonding.
- 3. Electrostatic Interactions.
- 4. van der Waals Interactions

Plus

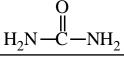
- 5. Disulphide bonds strong covalent.
- 6. Binding of metals and other ligands.

Proteins are marginally stable: ΔG unfolding ~ 20 - 70 kJ / mol = difference in free energy between folded and unfolded protein.

This means that breaking 4-20 H-bonds is enough to unfold a protein.

Proteins function *via* changes in conformation. They are dynamic, not static. Their atoms are constantly in motion.

The disruption of the 2^o, 3^o, and 4^o structure leading to loss of biological activity.

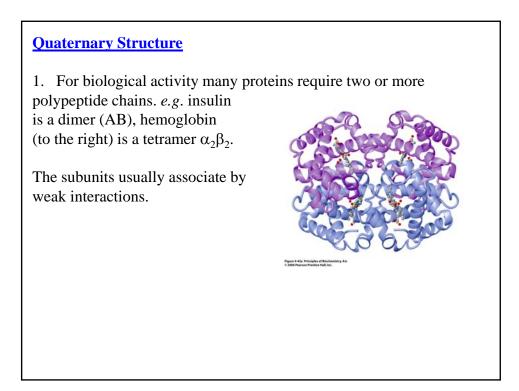

1. **Heat** breaks the weak interactions.

2. **Cold** – Water is more ordered at low temperatures so the entropy difference between the native and unfolded protein is lower at low T.

3. **pH** - Charge repulsion at pH extremes. *e.g.* curdling of milk

4. Mechanical: *e.g.* beat egg whites

5. 8M Urea disrupts H-bonding and hydrophobic interactions.



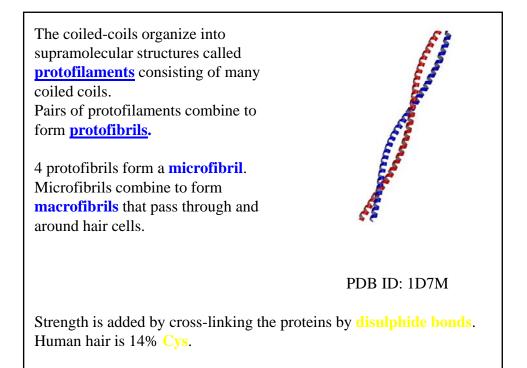
6. **Detergents** interact with the hydrophobic AA preventing their burial. *e.g.* SDS

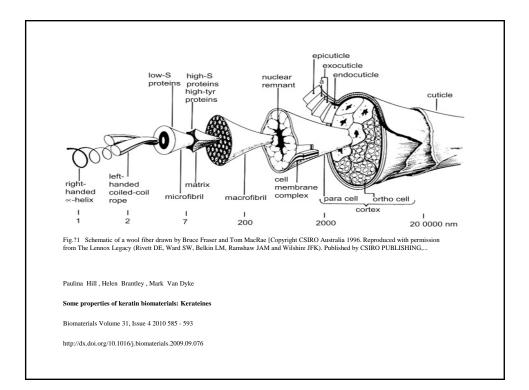
7. Organic solvents, ethanol – see 6 above.

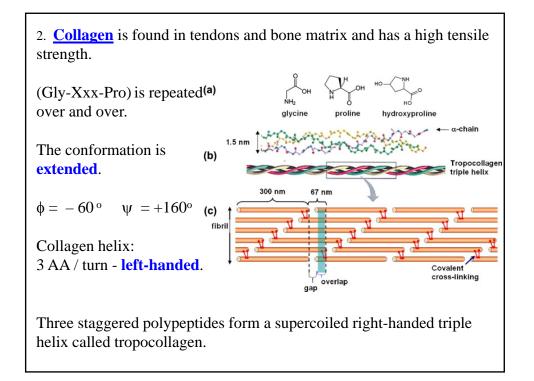
Some proteins will re-fold following denaturation. Others precipitate from solution.

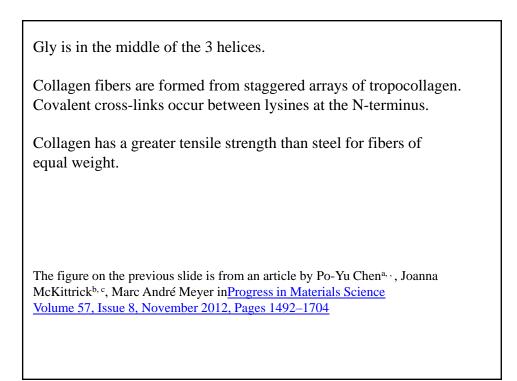
In vivo, some proteins require <u>molecular chaperones</u> to prevent aggregation and increase the efficiency of folding.

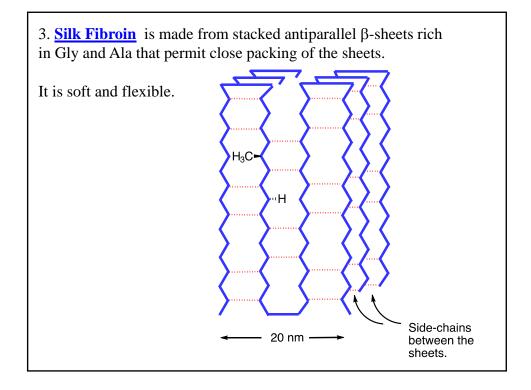
Fibrous Proteins


Elongated molecules built from a single type of 2^o structure.


1. <u> α -Keratin</u> is found in hair, feathers, nails and is a tough insoluble material. It also forms the outer layer of human skin.




http://www.wellesley.edu/


2 right hand α -helical chains form a left hand <u>supercoiled</u> rope.

