

Minor Bases – The most common are methylated bases. Endocyclic <i>e.g.</i> 7-methyl-G		
The free bases are hydrophobic and have low water solubility at pH 7.		
The exocyclic NH_2 are non-ionizable over pH 0 – 14, just like the NH_2 in Asn and Gln. At low and high pH the endocyclic N's ionize and the bases become more soluble.		
		pK _a 's
С	N ³	4.5
U	N ³	9.5
А	N^1	3.8
G	N^1	9.4
	N^7	2.4

Nucleoside Naming:

Ribose + Adenine = Adenosine Ribose + Guanine = Guanosine Ribose + Cytosine = Cytidine Ribose + Uracil = Uridine Ribose + Hypoxanthine = Inosine

deoxyRibose + Thymine = Thymidine
deoxyRibose + Adenine = deoxyAdenosineetc

Adenosine is a local hormone and neuromodulator. Other nucleosides are mainly functional as components of nucleotides.

Adenosine 5'-monophosphate, Adenylate, AMP

Guanosine 5'-monophosphate, Guanylate, GMP

Cytidine 5'-monophosphate, Cytidylate, CMP

Uridine 5'-monophosphate, Uridylate, UMP

Inosine 5'-monophosphate, Inosinate, IMP

deoxythymidine 5' monophosphate, Deoxythymidylate, dTMP deoxyadenosine 5' monophosphate, Deoxyadenylate, dAMP etc.

Ribonucleic acid - RNA – functions in the storage of genetic information for *some* viruses *e.g.* influenza and HIV.

RNA is primarily a carrier of genetic information and is involved in some catalysis.

RNA - contains *D*-Ribose and uridine instead of thymine.

The sequences of nucleotides is always written 5' to 3', left to right.

pApCpGpTpA = ACGTA

5' end
$$\xrightarrow{A \ C \ G \ T \ A}_{R \ P \ P \ P \ OH}$$
 $\xrightarrow{3' end}_{5'}$

Fewer than ~ 50 is an **oligonucleotide**.

Greater than ~ 50 is a **polynucleotide = nucleic acid**.

DNA 3D Structure In 1953, it was known that:
1. DNA is the component of chromosomes that carries genetic information.
2. # dA = # dT & # dC = # dG
Watson & Crick determined the 3D structure of B-DNA in 1953 by X-ray diffraction.

Usually A-form, right-handed, antiparallel, double helices are formed.

A rich variety of structures is possible.

4. MicroRNA: About 22 base pair double stranded RNA molecules that regulate the expression of mRNA. They show potential as new types of drugs.

Occurs in $1 / 10^7$ Cytosines per 24 h.

This can be repaired by **enzymes**. They recognize that U does not belong in DNA.

Imagine if DNA contained U instead of T. How would enzymes recognize correct *vs.* incorrect U? Thus, DNA uses T and not U.

Other deaminations occur in $1 / 10^9$ bases per 24 h.

2. Depurination occurs in $1/10^5$ purines per 24 h.

Release of the base allows formation of the linear aldehyde of ribose. This can also be repaired.

4. X-rays and other radiation can also damage DNA.

e.g. Potassium-40 is a long-lived naturally-occuring radioactive isotopes present at about 0.01%. It's half life is 1.2 billion years.

- 5. Oxidative Damage by H_2O_2 and free radicals: OH[•], O[•]
- 6. Chemicals nitrous acid,
- alkylating agents
- base analogs