

Photosynthetic <u>autotrophs</u> use the energy of sunlight to convert low- $G \operatorname{CO}_2$ and $\operatorname{H}_2\operatorname{O}$ into energy-rich complex sugar molecules (*Ch. 10 p. 302*).

 $6CO_2 + 6H_2O \rightarrow (CH_2O)_6 + 6O_2$

This reaction has a large positive ΔH and a large negative ΔS .

The products have more enthalpy and are more ordered than the reactants.

<u>Heterotrophs</u> extract the chemical potential energy stored in sugars and other organic compounds and release CO_2 and H_2O .

$$(CH_2O)_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$

This reaction has a large negative ΔH and a large positive ΔS . The products have lost energy and are less ordered.

The G is released slowly in many steps using several metabolic pathways.

For any (bio)chemical reaction recall that $\Delta G = -RT \ln(K_{ea})$

where $\Delta G = G_P - G_S$

 $R = \text{Gas Constant} = 8.31 \text{ J} / \text{mol} \cdot \text{K}.$ T = Temp in K.

Under "standard" conditions: $\Delta G^o = -RT \ln(K_{eq})$

^o refers to 25° C, 55 M H₂O, [reactant] = 1M

Biochemists prefer pH 7 to pH 0 where $[H^+] = 1M$ $\Delta G^{'o} = -RT \ln(K'_{eq})$ where ' refers to pH = 7. If $K'_{eq} = 19$ at 25°C then, $-RT \ln(K'_{eq}) =$ $-(8.315 \text{ J/mol K})(298 \text{ K})(\ln 19) = -7,296 \text{ J/mol} = -7.3 \text{ kJ/mol}$ If reactants and products are present at 1M we can predict the direction of the reaction: $\frac{K'_{eq}}{2} \frac{\Delta G'^o}{10} \frac{10}{10} \frac{10}{$

For a chemical reaction **at** equilibrium, the rates of the forward and reverse reactions are equal and no net change is occurring but no work can be done and $\Delta G = 0$.

For this reaction, Glc-1-P Glc-6-P $K'_{eq} = \frac{[Glc-6-P]}{[Glc-1-P]} = 19$ $\Delta G'^o = -7.3 \text{ kJ/mol}$ When [Glc-6-P] = [Glc-1-P] = 1 M, the reaction will spontaneously convert Glc-1-P into Glc-6-P until equilibrium is established. $Glc-1-P \longrightarrow Glc-6-P$

3

Notes:

1. Both ΔG and $\Delta G'^o$ are *theoretical* maxima. Some G is always lost as heat.

2. Even if $\Delta G'^o$ is positive, the reaction can go forward if ΔG is negative. *i.e.* if the second term is negative and bigger than $\Delta G'^o$.

3. ΔG 's of <u>sequential</u> reactions are additive because ΔG is **path-independent**. For example,

 $Glc - 1-P + H_2O \implies Glc + P_i -21.06 kJ$ $Glc + P_i \implies Glc -6-P + H_2O +13.76 kJ$ $Glc -1-P \implies Glc -6-P -7.3 kJ$

The **synthesis** of ATP is a highly endergonic reaction and the **hydrolysis** of ATP is a highly exergonic reaction.

$$ATP + H_2O \implies ADP + P_i$$

$$\Delta G'^{O} = -30 \text{ kJ} / \text{mole}$$

How does ATP store **chemical potential energy** or why does hydrolysis release this energy? There are 4 parts to the answer:

1. Relief of charge repulsion.

One molecule with 4 negative charges is converted into 2 molecules with 2 negative charges each.

7

Other nucleoside triphosphates are energetically equivalent to ATP and are also used by cells. *e.g.* GTP

These are usually made by the following reactions catalysed by *nucleoside diphosphate kinases*:

 $ATP + NDP \implies ADP + NTP \quad \Delta G'^{O} = 0$

The following reactions release about the same amount of G as ATP hydrolysis and also can be used as energy "*currency*":

$ADP + H_2O \rightarrow AMP + P_i$	$ATP + H_2O \rightarrow AMP + PP_i$
$\Delta G'^{o} \sim -33 \text{ kJ/mole}$	$\Delta G'^{o} \sim -46 \text{ kJ/mole}$

For biochemists, the test cells are always kept at pH 7 and reported as: \mathcal{E}^{0}

A Table of \mathcal{E}^{0} values, where the half reactions are written as reductions, can be used to predict the directions of Redox reactions.

The more positive is the ε^{0}	TABLE 10.4 Standard reduction potentials of some important biological half-reactions	
	Reduction half-reaction	E°' (V)
(bottom of the Table) the stronger	Acetyl CoA + CO ₂ + H ^{\oplus} + 2e ^{\oplus} \rightarrow Pyruvate + CoA	-0.48
(bottom of the fuble) the stronger	Ferredoxin (spinach), $Fe^{\bigcirc} + e^{\bigcirc} \rightarrow Fe^{\bigcirc}$	-0.43
is the oxidizing agent <i>i.e.</i> The	$2 H^{\oplus} + 2e^{\odot} \rightarrow H_2 (at pH 7.0)$	-0.42
is the onlaiging agoint not The	α -Ketoglutarate + CO ₂ + 2 H [⊕] + 2 e^{\ominus} → Isocitrate	-0.38
reactions go as written in the	Lipoyl dehydrogenase (FAD) + 2 H [⊕] + 2e ^(g) → Lipoyl dehydrogenase (FADH ₂)	-0.34
	NADP \oplus + 2 H \oplus + 2e \oplus → NADPH + H \oplus NADP \oplus + 2 H \oplus + 2e \oplus → NADPH + H \oplus	-0.32
Table.	$NAD^{\circ} + 2 R^{\circ} + 2e^{\circ} \rightarrow NADR + R^{\circ}$	-0.32
	Glutathione (oxidized) + 2 H $^{\odot}$ + 2e $^{\odot}$ \rightarrow 2 Glutathione (reduced)	-0.23
	$FAD + 2 H^{\oplus} + 2e^{\ominus} \rightarrow FADH_2$	-0.22
	$FMN + 2 H^{\oplus} + 2e^{\ominus} \rightarrow FMNH_2$	-0.22
In combining pairs of half	Acetaldehyde + 2 H $^{\oplus}$ + 2e $^{\ominus}$ \rightarrow Ethanol	-0.20
	Pyruvate + 2 H^{\odot} + 2 e^{\odot} \rightarrow Lactate	-0.18
reactions the more positive \mathcal{E}°	Oxaloacetate + 2 H ^{\oplus} + 2e ^{\oplus} → Malate	-0.17
	Cytochrome b ₅ (microsomal), $Fe^{\circ} + e^{\circ} \rightarrow Fe^{\circ}$	0.02
reactions are written as reductions	Fumarate + 2 H $^{\odot}$ + 2e $^{\odot}$ → Succinate	0.03
(, -, +)	Cytochrome $h(mitochondrial)$, $F_{e}^{\oplus} + e^{\ominus} \rightarrow F_{e}^{\oplus}$	0.04
(e on the left) and the more	Cytochrome $c_1, F_e^{\bigoplus} + e^{\bigoplus} \rightarrow F_e^{\bigoplus}$	0.22
nagativa c' o ara writtan ag	Cytochrome c, $F_{e}^{(0)} + e^{(0)} \rightarrow F_{e}^{(0)}$	0.23
negative 🖉 are written as	Cytochrome $a, Fe^{\oplus} + e^{\ominus} \rightarrow Fe^{\oplus}$	0.29
	Cytochrome $f_{e} \operatorname{Fe}^{\bigcirc} + e^{\bigcirc} \rightarrow \operatorname{Fe}^{\bigcirc}$	0.36
oxidations (e^{-} on the right).	Plastocyanin, $Cu^{2+} + e^{\ominus} \rightarrow Cu^+$	0.37
	$NO_3^{\bigcirc} + 2 H^{\odot} + 2e^{\bigcirc} \rightarrow NO_2^{\bigcirc} + H_2O$	0.42
	Photosystem I (P700)	0.43
	$Fe^+ + e^- \rightarrow Fe^-$	0.77
	/25/2 + a n - + 28 - + n20 Photosystem II (P680)	1.1
	Table 10-4 Principles of Biochemistry, 4/e	
	© 2006 Pearson Prentice Hall, Inc.	

Another way to do this is to reverse the sign of the $\mathbf{\mathcal{E}}^{\mathbf{0}}$ value for the reaction that is written as an oxidation, and then add the $\mathbf{\mathcal{E}}^{\mathbf{0}}$ values. NADH \longrightarrow NAD⁺ + 2e⁻ + H⁺ $\mathbf{\mathcal{E}}^{\mathbf{0}} = +0.32$ Acetaldehyde + 2H⁺ + 2e⁻ \longrightarrow Ethanol $\mathbf{\mathcal{E}}^{\mathbf{0}} = -0.197$ Acetaldehyde + H⁺ + NADH \longrightarrow Ethanol + NAD⁺ $\Delta \mathbf{\mathcal{E}}^{\mathbf{0}} = +0.32$ V + (-0.197 V) = + 0.123 V

Under non-standard conditions:

$$\mathcal{S} = \mathcal{S}^{0} + \frac{RT}{nF} \quad \ln [\text{electron acceptor}] \\ \text{[electron donor]}$$
Remember, $\Delta \mathcal{S}^{0} = \mathcal{S}^{0}_{\text{acceptor}} - \mathcal{S}^{0}_{\text{donor}}$