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ABSTRACT

This Ph.D. thesis proposes an approach to classify faults that commonly occur in a

High Voltage Direct Current (HVDC) power system. These faults are distributed through-

out the entire HVDC system. The most recently published techniques for power system

fault classification are the wavelet analysis, two-dimensional time-frequency representation

for feature extraction and conventional artificial neural networks for fault type identifica-

tion. The main limitation of these systems is that they are commonly designed to focus on

a group of faults involved in a specific area of a power system. This thesis introduces a

framework for fault classification that covers a wider range of faults.

The proposed fault classification framework has been initiated and developed in the

context of the HVDC power system at Manitoba Hydro, which uses what is known as the

TranscanTM system to record and archive fault events in files. Each fault file includes

the most active signals (there are 23 of them) in the power system. Testing the proposed

framework for fault classification is based on fault files collected and classified manually

over a period of two years.

The fault classification framework presented in this thesis introduces the use of the

rough membership function in the design of a neural fault classification system. A rough

membership function makes it possible to distinguish similar feature values and measures

the degree of overlap between a set of experimental values and a set of values representing

a standard (e.g., set of values typically associated with a known fault). In addition to fault

classification using rough neural networks, the proposed framework includes what is known

as a linear mean and standard deviation classifier. The proposed framework also includes a

classifier fusion technique as a means of increasing the fault classification accuracy.
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1 Introduction

This thesis introduces a rough membership neural network (rmNN) approach to fault

classification for high voltage direct current (HVDC) power systems. In addition to rmNNs,

a number of other methods such as autocorrelation, cross-correlation, Wavelets, FFT, IFFT,

low pass filter, phase shifting, derivatives and coding have been used in this research to an-

alyze and characterize the 23 most active signals recently recorded at the Dorsey Station,

Manitoba, Canada. The capstone of the proposed classification system is a form of classi-

fier fusion that combines rmNNs and a linear mean and standard deviation (LMD) based

classification method. Classifier fusion has been introduced as a means of improving fault

classification accuracy.

1.1 Motivation

With the rapid increase of electrical power consumption by utilities and industries, more

stability and efficiency in power delivery is needed. A report by CEIDS (Consortium for

Electric Infrastructure to Support a Digital Society) shows that the U.S. economy is losing

between $104 billion and $164 billion a year due to power outages [6]. The analysis and

classification of power system disturbances are becoming mandatory in working towards

minimizing and even eliminating power outages. Typically, an effort is made to identify

the most significant patterns of system faults that provide input to a region-based analysis

system for decision support. Operators or engineers make use of the summary reports to

operate and maintain a power system.
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1.2 Thesis Outline

This thesis is organized as follows:

• Chapter 1 (this chapter) is an introduction for this thesis.

• Chapter 2 briefly introduces power system fundamentals and a brief overview of

power system faults.

• Chapter 3 reviews the methods commonly used in power system fault identification.

• Chapter 4 gives an overview of fault identification techniques commonly used in the

electrical power industry.

• The main parts of the research completed for this thesis are presented in Chapter 5 to

Chapter 9.

• Chapter 10 gives a conclusion.
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2 Power System Fundamentals

This section briefly introduces the power system fundamentals [76, 21] required for an

understanding of power system faults.

2.1 Power Systems

Electric power transmission was originally developed with direct current (DC). The

availability of transformers and the development and improvement of induction motors at

the beginning of the 20th century, led to the use of alternating current (AC) transmission.

Even so, d.c transmission is generally used for the following reasons:

1. An overhead DC transmission line with its towers can be designed to be less costly

per unit of length than an equivalent AC line designed to transmit the same level of

electric power. However the DC converter stations at each end are more costly than

the terminating stations of an AC line and so there is a break-even distance above

which the total cost of DC transmission is less than the cost of AC transmission. In

addition, DC transmission line can have a lower visual profile than an equivalent AC

line, which contributes to a lower, perceived environmental impact. An environmen-

tal advantage to a DC transmission line over an AC line is the presence of lower

electromagnetic fields.

2. If transmission is by underground cable, the break-even distance is less than overhead

transmission. It is not practical to consider AC cable systems exceeding 50 kilome-

ters but hundreds of kilometers of underground DC cable transmission systems are

feasible.
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3. Some AC electric power systems are not synchronized with neighboring networks

even though the physical distance between them is quite small. This occurs in Japan

where half the country has a 60Hz network and the other has a 50Hz system. It

is physically impossible to connect the two by direct AC methods for the purpose

of exchanging electric power between them. However, if a DC converter station is

located in each system with an interconnecting DC link, it is possible to transfer

power flow from one system to the other.

Figure 1: Standard graphical symbols for valves and bridges [76].

The integral part of an HVDC power converter is the valve or valve arm. It may be

non-controllable if constructed from one or more power diodes in series or controllable if

constructed from one or more thyristors in series. Figure 1 depicts the International Elec-

trotechnical Commission (IEC) graphical symbols for valves and bridges (valve groups).

The standard bridge or converter connection is defined as a 2-way connection consisting of

six valves or valve arms, which are shown in Figure 2. Electric power flowing between an

HVDC valve group and an AC system is three phase. When electric power flows into a DC
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valve group from an AC system, it flows through a rectifier. If power flows from the DC

valve group into the AC system, it flows through an inverter.

Figure 2: Electric circuit configuration of the basic 6-pulse valve group with its converter
transformer in star-star connection [76].

The most common building block for HVDC valves is the thyristor (see Figure 3 for

characteristics of a thyristor). In the ‘off’ state, a thyristor blocks the flow of current as long

as the reverse or forward breakdown voltages (Vbr or Vbo) are not exceeded. A thyristor can

be made to attain an ‘on’ state if it is forward biased (Vak > 0) and a small positive ‘gate’

voltage is applied between the gate and the cathode. This ‘firing pulse’ need not be present

once the thyristor is ignited, although in practice, a train of pulses in rapid succession is

often maintained over an entire conduction period. Once turned on, a thyristor follows

its ‘on’ characteristic as shown in Figure 3. Note that the forward voltage drop in the on

condition is relatively small and an actual thyristor characteristic closely follows that of

an ideal switch (horizontal line for the ‘off’ state, vertical y axis for the ‘on’ state). The

thyristor can also turn on if the voltage across it exceeds the forward break-over voltage

Vbo. This mechanism is often used to protect a thyristor against excessive voltage.
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Figure 3: Thyristor characteristic [21].

The normal state transition diagram for a thyristor is shown in Figure 4. The thyristor

attains its ‘off’ state when the current through it attempts to reverse. One other factor that

is necessary for a successful turn-off is that a thyristor must not be subject to a forward

biasing voltage too soon after the current has extinguished. Otherwise, there is a possibility

of re-ignition even in the absence of a pulse. Re-ignition occurs when the charge carriers

in the semi-conductor have not had sufficient time to be re-absorbed. This critical time is

referred to as the turn-off time toff and often expressed in terms of a so called “extinction

angle” γ = ωtoff , if AC waveforms of angular frequency ω are involved. This phenomenon

in which a thyristor fails to attain its forward blocking state, ‘off’ state, is referred to as

commutation failure.

The 6-pulse bridge is the most widely used HVDC converter configuration. Figure 5

shows a typical 6-pulse thyristor bridge with the AC supply, the converter transformer Xc

and the DC-side smoothing reactance. A 6-pulse bridge consists of an upper and a lower

half as seen in Figure 6(a). It is assumed initially that the converter transformer is ideal

so that there is no leakage inductance. It is also assumed that ideal thyristors behave like

diodes, i.e., zero voltage drop when the device is on and an ideal open circuit when off.

6



The device is in a conducting state as soon as the forward biased voltage (Vak > 0) causes

current to flow in the forward (anode to cathode) direction and no ‘firing pulse’ is required.

Figure 4: State transition diagram for thyristor switching [21].

Figure 5: Three phase (6-pulse) bridge.

The upper bridge half is a standard maximum select circuit that selects the largest of

the three voltages Va, Vb and Vc at the common cathode terminal. This can be proved by

contradiction. To see this , assume Va < Vb but that Vp = Va because D1 is assumed to

be conducting. Then D3 should also conduct since it is forward biased because Vb > Va,

hence, Va = Vb, which is a contradiction. The only possibility that does not lead to a

contradiction is for Vp to be equal to the largest of the three voltages.
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Similarly the lower bridge half causes a voltage Vn = min(Va, Vb, Vc) to appear at the

common anode terminal of devices D2, D4 and D6. Thus the total DC side voltage as

can be seen from Figure 6(b) must be the difference Vdc = Vp − Vn. The waveforms for

the bridges are shown in Figure 7. The current on the AC side in phase a is Id when D1

conducts and −Id when D4 conducts. The conduction period for D1 can be determined

from the waveforms as the period in which the voltage Va of phase a is the largest of the

three phase voltages. Similarly, D4 is on when Va is at its smallest in magnitude.

(a)

(b)

Figure 6: Analysis of three phase (6-pulse) bridge.

The sequence of conduction for the valves in the upper bridges is D1, D3, D5, D1, D3,

D5, and so on, since each successive phase dominates over a 120◦ interval. In the bottom

bridge, the sequence is D2, D4, D6, D2, D4, D6, and so on. Considering the two halves

together, each valve enters conduction 60◦ after its predecessor in the sequence D1, D2,

D3, D4, D5, D6, D1, D2, D3, D4, D5, D6, and so on.
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Figure 7: Three phase diode bridge waveforms (no overlap) [21].

Without any series inductance in the circuit, the current instantaneously rises to the

value ±Id on turn-on and makes an instantaneous transition to zero on turn-off when the

current transfers to the next phase. The valve voltage is an important parameter in deter-

mining the valve rating. The voltage in the forward direction across valve 1 is determined

to be Va − Vp, and while the valve is conducting this voltage is zero.

In practice, transformer leakage inductance must be considered. With the inclusion of

transformer reactance Xc shown in Figure 8, the current can no longer make an instan-

taneous transition from one phase to another because that would require a discontinuous
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change in inductor current as is evidenced from the waveforms shown in Figure 9. In this

case, when valve 1 is turned on, there is an “overlap” between valve 1 and valve 5, i.e.,

valve 1 is turned on while valve 5 starts to be turned off. The overlap interval is represented

by the angle µ. During this interval, the DC-side voltage Vp (similarly Vn) is the average of

the two conducting phase voltages, i.e., Va and Vc. Also note from Figure 9 that the valve

voltage waveform now has additional commutation “spikes”.

Figure 8: Three phase (6-pulse) bridge: transformer inductance included.

The thyristors in a controlled bridge are idealized, i.e., a thyristor behaves like a diode,

except that mere forward bias (positive anode-cathode voltage) is not sufficient to ensure

conduction. The additional condition to attain the conducting state is a required gate, ‘firing

pulse’ that must be present in addition to a forward bias. Hence, the main difference in

analyzing the operation of a thyristor bridge is that the maximum (or minimum) select

action only commences on the issue of a firing pulse. The thyristor valves are fired in the

sequence T1, T2, T3, T4, T5, and T6. The elapsed angle from the earliest instant at which

a thyristor may conduct (i.e., the point at which forward bias first appears) to the instant at

which the firing pulse is issued and the valve commences conduction is called the “firing”

or “delay” angle and is denoted by the Greek letter α.

In the waveforms shown in Figure 10, α = 15◦ has been used. Also note that in

Figure 10, the pulse duration is a full 120◦. This is not strictly necessary, since a thyristor
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Figure 9: Three phase diode bridge waveforms [21].

valve that has been triggered on continues conducting until the current through it attempts

to flow in the reverse direction. However, in HVDC systems, it is common practice to

keep pulsing continuous over a valve’s nominal conduction interval of 120◦ (in the form

of a train of high-frequency pulses) in case a premature current zero occurs because of

waveform distortions. Note that for this value of the firing angle (α = 15◦), the DC voltage

is positive and the power flows from the AC to the DC side. This is the “rectifier” mode

of operation. Note that if continuous current is maintained in the circuit by some external

device, the firing angle α can be made to have a value in excess of 90◦. In this situation, the

voltage Vp turns out to be negative and Vn is positive, which causes the DC voltage to be
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negative. Thus, power transfer is from the DC side to the AC side, although the direction

of the DC current remains the same. This is the “inverter” mode of operation.

Figure 10: Controlled thyristor bridge waveforms: α = 15◦ [21].
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2.2 Power System Faults

A power system fault is the result of an electrical disturbance. At the Manitoba Hydro

Dorsey Station, the TranscanTM recording system is deployed as a power system mon-

itoring tool. It archives 31 power signals in a fault file whenever a power system fault

occurs. A typical screen snapshot of 31 signals recorded by TranscanTM is shown in Fig-

ure 11. TranscanTM is capable of recording power system faults in a real-time manner.

However, this system cannot identify the type and cause of a recorded fault. Engineers at

the Dorsey Station must visually assess all the 31 signals then manually log the cause of the

fault into the database of the TranscanTM system and consolidate this information into an

archived fault file. The graphical user interface (GUI) of the TranscanTM system is shown

in Figure 12. The 23 most active and informative signals referenced in the proposed fault

classification system are listed in Table 1.

Figure 11: 31 signals in the “Valve Current Commutation Failure” fault.
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Figure 12: The TranscanTM system GUI.

Table 1: Most active power system signals.
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Table 2: Common power system faults.

The twelve most common power system faults are listed in Table 2. An information

table for fault classification cannot be established without a good understanding of the

mechanism underlying each fault and the behavior of the signal associated with each fault.

• AC Voltage Disturbance. This is a bus error that will induce some other faults such

as valve current commutation failure, line fault and valve current blocked. Normally,

three AC phase voltages are sinusoidal signals that have a fixed 120◦ phase delay

relative to each other. The AC voltage line will be impacted by different disturbances

such as a falling tree hitting a transmission line, heavy snowfall or severe wind, and

sometimes radiation or magnetic field interference.

• Valve Current Closed/Blocked/Deblocked. This fault happens in one or two valve

groups. There are three valve groups in poles 1 and 2, and two valve groups in

poles 3 and 4. Vg11, Vg12, Vg13 designate pole 1; Vg21, Vg22, Vg23, pole 2;

Vg31, Vg32, pole 3; Vg41, Vg42, pole 4. A failure of a 6-pulse signal in a valve

group will shut down or block the valve currents. An AC voltage disturbance also

has the same effect. The restart of the 6-pulse signal will unblock the valve currents.
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• Line Fault. This fault is due to the AC voltage disturbance, the pole line short to the

ground or the energy of a DC line decreases (line force retard) causing a pole line

voltage flashover or shutdown. The power system will restart in a short time if the

control system responds quickly.

• Valve Current Commutation Failure. This happens when a valve is not turned off

successfully because the valve is subject to a forward biasing voltage too soon after

the current has been extinguished. This causes a minor valve current distortion for a

very short period of time.

• Pole Voltages/Currents Closed/Blocked/Deblocked. This happens when all the valve

groups in one pole are closed, blocked or deblocked.

• Phase Current Arc Back. This happens only in one valve group. The valve current

increases sharply for a short period of time and then shuts down. This type of power

system fault is caused when valve lines short together or short to ground.

• Parallel Operation. This is not a fault but an indicator that the line maintenance is in

progress. When a pole current line needs to be tested, the current will be switched

to another pole line. Inside the power station, the current of this pole line goes down

to 0; outside the station, the current provided does not decrease, and the pole voltage

remains normal.

• Pole Current Oscillation. This fault is caused by oscillation of the pole current order.

Usually with this fault, the pole voltage remains relatively constant.

• Normal Affected by Another Pole. This fault happens occasionally. There is a bi-

pole power system at the Dorsey Station. Pole 1 and pole 2 compose one active

station. Pole 3 and pole 4 are usually for a back-up station. If a fault, especially a
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line fault, occurs in pole 1, TranscanTM will generate 2 fault files: one for pole 1,

and one for pole 2 even in the case where pole 2 is absolutely normal. This occurs

because the bus signals, pole voltages and currents are shared and reordered in both

pole 1 and pole 2 fault files.

• Asymmetric Protection. If the pulse to open the valve arrives in an abnormal se-

quence, this fault will cause more than two valves to open at the same time. The

circuit control system will then force this valve group to close. The most noticeable

event associated with this fault is that the 6-pulse signal will have 7 cycles of severe

oscillation and will be closed until the control system restarts the valve group.

• Disturbance on DC Voltage. At the Dorsey Station, the AC voltage is converted

from the DC voltage. The long distance transmission of DC voltage is easier and

the interference problem is greatly decreased. However, sometimes snow on DC

transmission lines or windy weather will cause changes in the DC voltages and a DC

voltage disturbance is recorded.
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3 Mathematics Underlying Fault Classification and Recog-
nition Techniques

This section gives an overview of the mathematics underlying fault classification and

fault recognition techniques.

Nomenclature

Symbol Brief Explanation

f̄(t) Complex conjugate of f(t)
f(t) � g(t) Cross-correlation of two complex functions f(t) and g(t)
f(t) ∗ g(t) Convolution of f(t) and g(t)
Rf(t) Autocorrelation function of a continuous real function f(t)
γ(s, τ) Continuous wavelet transform
Ψs,τ(t) A single basic wavelet, a so-called mother wavelet
ϕ(η, τ) A kernel function in Time-Frequency Representation

algorithm (TFR)
A(η, τ) Ambiguity plane of a signal in Time-Frequency Representation

algorithm (TFR)
P (t, f) The two-dimensional Fourier transform of the product of the

ambiguity plane A(η, τ) of the signal and a kernel function
ϕ(η, τ)

ρ-correlation Correlation between multi-classifiers
FFT Fast Fourier Transform
DFT Discrete Fourier Transform
CWT Continuous Wavelet Transform
DWT Discrete Wavelet Transform
IDWT Inverse Discrete Wavelet Transform
MRA (Wavelet) Multi-Resolution Analysis
TFR Time-Frequency Representation
ANN Artificial Neural Network
MLF Multi-Layer Feedforward (ANN)
RBF Radial Basis Functions
BP Backprobagation
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CG Conjugate Gradient
LM Levenberg Marquardt
OLS Orthogonal Least Square
FP False Positive (error)
FN False Negative (error)
TER Total Error Rate
TSR Total Success Rate

3.1 Correlation Theory

Correlation is the degree to which two or more quantities are linearly associated. The

cross-correlation of two complex functions f(t) and g(t) of a real variable t, denoted f � g,

is defined by (1) [46]

f � g = f̄(−t) ∗ g(t), (1)

where ∗ denotes convolution and f̄ is the complex conjugate of f(t). Since convolution is

defined as (2)

f(t) ∗ g(t) =

∫ ∞

−∞
f(τ)g(t − τ)dτ, (2)

it follows that

f(t) � g(t) =

∫ ∞

−∞
f̄(−τ)g(t − τ)dτ. (3)

Let τ ′ ≡ −τ , dτ ′ = −dτ , then (3) is equivalent to

f � g =

∫ −∞

∞
f̄(τ ′)g(t + τ ′)(−dτ ′)

=

∫ ∞

−∞
f̄(τ)g(t + τ)dτ. (4)
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Similarly, for a complex function f(t), the autocorrelation ρf(t) is defined by (5) [46]

ρf (t) ≡ f � f

= f̄(−t) ∗ f(t)

=

∫ ∞

−∞
f̄(τ)f(t + τ)dτ, (5)

Let series {ai, i = 0, 1, ..., N − 1} be a periodic sequence, then the autocorrelation of

the sequences, sometimes called the periodic autocorrelation, is written as (6) [78]

ρi =

N−1∑
j=0

ajaj+i, (6)

where the final subscript is understood to be taken modulo N . The cross-correlation and

autocorrelation discard phase information, returning only the power, and are therefore irre-

versible operations.

The most important property of correlation is that f � f is maximum at the origin

(x = 0), in other words,

∫ ∞

−∞
f(u)f(u + x)du ≤

∫ ∞

−∞
f 2(u)du. (7)

It is efficient to classify the waveforms of fault signals for differentiating one fault from

others by applying the cross-correlation and autocorrelation operations.

3.2 Conventional Fast Fourier Transform (FFT)

Fourier methods such as the Fourier series and Fourier integral are used in analyzing

continuous time signals. That is, Fourier methods are applicable in systems where there is

a characteristic signal s(t) defined for all values of t in the interval [-∞, ∞].
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A Fourier transform decomposes a waveform into a sum of sinusoids of different fre-

quencies [3]. The signal s(t) in the time domain is decomposed into the sum of its sinusoids

S(f) in the frequency domain by,

S(f) =

∫ ∞

−∞
s(t)e−j2πftdt, (8)

where j =
√−1.

In this thesis, the focus is on the application of what is known as the Discrete Fourier

Transform (DFT) that is applicable to discrete-time signals. A discrete time signal s[n]

is defined for values of n in the interval [-∞, ∞]. A discrete Fourier transform is used in

studying finite collections of sampled data {s0, ..., sN−1} relative to the sequence {S0, ..., SN−1}.

The DFT is given by,

Sk =

N−1∑
n=0

sne−j 2π
N

nk, k = 0, 1, ..., N − 1. (9)

A fast Fourier transform results from the application of a particular algorithm that can

compute the DFT more rapidly than other available algorithms [3].

3.3 Wavelet Transform

The big disadvantage of a Fourier expansion is that it has only frequency resolution

and no time resolution. This means that although we might be able to determine all the

frequencies present in a signal, we do not know when they are present [73]. The wavelet

transform provides a means of overcoming the shortcomings of the Fourier transform. In

wavelet analysis, the use of a fully scalable modulated window makes it possible to know

the exact frequency and the exact time of occurrence of this frequency in a signal. In other

words, a signal can simply be represented as a point in the time-frequency space. The
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window is shifted along the signal and for every position the spectrum is calculated. Then

this process is repeated many times with a slightly shorter (or longer) window for every

new cycle. In the end, the result will be a collection of time-frequency representations of a

signal, all with different resolutions.

Wavelets provide a form of multiresolution analysis resulting from the collection of

representations produced by applying a set of functions of different scales to a signal. Large

scales are used to paint the big picture, while small scales expose the details. Thus, going

from large scale to small scale is analogous to zooming in.

The Continuous Wavelet Transform (CWT) in general is formally defined by (10) [27]:

γ(s, τ) =

∫
f(t)Ψ∗

s,τ(t)dt, (10)

where ∗ denotes complex conjugation. Equation (10) shows how a function f(t) is de-

composed into a set of basis functions called wavelets. The variables s and τ , scale and

translation, are the new dimensions after the wavelet transform. The inverse wavelet trans-

form can be written as shown in (11) [27]:

f(t) =

∫ ∫
γ(s, τ)Ψs,τ(t)dsdτ. (11)

The wavelets Ψs,τ (t), sometimes called child wavelets, are generated from a single

basic wavelet Ψ(t), the so-called mother wavelet, by scaling (parameter s) and translation

(parameter τ ) [27]. For a wavelet Ψs,τ(t), a family of curves with parameters s and τ can

be formed as:

Ψs,τ(t) =
1√
s
Ψ(

t − τ

s
), (12)

where s is the scale factor, τ is the translation factor and 1√
s

is the factor for energy nor-

malization across the different scales.
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Unlike the Fourier transform or other transforms, the wavelet basis function, Ψ(t) is

not specified. The theory of wavelet transforms deals with the general properties of the

wavelets and wavelet transforms only. It defines a framework for designing wavelets that

satisfy different applications.

When discrete wavelets are used to transform a continuous signal, functions of the form

shown in (13) are selected [4].

Ψj,k(t) =
1√
sj
0

Ψ(
t − kτ0s

j
0

sj
0

), (13)

which is normally a piecewise continuous function, where j and k are integers and s0 > 1

is a fixed dilation step. The translation factor τ0 depends on the dilation step. The effect

of discretizing the wavelet is that the time-scale space is now sampled at discrete intervals.

We usually choose s0 = 2 so that the sampling of the frequency axis corresponds to dyadic

sampling as shown in Figure 13. This is a very natural choice for computers, the human

ear and music for instance. For the translation factor, it is usual to choose τ0 = 1 so that

there is also a dyadic sampling of the time axis.

Figure 13: Localization of discrete wavelets in the time-scale space on a dyadic grid [73].

Practical applications require Discrete Wavelet Transforms (DWT). The discrete wavelets

can be made orthogonal to their own dilations and translations by special choices of the
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mother wavelet. There is a large class of wavelet functions for which the set of child

wavelets is an orthogonal basis. The simplest of these is the Haar wavelet. An arbitrary

signal can be reconstructed by summing the orthogonal wavelet basis functions weighted

by wavelet transform coefficients.

The DWT and Inverse DWT (IDWT) of a signal f(t) are defined in (14) and (15),

respectively.

γj,k =

∫ ∞

−∞
f(t)Ψj,k(t)dt. (14)

f(t) =
∑

j

∑
k

γj,kΨj,k(t), (15)

Such wavelets give rise to a Wavelet Multiresolution Analysis (MRA) derived as fol-

lows.

Define Wj to be a set of all signals f(t) which can be synthesized from the child

wavelets Ψj,k(t), −∞ < k < ∞. These spaces are orthogonal to each other and we

can synthesize any signal f(t) using (16)

f(t) =

∞∑
j=−∞

fj(t),

fj(t) =
∞∑

k=−∞
γj,kΨj,k(t), (16)

where fj(t) is in the space Wj .

There is another way to express this idea. Define Vj to be the set of all signals, f(t),

which can be synthesized from the child wavelets Ψi,k(t) where i < j and −∞ < k < ∞
as in (17)

f(t) =

j−1∑
i=−∞

∑
k

γi,kΨi,k(t). (17)
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The spaces Vj are nested inside each other, as follows:

{0} ⊂ ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ L2. (18)

As j goes to ∞, Vj enlarges to become all energy signals (L2). As j goes to −∞, Vj shrinks

down to only the zero signal. It is clear from the definitions that every signal in Vj+1 is the

sum of a signal in Vj and Wj because

f(t) =

j∑
i=−∞

∑
k

γi,kΨi,k(t) =

j−1∑
i=−∞

∑
k

γi,kΨi,k(t) +
∑

k

γj,kΨj,k(t). (19)

Hence, it can be written:

Vj+1 = Vj + Wj . (20)

This shows that the spaces Wj are the differences (in the subspace sense) between

adjacent spaces Vj+1 and Vj. The spaces Vj and Wj can be visualized as shown in Figure 14.

The term Wavelet Multiresolution Analysis (MRA) refers to the analysis of signals in

relation to a nested sequence of subspaces like the one shown in Figure 14. For example,

to decompose a signal, f(t), in space V0 a few times, use the following decomposition:

V0 = V−1 + W−1

= V−2 + W−2 + W−1

= V−3 + W−3 + W−2 + W−1

= V−4 + W−4 + W−3 + W−2 + W−1. (21)
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This leads to various decompositions:

f(t) = A1(t) + D1(t)

= A2(t) + D2(t) + D1(t)

= A3(t) + D3(t) + D2(t) + D1(t)

= A4(t) + D4(t) + D3(t) + D2(t) + D1(t), (22)

where Di(t), in W−i, is called the detail at level i and Ai(t), in V−i, is called the approxi-

mation at level i.

Figure 14: MRA: nested subspaces.

Figure 15 gives an example of how the decomposition can be carried out in MatlabTM

using the wavemenu interface. There are a number of sample signals, which can be used

for a demonstration analysis. The signal sumsin is the sum of two sine waves, and is

decomposed four times in this example.

Notice that different aspects of the signal appear at different levels of the details and

approximations in Figure 15.

The space Vj has a very important property related to time compression by factors of 2.

The MRA Two Scale Property asserts that a signal f(t) is in the space Vj if and only if,
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(a) (b)

(c) (d)

Figure 15: An example of Wavelet Multiresolution Analysis (MRA) decomposition.

f(2t) is in the next space Vj+1. Therefore, investigation of the multiresolution analysis

leads to a scaling function, a pair of discrete time filters, and a perfect reconstruction filter

bank, which can be used to calculate the DWT quickly. In other words, a wavelet has a

band-pass like spectrum. Given that compression in time is equivalent to stretching the

spectrum and shifting it upwards, a time compression of the wavelet by a factor of 2 will

stretch the frequency spectrum of the wavelet by a factor of 2 and also shift all frequency

components up by a factor of 2. Using this insight, the finite spectrum of a signal can then

be covered with the spectra of dilated wavelets in the same way that the signal is covered

in the time domain with translated wavelets. Alternatively, if one wavelet can be seen as a

band-pass filter, then a series of dilated wavelets can be seen as a band-pass filter bank.
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The filter bank can be built in several ways. One way is to build many bandpass filters

to split the spectrum into frequency bands. Another way is to split the signal spectrum

into two (equal) parts, a lowpass and a highpass part. The low-pass part can be split into

a lowpass and a highpass part again. This splitting process continues until the details of a

signal that has been exposed are satisfied. In this way, an iterated filter bank is created as

shown in Figure 16.

Figure 16: Splitting the signal spectrum with an iterated filter bank [73].

Four mother wavelets often used in wavelet analysis are shown in Figure 17. The

difference between these wavelets is mainly due to the different lengths of filters that define

the wavelet and scaling functions [36].

The scaled (dilated) and translated (shifted) versions of the Daubechies mother wavelet

are shown in Figure 18. Daubechies wavelets belong to a special class of mother wavelets

and are actually used most often for detection, localization, identification and classification

of power disturbances.

Transient signals in a power system are non-stationary, time-varying voltage and current

signals. Wavelet transforms are feasible to provide efficient and localized analysis of non-

stationary, fast transient fault signals for power systems. More detailed discussion on the
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application of wavelets analysis for classification of fault signals for power systems will be

addressed in Section 4.2.

Figure 17: Four mother wavelets often used in wavelet analysis [36].

Figure 18: Scaled and translated versions of the D4 wavelet [36].
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3.4 Time-Frequency Representation (TFR) Theory

In addition to applying wavelet theory to power system fault classification, the Time-

Frequency Representation (TFR) algorithm is becoming attractive to scientists and engi-

neers in the power industry. This section will introduce the basics of TFR theory, and

Section 4.3 will present the TFR in classifying power system faults.

TFR P (t, f) can be expressed as a two-dimensional Fourier transform of the product

of the ambiguity plane A(η, τ) of the signal and a kernel function ϕ(η, τ) [11]:

P (t, f) =

∫ ∞

−∞

∫ ∞

−∞
A(η, τ)ϕ(η, τ)ej2πηte−j2πfτdηdτ, (23)

where t represents time, f represents frequency, η represents continuous frequency shift,

and τ represents continuous time lag. The ambiguity plane A(η, τ) for a given signal s(t)

is defined as:

A(η, τ) =

∫ ∞

−∞
s(t)s∗(t + τ)ej2πηtdt, (24)

where s(t) represents the signal at time t, and s(t+ τ) represents the signal at a future time

t + τ , and the s∗(t + τ) means the complex conjugate of s(t + τ).

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is either 0 or 1).

Feature points are ambiguity plane points of locations (η, τ) where ϕi[η, τ ] = 1.

3.5 Rough Set Theory

This section briefly presents the basic rough set approach to the approximation of

sets [56], which provides a foundation for classifying power system fault signals. The

rough set approach introduced by Zdzisław Pawlak [41, 47, 48, 49, 50, 51, 52] and elab-

orated by others [32, 42, 43, 44, 53, 56, 62, 67] provides the grounds for approximating a
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set X . Let B denote a set of functions that represent the features (traditionally, also called

attributes in rough set theory [50]) of objects in a set U . The basic approach in rough set

theory is to use an equivalence relation ∼B [57]

∼B= {(x, x′) ∈ U × U | ∀f ∈ B, f(x) = f(x′)} ,

to define the partition of a set U into non-empty, pairwise disjoint subsets (equivalence

classes). An equivalence class in a partition is denoted by [x]B, where

[x]B = {x′ ∈ U | ∀f ∈ B, f(x) = f(x′)} .

The equivalence classes in a partition form a new set, denoted by U/ ∼B , where

U/ ∼B= {[x]B | x ∈ U} ,

for a given set of objects U . Let X ⊆ U be a set of objects of interest. After the partition

of the set U has been defined, the lower and upper approximations of the set X are defined

relative to the equivalence classes in the partition.

3.5.1 Preliminaries

The notation and terminology in Table 3 is important for an understanding of basic

rough set theory. Let U,F denote a set of sample objects and a set of functions, respectively.

The functions in F represent the features (attributes) of the objects in U . Assume that

B ⊆ F , the notation (U, B) denotes an information system, which is usually represented

in table form.
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Table 3: Rough Set Theory Symbols.

Symbol Interpretation

U Set of sample objects,
F Set of functions representing object features,
B B ⊆ F ,
X X ⊆ U ,
x x ∈ X ,
∼B ∼B= {(x, x′) ∈ U × U | ∀x ∈ U, f(x) = f(x′)},
[x]B [x]B = {x′ ∈ U |x′ ∼B x},

U/ ∼B U/ ∼B= {[x]B | x ∈ U}, a partition of U ,
B∗X

⋃
x:[x]B⊆X [x]B , B-lower approximation of X ,

B∗X
⋃

x:[x]B∩X �=∅[x]B , B-upper approximation of X ,
BndBX BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X}.

In keeping with current notation for equivalence relations, ∼ denotes an equivalence

relation on a set U [16]. The ∼ symbol is used extensively to express equivalence [5, 14,

16].

The notation U/ ∼ denotes a partition of U . Let [x] denote a class belonging to U/ ∼,

where

[x] = {x′ ∈ U | x ∼ x′}.

The classes of a partition are disjoint, i.e., if [x] , [y] ∈ U/ ∼, then [x]∩ [y] = ∅. In addition,

every object in U is in only one class in U/ ∼.

The use of ∼B drew attention to the role of the set B in partitioning a set U . The basic

idea here is that the relation ∼B provides a classification of objects according to knowledge

contained in the system (U , B) [33].

The class [x]B is called a B-elementary set [47, 50]. If (x, x′) ∈ ∼B (also written

x ∼B x′), then x and x′ are said to be indiscernible with respect to all functions in B, or

simply, B-indiscernible. In the case where B = {f}, ∼{f} denotes an equivalence relation

defined relative to a set of feature f and [x]{f} denotes an equivalence class in U/ ∼{f}.

For simplicity, write ∼f to denote ∼{f}.
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A sample X ⊆ U can be approximated from information contained in B by construct-

ing a B-lower approximation

B∗X =
⋃

x:[x]B⊆X

[x]B,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B .

The B-lower approximation B∗X is a collection of classes of sample elements that can be

classified with full certainty as members of X . By contrast, the B-upper approximation

B∗X is a collection of classes representing both certain and possibly uncertain knowledge

about X because it is possible for B∗X to have one or more classes that are not subsets of

X . An approximation boundary BndBX is defined by

BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X} .

The set BndBX contains all objects in the upper approximation B∗X that are not in the

lower approximation B∗X . Whenever B∗X � B∗X , the sample X has been classified

imperfectly, and is considered a rough set. In other words, a set X is a rough set, if and

only if, the boundary BndBX is not empty.

3.5.2 Information Tables

For computational reasons, a syntactic representation of information systems is usually

given in the form of tables. Discovering objects in the composition of a class [x]B ⊆
U/ ∼B, x ∈ U in the partition U/ ∼B in the system (U,F) is accomplished by gathering

together inside the class all of those objects that have matching function values. Identifying

the classes in U/ ∼B is greatly aided by a table representation of (U,F).
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3.5.3 Decision Systems

Table 4: Decision system notation.

Symbol Interpretation

d Decision function,
U Set of sample objects,
F Set of functions representing features,

(U , F , d) Decision system.

Of particular interest is the extension of information systems made possible by includ-

ing a function d representing what is known as a decision attribute in rough set theory. A

decision is defined by a function d : X −→ Vd, where Vd is the range of d. In addition,

(U,F , d) denotes a decision system. It is typical in rough set theory to start with an infor-

mation system (U,F) and introduce a decision function d as a means of separating sample

objects in U into decision classes, i.e., sets of objects representing a particular value of d.

Decision systems are also represented by tables.

3.5.4 Rough Membership Function

Because it is important to determine the extent to which a set of sample signals match a

class of signals representing a particular power system fault, the rough membership func-

tion defined by (25) has been used in this research. The degree of overlap between X and

[x]B containing x can be quantified with the rough membership function (rmf),

µB
X : U → [0, 1] defined by µB

X(x) =
|[x]B ∩ X|

[x]B
. (25)

The rough membership function has proven to be very useful in measuring the extent that

classes of signals for known faults overlap with sets of signals representing power system
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faults to be classified. This is explained in detail in Section 7, where the rmf is used in the

design of a neural network useful in classifying power system faults.

3.6 Artificial Neural Network (ANN) Theory

This section briefly presents the architecture for a convention neural network.

3.6.1 ANN Basic Structures

A neural network is a collection of neurons (or simply nodes) arranged in one or more

layers with links that facilitate communication between the neurons [29]. Each node re-

ceives the weighted sum of the signals coming either from general input to the network or

from other nodes and propagates the weighted output to other nodes as shown in Figure 19.

A node consists of two basic parts, namely, the summing function and the activation

function. The weighted input to a node are integrated with a summing function. The

resulting sum then provides input to a dedicated activation function that is a source of output

for the node. Many activation functions are step change, ramp, sigmoid and Gaussian

functions.

Figure 19: A single node NN basic construction [29].
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Node output is usually weighted. The values of the weights are determined via a train-

ing process [22]. ANN nodes can be connected in different ways according to the selected

ANN architecture. One of the most common ANN structures is realized by arranging the

nodes in sequential layers. The first layer is called the input layer. Intermediate layers are

called hidden layers. The final layer of nodes is called the output layer. The output of each

node is distributed to other nodes in the network. The simplest form of ANN is the multi-

layer feedforward network (MLF), where node output from either input layer or a hidden

layer is transmitted to the nodes in next layer (see Figure 20(a)). In a radial basis network

(RBF), there are three layers, input layer, specially designed hidden layer and output layer

(see Figure 20(b)). In a recurrent network, node output not only is transmitted forward to

the next layer but also back to connection units connected to nodes in the previous layer

(see Figure 20(c)).

Figure 20: Selected ANN architectures: (a)-MLF-network (b)-RBF-network (c)-Elman
network.

The MLF network is the most common type of network because of its easy devel-

opment, efficient training and direct implementation. For MLF networks, the signals are

distributed from the input layers toward the output in one direction.

The RBF network is a special form of feed-forward network utilizing radial basis func-

tions in its hidden layer rather than using sigmoid activation as in normal MLF networks.
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The radial basis function ensures each of these hidden neurons has a symmetrical response

around its selected center vector. Each of the output nodes accumulates the weighted sum

of all hidden neurons. The weights connecting both layers are adjusted through the train-

ing process using the Least Square optimization. This simple topological structure and

fast training paradigm provide a powerful tool for various applications including function

approximation and classification purposes [9, 38].

Recurrent networks, on the other hand, employ one or more feedback output results

from a certain layer to the foregoing one(s). Unlike the normal MLF networks, recurrent

networks can distinguish temporal patterns due to the memory action of the context input.

A popular recurrent network is the Elman network. The special feature of this network is

that one or more feedback output results are extracted from the hidden neurons and fed to

the input layers [15, 25].

3.6.2 ANN Design

The design of an artificial neural network generally consists of the following four pro-

cedures [29]:

1. Feature Extraction.

The aim of this step is to find out the more relevant variables that can be nominated as

the selected input to the desired network. Those variables should have a distinguish-

able configuration for the required task along the entire range of the dimensional

space so that they can help to perform the required convergence through training.

This set of input should be selected carefully in order to realize the minimum suf-

ficient number of input training sets, since these redundant input training sets may

burden optimization procedure resulting in a weak or non-stable ANN. Also, the out-

put of the neural network is selected according to the required task and its aimed

decisions.

37



2. ANN Preliminary Construction.

The preliminary configuration of an ANN is arbitrarily begun with a predefined set of

input and output. The most critical problem in constructing the ANN is to choose the

number of hidden neurons. Using too few hidden neurons may prevent the training

process to converge, while using too many hidden neurons may extend the training

time and cause overfitting. Thus, it is convenient to start the design with a small set of

hidden nodes. Unfortunately, this tends to be a trial-and-error process. The number

of hidden neurons can be slightly adjusted upward and the network is retrained in an

attempt to improve neural classification with a known set of input training sets. This

process is repeated until the lowest acceptable training error is reached.

3. Data Preparation and Training Process.

Training the ANN can be generally described as a certain mathematical optimiza-

tion process that leads to an optimum set of network parameters. At this stage, a

sufficient number of training cases should be collected covering the entire range of

the dimensional space of the required task. The majority of ANN-based applica-

tions use supervised training methods, where the output from the collected training

patterns are employed to regulate the conversion through the training process. The

Delta Rule was introduced in 1960 as the first practical attempt for training the ANN

Perceptron (simple ANN structure without hidden layers). However the Perceptron

has limited capabilities dealing only with those linearly separable problems. In 1986,

Back Propagation (BP) training was introduced for MLF networks. This algorithm

has been nominated as the first practical and most common training method for sep-

arable or non-separable applications [18, 40].

The basic BP training algorithm was then enhanced with different mathematical im-

provements. First of all, the momentum term was added during the convergence

38



process. Momentum makes it possible to perturb the weight changes resulting from

the normal BP calculations to avoid falling into a local minimum. Also, considering

adaptive learning rates can accelerate the training process. Other figures for training

paradigms were developed as well depending upon different mathematical criteria

such as the Conjugate Gradient (CG) and the Levenberg Marquardt (LM). Both al-

gorithms employed numerical optimization techniques in order to optimize the initial

set of network parameters. The Elman network, as a special MLF network, can be

trained similarly with the aforementioned training paradigms. For RBF networks,

Orthogonal Least Square (OLS) learning was employed in order to get a compact

network structure.

4. Testing of the Trained ANN.

The final step in the design process is to evaluate the resulting networks thoroughly

via a well prepared group of test cases. These test cases should differ from those

used cases in the training stage. Also the test cases should cover all circumstances

that may affect the system performance for the entire range of the dimensional space.

3.7 Classifier Fusion Theory

Classifier combination has received considerable attention in the past decade and is now

an established pattern recognition offspring. It has been recognized for some time that the

classical approach to designing a pattern recognition system, which focuses on finding the

best classifier has a serious drawback. Any complementary discriminatory information that

other classifiers may encapsulate is not tapped. Multiple expert fusion aims to make use of

many different designs to improve classification performance. Over the last few years, a

myriad of methods for fusing the output of multiple classifiers have been proposed.
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Let D = {D1, D2, ..., DL} be a set of classifiers and �n be the feature space. All

classifiers produce soft class labels. We assume that dj,i(x) ∈ [0, 1] is an estimate of

the degree of set ci offered by classifier Dj for an input x ∈ �n, i = 1, 2; j = 1, ..., L.

There are two possible classes C = {c1, c2} and L classifiers D = {D1, D2, ..., DL} [34].

Simple fusion methods are the most obvious choice when constructing a multiple classifier

system [30, 35, 68, 69, 2], i.e., the support for class ci, di(x), yielded by the set of classifiers

is [34]

di(x) = F(d1,i(x), ..., dL,i(x)), i = 1, 2, (26)

where F is the chosen fusion method. Here, it is necessary to study the fusion methods

compared in [1]:

• minimum

• maximum

• average

• median

• majority vote

• oracle

For the majority vote, the first step is to harden the individual decisions by assigning

class labels Dj(x) = c1 if dj,1(x) > 0.5, and Dj(x) = c2 if dj,1(x) ≤ 0.5, j = 1, ..., L.

Next, the class label most represented among the L (label) output is chosen.

The oracle model is an abstract fusion model. In this model, if at least one of the

classifiers produces the correct class label, then the team produces the correct class label

too. Usually, Oracle is used in comparative experiments.
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In order to achieve a high overall performance of the classification function, the perfor-

mance of each individual classifier has to be optimized prior to using it within any fusion

schemes. That is, the fusion scheme will be able to improve the overall classification result

relative to the performance of the individual, optimized classifiers. If several classifiers

with only marginal performance are being used, the results cannot necessarily be expected

to reach the high performance sought. On the other hand, if several classifiers are used that

work exceptionally well, any further gains will be exceedingly hard to accomplish because

the opportunity for diversity will be diminished. Individual classifier optimization can be

performed by selecting object features, appropriate parameters, and classifier structure that

governs the performance.

After designing a classifier fusion scheme, a confusion matrix M can be generated for

each classifier using labeled training data [20]. The confusion matrix lists the true classes

c versus the estimated classes ĉ. Because all classes are enumerated, it is possible to obtain

information not only about correctly classified states (N 00 and N11), but also about false

positives (N 01) and false negatives (N10). A typical two-class confusion matrix M is shown

in Figure 21.

Figure 21: Typical 2-class confusion matrix [20].

From the confusion matrix of each classifier, the false positive (FP) error, the false

negative (FN) error, the total error rate (TER), and the total success rate (TSR) can be
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calculated for the classifier. These error rates are defined as in (27) to (30). The total error

rate (TER) or the total success rate (TSR) is typically used as a simple measure for overall

performance of a classifier.

FP =
N01

N00 + N01
. (27)

FN =
N10

N10 + N11
. (28)

TER =
N01 + N10

N00 + N11 + N01 + N10
. (29)

TSR = 1 − TER. (30)

Although each individual classifier’s performance is very important to the performance

of a classifier fusion, the dependency between the classifiers to be fusioned also affects

the fusion results. Some studies [61] have shown that the degree of correlation between

the classifiers adversely affects the performance of the subsequent classifier fusion. If two

classifiers agree everywhere, the fusion of the two classifiers will not achieve any accuracy

improvement no matter what fusion method is used. For classifier fusion design, classifier

correlation analysis is, therefore, equally as important as the classifier performance analy-

sis. Based on the classifier output on the labeled training data, a 2x2 matrix N as shown

in Figure 22 can be generated for each classifier pair. The off-diagonal numbers directly

indicate the correlation degree of the two classifiers. The smaller the two off-diagonal num-

bers are, the higher the correlation between the two classifiers will be. The proportion of

specific agreement, which here is called the correlation, ρ2, is defined in [61] as

42



ρ2 =
2 × NFF

NTF + NFT + 2 × NFF
, (31)

where, as further shown in Figure 22, NTT implies that both classifiers classified correctly;

NFF means both classifiers classified incorrectly; NTF represents the case of the 1st clas-

sifier classified correctly and the 2nd classifier classified incorrectly; and NFT stands for

the 2nd classifier classified correctly and the 1st classifier classified incorrectly. In order for

classifier fusion to be effective in performance improvement, the correlation, ρ2, has to be

small (low correlation).

Figure 22: Correlation analysis matrix [20].

Consider the output of two classifiers as enumerated in Table 5. The calculation of ρ2

yields ρ2 = 0.36. Had classifier 2 been completely redundant to classifier 1, the correlation

would have been ρ2 = 1.

The 2-class correlation coefficient can be extended to n different classifiers [20]. The

notion that redundancy is described by the individual true and false answers of the clas-

sifiers is retained from the 2 class correlation analysis. The larger the ρ-correlation, the

larger the redundancy. In particular, the ρ-correlation goes to zero if the individual in-

correct answers are disjoint for all answers. That implies that there is always at least

one correct answer from some classifier for any case available. The ρ-correlation coef-
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Table 5: Results from experiment for 2 classifiers [20].

Answer classifier 1 Answer classifier 2
T T
T F
F T
T F
F F
F F
T F
F T
T T
T T
T T
T T
T F
T T
T T
F T

ficient gets larger as the number of wrong answers are the same for many answers. Let

Nf be the number of experiments where all classifiers give a wrong answer; N c
i be the

number of experiments with combinations of correct and incorrect answers; c is the com-

bination of correct and incorrect answers (for 2 classifiers: c ∈ {wr, rw}; for 3 classi-

fiers: c ∈ {wwr, wrw, rww, wrr, rwr, rrw} etc.); n is the number of classifiers. The

ρ-correlation coefficient is then [20]

ρn =
nNf∑2n−2

i=1 N c
i + nNf

. (32)

If N is the number of experiments and N t is the number of experiments for which all

classifiers had a right answer, (32) can more conveniently be rewritten as [20]

ρn =
nNf

N − Nf − N t + nNf
. (33)

44



Consider a 3-classifier example, which is the same as the previous 2-classifier example

except that a third classifier was added that will get answer wrong in 50% of the cases. The

calculation of ρn yields: ρn = 0.21.

Although the newly added classifier has poor performance, its addition reduces the

overall redundancy of the classifier assembly.

Note that the ρ-correlation does not record redundancy for any particular classifier

(for n > 2) but for a set of classifiers only. For illustrative purposes, consider two sim-

plistic cases shown in Table 6 and Table 7 [20].

Table 6: Output for 3 classifiers (case 1) [20].

Answer Answer Answer
classifier 1 classifier 2 classifier 3
T F F
F T F
F T T
T T T
F F F

The ρ-correlation is ρn = 0.5.

Table 7: Output for 3 classifiers (case 2) [20].

Answer Answer Answer
classifier 1 classifier 2 classifier 3
T F T
F T T
F T F
T T T
F F F

The ρ-correlation is ρn = 0.5.
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Obviously the third classifier is different in the two example cases above. However,

the degree of correlation is the same because it does not matter whether it is correlated to

the first or to the second classifier. Rather, it is only relevant that it is correlated to the

combination of the first two classifiers. Note that the calculation of the ρ-correlation factor

can be performed on multi-class scenarios as well because the factor is only concerned with

the correctness of the outcome.
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4 Technology Review of Power System Fault Classifica-
tion (PSFC)

Nomenclature

Symbol Brief Explanation

JF i(η, τ) Fisher’s discriminant score
ki In the single-class separator case, kernel ki is dedicated to

discriminate class i from all remaining classes i + 1, ..., N .
In the group-class separator case, kernel ki is dedicated to
discriminate a class group i, i + 1, ..., i + m from all remaining
classes i + m + 1, i + m + 2, ..., i + m + N

PSFC Power System Fault Classification
MRA (Wavelet) Multi-Resolution Analysis
ANN Artificial Neural Network
DWT Discrete Wavelet Transform
PNN Probability Neural Network
PQ Power Quality
MRD (Wavelet) Multi-Resolution Decomposition
FDF Fisher’s Discriminant Function

4.1 Wavelet Applications in Power Systems

The main difficulty in dealing with power engineering phenomena is the extreme vari-

ability of the signals and the necessity to operate on a case–by–case basis. Another aspect

of power disturbance signals is often localized temporally or spatially (e.g., transients in

power systems). This requires the efficient use of analysis methods, which are versatile

enough to handle signals in terms of their time-frequency localization. Wavelets localize

the information in a time-frequency plane. In particular, wavelets are capable of trading

one type of resolution for another, which makes them especially suitable for the analysis
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of non-stationary signals. Considerable work has been done in applying the wavelet trans-

form to power systems in analyzing and processing the voltage-current signals to make a

real-time identification of transients in a fast and accurate way [17].

(a) Evolution of wavelet publications in power systems.

(b) Percentage of wavelet publications in different power
system areas.

Figure 23: Overview of wavelet applications in power systems [17].

The wavelet transform was first applied to power systems in 1994 by Robertson [64]

and Rebeiro [63]. Since then, the number of publications in this area has rapidly increased

as Figure 23(a) shows. Figure 23(b) illustrates the most popular wavelet transform appli-

cations in power systems:

• Power system protection

• Power quality
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• Power system transients

• Partial discharges

• Load forecasting

• Power system measurement

The field of power system transients is the area in which wavelets were first applied

to power system applications by Robertson [64]. In this paper, the authors presented a

methodology for the development of software for classifying power system disturbances

by type from the transient waveform signature. Transients are signals with a finite life,

i.e., a transient reduces to zero in a finite time. Electromagnetic transients are caused by

sudden changes in system topology or parameters. For instance, short circuit faults are

one of the most common causes of transients in a power system. Power system switching

causes transients as well. Robertson [65] distinguished single-phase faults from capacitor

switching using waveform signatures.

An example of transient analysis using wavelets was given by Ramaswamy [66]. Using

the Electromagnetic Transient Package provided in the Power System Simulation Software,

MIPOWER, and the wavelet transform toolbox provided in MATLAB Ver. 5.3, the authors

analyzed a group of simulated transients namely the phase BC-Ground fault, three phase-

Ground fault and phase C-Ground fault, in a simple power system network (Figure 24)

consisting of a generator, a load, two buses and a transmission line. Figure 25 shows a

typical waveform of a certain type of transient disturbance in power systems.

The authors applied different types of wavelets to the transient disturbance signal to

perform Multiple Level Decomposition. The Meyer wavelet (Figure 26) was found to

work better as the fundamental source signal was restored at the 4th approximation. Other

wavelets such as a ‘Haar’ wavelet, added noise to the fundamental wave. The transients
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Figure 24: A typical power system network [66].

Figure 25: Example of transient disturbance for certain types of faults indistinguishable by
the naked eye [66].

Figure 26: A typical Meyer wavelet [66].
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were analyzed by the ‘Meyer’ mother wavelet and Figure 27 shows Multiple Level De-

composition of the transient disturbance, where s is the source signal, a4 is the 4th level

approximation, d4 is the 4th level detail coefficient, d3 is the 3rd level detail coefficient, d2

is the 2nd level detail coefficient, and d1 is the 1st level detail coefficient.

Figure 27: Multiple level decomposition of a transient disturbance [66].

The detail coefficients of faults are given in Figure 28 for the phase BC-Ground fault,

three phase-Ground fault and phase C-Ground fault.

In power quality applications, several studies have been carried out to detect and lo-

cate disturbances using the wavelet transform to analyze interference, impulses, notches,

glitches, interruptions, harmonics, flicker, etc. of non-stationary signals. Drisen [12] ana-

lyzed power system harmonics while Santoso [70] analyzed power system interference.

In power system protection applications, the potential benefits of applying the wavelet

transform to improve the performance of protection relays and fault classification have

been recognized in recent years. Charri [7] analyzed the transient information of a resonant

grounded distribution system using the wavelet transform. Imriš [26] presented the analysis

of ground fault transients in high voltage networks for earth fault location purposes using

the Gaussian mother wavelet method and discussed the main sources of error affecting the
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(a) Phase BC-ground fault. (b) Three phase-ground fault.

(c) Phase C-ground fault.

Figure 28: The detail coefficient of faults [66].

accuracy of the method. Liang [37] proposed an algorithm for fault classification based on

Wavelet Multiresolution Analysis (MRA) with Daubechies four (D-4) wavelet measuring

and comparing sharp variation in the values of the currents for the three phases in the first

stage MRA detail signals extracted from the original signal. Cheng [10] used a B-Spline

wavelet transform for fault classification purposes based on threshold values as in [37].

Zhao [77] proposed an algorithm with Daubechies eight (D-8) wavelet for fault detection

and classification in an underground cable system using two different levels of MRA detail

signals. Chanda [8] presented an algorithm for classification of faults based on MRA with

Daubechies eight (D-8) wavelet transforms of the three phase currents on a transmission

line fed from both ends.
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Figure 29: The recorded single phase to ground fault: Phase currents [26].

Imriš [26] and Chanda [8] were both using wavelets for data preprocessing before ap-

plying the fault location and classification algorithms to the recorded transients on transmis-

sion lines. Imriš analyzed ground fault transients in 110kV networks using low frequency

records for fault location purposes. As shown in Figure 29, ground fault signals consist of

different frequency components, which result from charging or discharging of the network

capacitances. The charge transient is generated by the voltage rise in sound phases during

a single-phase to ground fault. This means that a charge transient is always a side effect of

the ground fault. Moreover, it is typically of strong amplitude and, therefore, is reasonable

to use for single-phase to ground fault location. The fault transients are mixed with the

other signals as noise and fundamental frequency components. Sometimes the transient

can be short in duration and also small in amplitude. Moreover, the transient can be very

close to the fundamental frequency signal in the frequency domain. Therefore, the 50Hz

component can negatively affect the fault transient frequency estimation. To enable a more

precise analysis of the fault transient, preprocessing is performed with a wavelet filter [26].

The filtering of the signal is performed using a wavelet filter to get the fault transient

precisely out of the measured signal. The wavelet filter is set exactly on the frequency of

the measured (charge) fault transient estimated by the Fourier transform. The filter’s co-

efficient and its frequency response with an example fault current are shown in Figure 30.
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(a) (b)

(c) (d)

Figure 30: Pre-processing of the fault signals using wavelet [26].

The filter coefficients are represented by a Gaussian mother wavelet. After removing the

50Hz component, the charge transient frequency is detected. In the case of the phase cur-

rents shown in Figure 29, the charge transient frequency is detected at 178.57Hz. These

transients can then be used for fault location if they are detected. Transient fault location is

based on the estimation of the fault path inductance Lf from the detected fault transients.

The fault path inductance can be calculated directly from the filtered signal (the charge

transient) [26],

Lf =
1

ωc
Im

[
vc(t, f)

ic(t, f)

]
=

1

3
(L0 + L1 + L2) · lf , (34)

where ωc, vc and ic are the angular frequency, voltage and current of the charge transient.

The fault distance is lf . The constants L0, L1 and L2 are the zero-, positive- and negative-
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sequence inductances of the faulty line per km. In (34), t represents time and f the fre-

quency.

Figure 31: 230kV, 200km transmission line system used for simulation studies [8].

Chanda, on the other hand, simulated the application of Wavelet MRA theory for the

classification of faults on a power transmission line as shown in Figure 31. The base values

of the voltage and power in the system are taken as 230kV and 100MVA. The frequency

of the system is taken to be 50Hz. The phase current signals are recorded at the two ends

(P, Q). The generated time domain signals are sampled every 80µs and then used for the

analysis using wavelet transform. The data considered in the analysis is assumed to be of

finite duration and of length 2N , where N is an integer. If N is chosen to be 9, the total

duration of the analysis comes to 29 (=512) × 80µs = 40.96ms, which is about two cycles

and is sufficient for the fault analysis. With N = 9, there are (N + 1) = 9 + 1 = 10 wavelet

levels. If these 10 levels are added together, then the original signal is faithfully reproduced

at each of the sample points.

Daubechies Eight (D-8) wavelet is used in this work for the analysis, since it closely

matches the signal to be processed (this is of the utmost importance in wavelet applica-

tions). Due to the unique feature of providing multiple resolution in both time and fre-

quency by wavelets, the sub-band information can be extracted from the original signal.
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When applied to faults, this sub-band information of a faulted power system is seen to pro-

vide useful signatures for faults. By randomly shifting the point of fault on the transmission

line, a number of simulations can be carried out. The generated time domain signal for each

case is analyzed using the wavelet transform. From the different decomposed levels, only

3rd level output is considered for the analysis.

The types of faults considered in the analysis are L-G, L-L-G, L-L, L-L-L. The simula-

tions show that the fault inception angle (αF ) has a considerable effect on the phase current

samples and, therefore, also on the wavelet transform output of post-fault signals. Through

exhaustive experimentation, the authors have concluded that the parameter identified for

classification is the summation of 3rd level output for the three phase currents. The results

are shown in Figure 32 and Figure 33, where, Sa = Summation of 3rd level values for cur-

rent in phase ‘a’, Sb = Summation of 3rd level values for current in phase ‘b’, and Sc =

Summation of 3rd level values for current in phase ‘c’.

If Sa+Sb+Sc
∼= 0, then the fault is classified as an L-L-L fault, in which the magnitude

of all the summation values, Sa, Sb and Sc are comparable to each other. This can be

verified from the simulation results shown in Figure 32(a) (an L-L-L fault at 5km) and

Figure 32(b) (an L-L-L fault at 195km).

If Sa +Sb +Sc
∼= 0 and also if the sum of two of the summations Sa, Sb and Sc is equal

to zero, i.e., the magnitude of one of the summations is very small and almost negligible

in comparison to the equal magnitudes of other two summations, then the fault is classified

as an L-L fault, i.e., if Sa + Sb = 0, it is a fault involving the a and b phase; Sa + Sc = 0,

it is a fault involving the a and c phase; and Sb + Sc = 0, it is a fault involving the b and

c phase. The results of classifying an L-L fault involving the a and b phase are shown in

Figure 32(c) (an L-L fault at 5km) and Figure 32(d) (an L-L fault at 195km).
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(a) Effect of Inception angle (αF ) for L-L-L
Fault at 5km.

(b) Effect of Inception angle (αF ) for L-L-L
Fault at 195km.

(c) Effect of inception angle (αF ) for L-L
fault involving phases ‘a’, ‘b’ at 5km.

(d) Effect of inception angle (αF ) for L-L
fault involving phases ‘a’, ‘b’ at 195km.

Figure 32: Preprocessing of the L-L and L-L-L fault signals using wavelet [8].

If Sa + Sb + Sc �= 0, then it is either an L-G or L-L-G fault. If the absolute value of any

two summations (Sa, Sb, Sc) is equal and is always much smaller than the absolute value

of the 3rd summation, then it is an L-G fault. If |Sb| = |Sc| & << |Sa|, it is an L-G fault

involving phase a; if |Sa| = |Sc| & << |Sb|, it is an L-G fault involving phase b; and if

|Sa| = |Sb| & << |Sc|, it is an L-G fault involving phase c. The results of classifying an

L-G fault involving the a phase are shown in Figure 33(a) (an L-G fault involving the a

phase at 5km) and Figure 33(b) (an L-G fault involving the a phase at 195km).
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(a) Effect of inception angle (αF ) for L-G fault
involving phase ‘a’ and ground at 5km.

(b) Effect of inception angle (αF ) for L-G fault
involving phase ‘a’ and ground at 195km.

(c) Effect of inception angle (αF ) for L-L-G
fault involving phases ‘a’, ‘b’ and ground at
5km.

(d) Effect of inception angle (αF ) for L-L-G
fault involving phases ‘a’, ‘b’ and ground at
195km.

Figure 33: Preprocessing of the L-G and L-L-G fault signals using wavelet [8].

If the absolute value of any two summations (Sa, Sb, Sc) is not equal and is always

much higher than the absolute value of the 3rd summation, then it is an L-L-G fault as

shown in Figure 33(c) and (d). Furthermore, provided that Smin = min(|Sa|, |Sb|, |Sc|),
if Smin = |Sc| and << |Sa| or |Sb|, then it is an L-L-G fault involving phases a, b and

ground; if Smin = |Sb| and << |Sa| or |Sc|, then it is an L-L-G fault involving phases a,

c and ground; and if Smin = |Sa| and << |Sb| or |Sc|, then it is an L-L-G fault involving

phases b, c and ground.
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4.2 Combination of the Wavelet and Neural Network Techniques for
Fault Detection

Recently, research has been focused more on combining the wavelet and neural net-

work algorithms for fault identification in power systems. Wavelet analysis is applied to

analyze transient signals, then a neural network algorithm is utilized for the identification

of problems.

Ramaswamy [66] and Kashyap [28] proposed a method that incorporates a Probabilis-

tic Neural Network (PNN) for detecting the type of power system fault. The PNN has

preference over other Artificial Neural Network (ANN) algorithms in the application of

power system fault classification. It combines the merits of statistical theory with that of

ANN. Figure 34 shows the entire procedure for fault recognition.

Figure 34: Procedure for fault detection and classification [66].

Three power system faults, i.e., phase A-Ground fault, double phase AB-Ground fault

and 3-phase symmetrical fault are simulated and investigated. Transients are analyzed by

the Meyer mother wavelet, and Multiple Level Decomposition of the transient disturbance
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was generated. The final level detail coefficient is considered for the feature detection and

used in the Probabilistic Neural Network.

Figure 35 shows the model of a Probabilistic Neural Network, which classifies these

three power faults [28]. The PNN Architecture consists of four layers, i.e., the Input Layer:

consisting 119 Neurons, number of samples of the detail coefficient; the Exemplar Layer:

consisting of 9 Neurons, 3 faults × 3 sets of data for each fault; the Summation Layer:

consisting of 3 Neurons, equal to the number of faults; and the Decision Layer: follows the

“Winner take all” mechanism.

Figure 35: Model of a Probabilistic Neural Network. Detail coefficient is fed to the input
layer and the type of fault is obtained at the output [28].

Researchers also proposed solutions for digital relays for transmission line protection.

Martin has simulated a system with two generators and three lines (distributed parameters

model) [39]. Simulations include 3 different faults at different distances from the beginning

of each line, several fault resistances, inception angles, and steady states. The process

consists of a preprocessing module based on Discrete Wavelet Transform (DWT) combined

with an ANN for detecting and classifying fault events.

Wavelets of length six (N=6) are used for the relay to operate in real time. These

wavelets can be expressed as functions of two parameters α and β [4]. By varying parame-

ters α and β, a family of length-6 wavelets can be generated. For a certain range of variation
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of these parameters, the generated wavelets are classified according to their performance

for this particular application. The parameters for the length-6 wavelet with quasi-optimal

performance are α = 0.48π and β = −0.35π.

Three independent multilayer (two hidden-layers), feed-forward neural networks have

been used for detection, classification and location of fault transients. The ANNs are fed

with the six detail signals (three currents and three voltages). The input data of the ANN

is organized in a sliding-window of a quarter of a cycle, thus a faster response is obtained

since only a quarter of a cycle from the occurrence of the fault is required. The input vector

has 24 elements. The detection ANN has one output neuron, which indicates the existence

of a fault. The location net has one neuron that indicates if the fault has occurred in the

protected zone. The classification ANN output layer has four neurons indicating which

phases (A, B, C) or ground are involved in the fault event. An error back-propagation

algorithm has been used for training the ANN.

4.3 Time-Frequency Representation Technique for Classifying Power
Quality Disturbances

Voltage disturbances are the most frequent cause of a broad range of disruption in

power supply systems. Power quality (PQ) disturbances cover a broad frequency range

and significantly different magnitude variations. Typically, there are five major PQ related

waveform events: harmonics, voltage sags, capacitor high frequency switching, capacitor

low frequency switching, and normal voltage variations. Harmonics distortion is the most

common power quality problem [13].

Approaches for automated detection and classification of PQ disturbances proposed re-

cently are based on wavelet analysis and artificial neural networks [19, 54, 71]. To enhance

the sufficiency for supporting a robust PQ monitoring system is one of the most interesting

research areas for scientists.
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A wavelet transform on a PQ signal produces a multiresolution decomposition (MRD)

matrix, which contains time domain information for the signal at different scales. This

property has made wavelets a promising tool for detecting and extracting disturbance fea-

tures for various types of PQ events [19, 54, 71]. However, there are still some issues to be

resolved in wavelet-based methods. First, while PQ disturbances cover a wide frequency

range, a very small subset of the MRD matrix (e.g., five scales in [71]) may not be a suf-

ficient or optimized selection for capturing features for all different types of PQ events.

This feature selection scheme may filter some important information for classification and

potentially degrade the recognition rates. Second, the wavelet-based methods relatively

require more training examples. They result in greater efforts or difficulties when adapting

the algorithm onto a new system.

Wang and Mamishev had been investigating a feature extraction tool, time-frequency

ambiguity plane with kernel techniques [74, 75], which is new to the power engineering

field. The essence of the feature extraction is to project a PQ signal onto a low-dimension

time-frequency representation (TFR), which is deliberately designed for maximizing the

separability between classes. A distinct TFR is designed for each class. The classifiers

include a Heaviside-function linear classifier and neural networks with feedforward struc-

tures.

A set of 860 real world voltage signals from five event classes were collected from

industrial databases for the training and testing of the algorithm. Each voltage signal to

be identified consists of five cycles of a voltage waveform sampled 128 times per cycle,

and has a length of 640 sampling points. In the training stage, four classification-optimal

kernels are designed for separating five classes sequentially. The kernel design process

selects nine locations from the time-frequency ambiguity plane.

Classification kernels are designed for training according to Fisher’s discriminant func-

tion. Fisher’s discriminant function (FDF), which was developed by R. A. Fisher in the
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1930s, is a method that projects high dimensional data onto low-dimensional space for

classification. The projection maximizes the distances between the means of the different

classes while minimizing the variances within each class.

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is either 0 or 1).

Feature points are ambiguity plane points of locations (η, τ) where ϕi[η, τ ] = 1. Therefore,

the process of feature extraction is to select points that are optimal for the classification task

from the ambiguity plane.

A total number of N − 1 kernels need to be designed for an N-class PQ classification

system. A kernel Ks works as either a single-class separator or a group-class separator.

In the single-class separator case, kernel Ki is dedicated to discriminate class i from all

remaining classes {i + 1, ..., N}. In the group-class separator case, kernel Ki is dedicated

to discriminate a class group {i, i+1, ..., i+m} from all remaining classes {i+m+1, i+

m+2, ..., i+m+N}. In the second case, additional kernels are needed in order to uniquely

identify class i from the class group {i, i + 1, ..., i + m}, and the total number of kernels

required for an N-class classification is still N-1.

Ambiguity planes for all training signals are calculated before the Fisher’s discriminant

function is applied for the kernel design. Assume there are n classes and totally Ni train-

ing examples for class i. The notation Aij [η, τ ] represents the ambiguity plane of the j th

training example in the ith class.

With the Fisher’s criterion, locations on the ambiguity plane are ranked according to

their importance for classification. A certain amount of training data from each class is

needed for feature ranking in this statistical method. For example, when designing kernel

i, a Fisher’s discriminant score is calculated for each location (η, τ) on the ambiguity plane,

JF i(η, τ) =
(mi[η, τ ] − mi−remain[η, τ ])2

D2
i [η, τ ] − D2

i−remain[η, τ ]
, (35)
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where mi[η, τ ] and mi−remain[η, τ ] represent two means of location (η, τ),

mi[η, τ ] =
1

Ni

Ni∑
j=1

Aij [η, τ ], (36)

mi−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1 Akj[η, τ ]∑5
k=i+1 Nk

, (37)

and D2
i [η, τ ] and D2

i−remain[η, τ ] represent two variances of location (η, τ),

D2
i [η, τ ] =

1

Ni

Ni∑
j=1

(Aij [η, τ ] − mi[η, τ ])2, (38)

D2
i−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1(Akj [η, τ ] − mi−remain[η, τ ])2∑5
k=i+1 Nk

. (39)

Locations (η, τ) that receive the highest discriminant score JF i(η, τ) are selected as

feature locations.

By examining Fisher’s discriminant score JF i(η, τ), the optimal numbers of feature

points for each individual kernel have been found: one for the harmonics kernel; two for

the voltage sag kernel; three for the capacitor switching kernel; and three for the capacitor

high-frequency switching kernel. Therefore, nine feature locations are selected for these

four kernels.

Each classification node consists of a kernel function and a classifier. A Heaviside-

function linear classifier is used for the task of separating harmonics that is a great distance

apart from other fault cases and is relatively easy to discriminate. Neural networks with

small numbers of input nodes are used for all other classification tasks. The structure of

the ANN for discriminating sags is 2-12-2 (input layer node number - hidden layer node

number - output layer node number); the one for capacitor switching is 3-10-2; and the

one for capacitor high-frequency switching is 3-10-2. The transfer and training functions
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adopted for the ANN include: the hyperbolic tangent sigmoid transfer function as the trans-

fer function for the hidden layer, the linear transfer function as the transfer function for the

output layer, backpropagation as the network training function, the gradient descent learn-

ing function as the weight learning function, and the mean squared error function as the

performance evaluation function.
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5 Data Preparation for Manitoba Hydro HVDC PSFC

Nomenclature

Symbol Brief Explanation

PSFC Power System Fault Classification
ASCII American Standard Code for Information Interchange

Prior to feature extraction, data preparation and signal preprocessing are required to

define the characteristics of power system signals. The fault data from the TranscanTM

is in binary format and non-editable. Data preparation consists of two steps. The first

step is to convert the data from binary format to ASCII (American Standard Code for

Information Interchange) format. The second step is to separate the signals into different

groups according to their physical nature (i.e., Pole voltages/currents, 3 AC phase voltages,

valve control signals, valve currents).

5.1 Data Conversion

The data recorded by TranscanTM is in binary format and compressed as *.x01 files [72],

which are unreadable by humans. Together with the .x01 files, TranscanTM provides *.scf

files. The *.scf file is a configuration file and contains the information for data arrangement.

It tells how many channels have been scanned. At the Manitoba Hydro Dorsey Station, a

fault file has 48 analog and 4 digital channels, with some of them being spares. The *.scf

file indicates the scanning order and the physical name for each channel. The first 52 bytes

in a .x01 file are used for recording the file name and date. Every 16 bits that follow are
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allocated for storing one channel data. In each 16-bit data field, the first 12 bits store one

digitalized data for a channel and the last 4 bits indicate the channel number.

For this research, a C++ program has been designed to convert the data to ASCII for-

mat (*.dat) from binary format (.x01). Each .x01 file can be converted into 48 *.dat files.

Among these files, 23 files are selected to represent the most active and informative signals

in the power system for fault classification.

5.2 Signal Grouping

Among the 23 converted signals, some are constant signals and the others are periodic

signals. Bus signals, i.e., the 3 AC phase voltages and the pole voltages and currents should

be grouped separately from the valve signals. Bus signals will induce more than one fault

and usually cause significant problems. Valve signals will affect only one valve group and

cause a certain level of decrease or increase of either the pole voltage or current. Table 8

lists the signal groups for a pole 1 file. The number of signal groups will guide the number

of the feature sets to be extracted.

Table 8: Signal groups.
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6 Signal Preprocessing and Feature Extraction for PSFC

Nomenclature

Symbol Brief Explanation

Vg11 Valve group 1 in pole 1
Vg12 Valve group 2 in pole 1
Vg13 Valve group 3 in pole 1
Vg21 Valve group 1 in pole 2
Vg22 Valve group 2 in pole 2
Vg23 Valve group 3 in pole 2
φj(x) The granule functions
r(j) Normalized valve current reference signal
x(j) Normalized valve current signal
ρ0 The autocorrelation of the valve reference signal r(j) at

origin point
ρ′

0 The maximum of the cross-correlation of the valve reference signal
and every 96-points segment of the input valve current signal vc(j)

rmNN Rough Membership Neural Network

To set up the information table for fault classification, the normal behavior of each

signal needs to be clarified and the abnormality of each signal related to each type of fault

can then be identified. Signal preprocessing and feature extraction is presented in this

section.

6.1 Signal Characteristics in Normal Condition

Standard value or waveform of each signal in normal condition is described in the

following two tables.
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6.1.1 Constant Signals

In the 23 signals converted from .x01 file, the constant signals are pole-current order,

alpha order, pole current, pole voltage. Under normal conditions, their standard values are

given in Table 9:

Table 9: Constant signals in the 23 converted signals.

6.1.2 Periodic Signals

The periodic signals are AC Phase Voltages, Phase Currents and 6-pulse Voltages. Their

normal waveform and standard peak values are shown in Table 10.

Table 10: Periodic signals in the 23 converted signals.

6.2 Feature Extraction of 12 Types of Faults

Extensive time has been spent in studying 676 fault files provided by the Manitoba

Hydro Dorsey Station. The 676 .x01 fault files recorded all the events that happened in

two recent years and covered 12 types of faults. Together with .x01 files, 676 .trt files are
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also provided. A .trt file contains the fault information, i.e., the fault cause and type. This

fault information is created manually by power system engineers and provides a reliable

basis for the target for PSFC training and testing. Various signal processing techniques

are applied to analyze the fault signals. They are auto-correlation, cross-correlation, the

FFT and inverse FFT, low pass filter, Wavelet MRD, phase shifting, derivatives and coding

techniques. A total of 17 features or attributes in Table 11 are generated for power system

fault classification. The 17 functions that represent these 17 features (attributes) are further

described in the section 6.2.

Table 11: 17 features/attributes for power system fault classification.

A portion of the information table for power system fault classification training is shown

in Table 12. This information table is derived from 508 fault files and consists of 508 lines

in total, with each line containing 17 features. This table is further processed to prepare
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for the training sets to calibrate the rough membership Neural Network (rmNN) for fault

classification. Also, a portion of the information table for testing is illustrated in Table 13.

The testing table consists of 168 rows generated from an additional 168 fault files. The

complete training and testing information tables are attached in appendix A.

Table 12: Partial information table for power system fault classification training.

71



Table 13: Partial information table for power system fault classification testing.
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The following sections cover the details of signal processing for feature extraction and

the 17 functions that represent these features (attributes).

6.2.1 Feature 1 – Pole Voltage Sharp Dropping

The pole line voltage is a constant signal and the standard values are±450KV,±300KV,

±150KV. In fault 12 i.e., “Disturbance on DC Line”, the pole voltage is affected by high

frequency interference and causes a sharp drop at the tripping edge. The pole voltage sharp

dropping sometimes happens in fault 4 as well. As described in Section 2.2, there are two

cases in fault 4, “Pole Line Fault” and “Force Retard”. The pole voltage in “Force Retard”

decreases slowly while the pole voltage in “Pole Line Fault” drops as sharp and quick as in

fault 12. Figure 36 shows the pole voltages in fault 4 and 12. F1121E8D.x01 is a “Force

Retard Fault”, and F2213569.x01 is a “Pole Line Fault”.

Figure 36: Pole line voltages with sharp dropping.

The derivative of pole line voltages is an efficient method to detect the sharp dropping

of the pole line voltage. A 4-point averaging for noise compression is applied before the

derivative. The derivative result is shown in Figure 37. It is noticeable that the deriva-
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tive of P1 in F2213569.x01 and F224070E.x01 both have sharp peaks, while the P1 in

F1121E8D.x01 has fairly small output. The threshold to determine a sharp pole voltage

drop is 100. The value of feature 1 is 1 for F2213569.x01 and F224070E.x01, and 0 for

F1121E8D.x01.

Figure 37: Derivative of pole line voltages.

The function f1 representing this feature is defined by (40)

f1(x) =

{
1 if max(derivitive(average(x))) > 100,
0 otherwise.

(40)

where x is the discrete pole voltage signal in a fault file.

Figure 36 shows that the pole voltage oscillates at the tripping edge in both “Pole Line

Fault” (F2213569.x01) and “Disturbance on DC Line” fault (F224070E.x01). The FFT

analysis in Figure 38 shows that “DC Disturbance on DC Line” contains higher frequency

components. It has a FFT peak at 60Hz, which indicates that the interference is possibly

from the AC line. The FFT peaks for both cases of fault 4 are located lower than 6Hz. This

feature is very useful and will be added to improve the accuracy of the fault classification

system.
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Figure 38: FFT analysis of pole line voltages.

6.2.2 Feature 2 – AC Disturbance

The three AC phase voltages, namely the A-phase, B-phase and C-phase, have a fixed 120◦

phase difference from each other. It is found by studying the data file that one period of

AC phase voltage is represented by 96 data points. So if B-phase is shifted 32 points and

C-phase is shifted 64 points, the shifted B-phase and C-phase will be exactly the same as

the A-phase in normal condition. If the AC voltages have distortion, it can be detected by

an error signal, which is calculated by

err =
|(A−phase) − (shifted B−phase)|

3
+

|(shifted B−phase) − (shifted C−phase)|
3

+

|(shifted C−phase) − (A−phase)|
3

. (41)

75



Taking file F2713113.x01 as an example, the AC phase analysis results are shown in

Figure 39. The first graph shows the original three AC phase voltages; the second graph

shows the shifted AC phase voltages; and the last one displays the error output of AC

voltage signals.

The AC disturbance error can be discretized by granule algorithm. The granule func-

tions are designed based on the Gaussian function and can be written as

φj(x) = exp

(
−‖x − µj‖2

2σ2
j

)
, j = 1, 2, 3. (42)

Figure 39: Analysis of AC phase voltages by phase shift method.

Three granule functions need to be designed to discretize the AC disturbance error

into three intervals: low, medium and high. The center µj and σj is estimated based on

the 676 files provided by the Manitoba Hydro Dorsey Station. Among those 676 fault

files, 240 files are indicated as Minor AC disturbance and 148 files as AC disturbance. The

76



averaged AC phase voltage error calculated from the first 240 files is close to 700 while the

averaged AC phase voltage error from the other 148 files is approximately 2100. This leads

to a supervised procedure for optimizing the granule function parameters. The Gaussian

granule functions for the AC disturbance error discretization are defined as (43) and plotted

in Figure 40.

φ1(x) = exp

(
−‖x − 200‖2

2 × 2002

)
,

φ2(x) = exp

(
−‖x − 700‖2

2 × 5002

)
,

φ3(x) = exp

(
−‖x − 2100‖2

2 × 9002

)
. (43)

Figure 40: The granule formula.

For an input x, the peak value of the AC voltage error, three granule output φ1(x), φ2(x)

and φ3(x) are calculated respectively. If φ1(x) is the biggest, the AC error is small enough

to be considered as normal and 0 will be assigned. If φ2(x) is the biggest, the AC error is

moderate implying a minor disturbance and 1 will be assigned. If φ3(x) is the biggest, it is

a severe AC disturbance and 2 will be assigned.
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The function f2 representing feature 2 can be defined as

f2(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 if max(φ1(x), φ2(x), φ3(x)) = φ3(x),

1 if max(φ1(x), φ2(x), φ3(x)) = φ2(x),

0 if max(φ1(x), φ2(x), φ3(x)) = φ1(x),

(44)

where x = max(err(Va, Vb, Vc)), Va, Vb and Vc are discrete A-phase, B-phase and C-phase

voltages in a fault file.

6.2.3 Feature 3 – Pole Index

The information about the pole index is very easy to retrieve but helpful to identify the

fault, “Normal Affected by Another Pole”. According to the *.scf file, it is known that the

4th character of the file name indicates the pole index, i.e., F272015F.x01 file is a pole 2

file. Seventeen features of this fault file are listed in Table 14. It is observed that attributes 4

and 6 notify the pole 1 voltage and the current was blocked. All the other features are for

pole 2, and they are normal. The fault file of pole 2 was created due to the effect from

pole 1. It is reasonable to classify this file as the fault, “Normal Affected by Another Pole”.

Table 14: Features for F272015F.x01.

The function f3 representing this feature (pole index) is defined as

f3(x) = pole index, (45)

where x is the file name of a fault file.
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6.2.4 Features 4, 5, 6 and 7 – Pole Voltage and Current Trend

To derive the trend of the pole line voltages and currents, it is necessary to smooth the

waveform by applying a low pass filter. A high order FFT followed by a low order inverse

FFT is an alternative to a digital low pass filter. The sampling rate of the TranscanTM

system is 6000 points per second. TranscanTM itself is a low pass filter with a cutoff

frequency of 3 kHz. An FFT of 8192 points followed by a 32 point inverse FFT is a low

pass filter with cutoff frequency around 11.7 Hz. Most interference on the pole line voltage

has a frequency of 16 – 90 Hz and is removed by the low pass filter. An example of pole

line voltages and currents and their simplified waveforms are shown in Figures 41 and 42,

respectively.

Figure 41: Pole voltages and currents in fault 1 and 4.
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Figure 42: Simplified waveform of pole voltages and currents in faults 1 and 4.

The simplified waveforms are represented by a sequence of numbers (codes) based

on (46) and (47).

CodeV =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if |Pole voltage| ≤ 100,

2 if 100 < |Pole voltage| ≤ 150,

3 if 150 < |Pole voltage| ≤ 300,

4 if 300 < |Pole voltage|.

(46)

CodeI =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if |Pole current| ≤ 400,

2 if 400 < |Pole current| ≤ 1000,

3 if 1000 < |Pole current| ≤ 2000.

(47)
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The codes for pole voltages and currents in fault F2213569.x01 are listed in Table 15.

The original codes contain 32 numbers; the simplified codes remove all the duplicated

numbers and for some special cases, i.e., “43134”, “42124” and “32123”, they are further

condensed to “414”, “414” and “313”, respectively.

Table 15: Codes for pole voltage and current trend.

Functions f4, f5, f6 and f7 represent features 4, 5, 6 and 7 respectively and are defined

as follows:

f4(x) = CodeV (LF (x)), (48)

where x is the discrete pole 1 voltage in a fault file;

f5(x) = CodeV (LF (x)), (49)

where x is the discrete pole 2 voltage in a fault file;

f6(x) = CodeI(LF (x)), (50)

where x is the discrete pole 1 current in a fault file; and

f7(x) = CodeI(LF (x)), (51)

where x is the discrete pole 2 current in a fault file.

In (48) to (51) CodeV (·) and CodeI(·) represent the coding processes and LF (·) repre-

sents a lowpass filter.
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6.2.5 Features 8, 9 and 10 – Valve Current Trend Vg*1, Vg*2, Vg*3

A normal valve current is a periodic signal with 96 samples per cycle. Reference to

A-phase, B-phase and C-phase are 32 and 64 points delayed respectively. The amplitude of

the phase current should match the current order in normal condition. A normalized phase

current is calculated by (52) and illustrated in Figure 43

Normalized phase current =
phase current

phase current order
. (52)

Figure 43: Normalized valve current reference signal.

When a “Valve Current Closed/Blocked/Deblocked” happens, A, B and C phase cur-

rents in this group are all closed and/or blocked and/or deblocked. An example of this fault,

F0121F8D.x01 is illustrated in Figure 44. In this file, valve group 1 is blocked and valve

group 3 is deblocked at a different time. To describe the trend of a valve current, the corre-

lation algorithm plus a coding method is applied. The correlation theory was described in

Section 3.1.

The autocorrelation of the normalized valve reference signal r(j) at origin point, de-

noted ρ0 is first evaluated by (53).
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Figure 44: Valve Current Closed/Blocked/Deblocked error.

ρ0 =

95∑
j=0

r(j)r(j). (53)

The Maximum of the cross-correlation of the normalized valve current reference signal

and every 96-point segment of the normalized input valve current signal x(j), denoted ρ ′
0

is calculated by (54).

ρ′
0 = Max(ρ′

0(i)) = Max(

95∑
j=0

r(j) · x(j + i)). (54)

If ρ′0/ρ0 is less than 30%, valve current is considered to be closed and a code 1 will be

assigned to this input segment. The valve is considered to be normal or deblocked back

to normal if the ratio is bigger than 80% and a code 2 will be assigned. Ratio ρ′
0/ρ0 for
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Figure 45: Ratio ρ′
0/ρ0 for attribute Valve Current Trend.

valve group 1 and 3 in fault file F0121F8D.x01 is illustrated in Figure 45. Usually during

the interim from normal to valve closed status and vice versa, various ratio of ρ′
0/ρ0 will be

observed. No code will be assigned to the ratio between 30% and 80%. It is because only

the closing and normal stages need to be extracted to describe the trend of valve current.

After all the input segments are processed, codes, “2222111111111” for valve group 1

and “11111111111111111111111122222” for valve group 3 are derived. To simplify the

codes, only the turn points are maintained. The simplified codes for valve group 1 and 3

are “21” and “12” respectively (see attributes 8 and 10 of fault file 403 in Table 12).

Functions f8, f9 and f10 representing features 8, 9 and 10 are defined as follows:

f8(x) = Code(max(r � r)/max(r � x)), (55)
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where x is the discrete normalized A, B and C phase valve currents in valve group 1 in a

fault file;

f9(x) = Code(max(r � r)/max(r � x)), (56)

where x is the discrete normalized A, B and C phase valve currents in valve group 2 in a

fault file; and

f10(x) = Code(max(r � r)/max(r � x)), (57)

where x is the discrete normalized A, B and C phase valve currents in valve group 3 in a

fault file.

In (55) to (57), r denotes the discrete normalized valve current reference signals, � is

the correlation operator, and Code(·) represents the coding processes.

The feature “Valve Current Trend” is very useful for classification of particular faults,

e.g., fault 4 (“Line Fault”) and fault 6 (“Pole Voltages/Currents Closed/Blocked/Deblocked”).

With the occurrence of “Line Fault”, all 3 valve groups will have the same trend (the most

common pattern is “212”). With this type of fault, pattern “12” or “21” also happens oc-

casionally. With the occurrence “Pole Voltages/Currents Closed/Blocked/Deblocked”, all

three valve groups behave in the same way. The most commonly observed pattern for this

type of fault is “1” (sometimes “12” or “21” can also occur).

6.2.6 Feature 11 – Valve Currents Minor Disturbance

“Valve Currents Minor Disturbance” happens very frequently and usually associated

with a fault of “AC Disturbance” or “Valve Current Commutation Failure”. The typical

waveforms of valve currents minor disturbance is shown in Figure 46, which includes A,

B, C, three phases of valve group Vg11 in fault F08101CA.x01. A few cycles present

distortions and happen in all three phases. It is considered a valve minor disturbance as

long as any one of three phases shows a disturbance.
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Figure 46: Valve currents in fault 5.

To detect “Valve Current Minor Disturbance”, the method applied in the feature extrac-

tion for “Valve Current Trend” is adopted here. The ratio ρ′
0/ρ0 is estimated and displayed

in Figure 47. The same threshold is used to assign the code. If the ratio > 80%, code “2” is

assigned; ratio < 30%, code “0” is assigned; in addition, between 30% and 80%, code “1”

is assigned. The feature patterns indicating a valve current minor distortion are listed in

Table 16 and the codes derived for phase A, B and C currents of Vg11 in F08101CA.x01

are listed in Table 17. A minor disturbance is detected in all three phases of Vg11 and a
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Figure 47: Ratio ρ′
0/ρ0 for attribute Valve Currents Minor Disturbance.

final code “1” is assigned. Only when all three phases are normal, should a final code “0”

be assigned. For each fault file, the same procedure is applied to all three valve groups,

i.e., Vg11, Vg12 and Vg13 for pole 1. Three final codes are simply combed together as the

value for feature 11. The value of attribute 11 for fault F08101CA.x01 is 101.

Function f11 representing feature 11 is similar to the functions for features 8, 9 and 10,

except that there is a different coding process.

f11(x) = Code(max(r � r)/max(r � x)), (58)

where x accepts discrete normalized A, B and C phase valve currents from all valve groups.
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Table 16: Feature (attribute) codes.

Table 17: Codes for valve currents minor disturbance in Vg11 in F08101CA.x01.

6.2.7 Feature 12 – Pole Current Closed with Normal Pole Voltage
(True = 1, False = 0)

Section 6.2.4 explains how to extract the pole voltage and current trend. In one spe-

cific case, the pole current recorded in TranscanTM gives an output of zero while the pole

voltage is perfectly normal. This event happens during a parallel operation. For instance,

a “pole 1 to pole 3 parallel operation” is to switch the pole 1 current to pole 3 to unload

the pole 1 current line for maintenance. In Table 12, the information table for training, file

F2212F95.x01 is an example of “pole 1 to pole 3 parallel operation”. The 17 attributes

of this file are listed in Table 18. Attribute 4 indicates the pole 1 voltage is normal, while

attribute 6 shows the pole 1 current is closed, therefore the value of attribute 12 is 1.
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Table 18: Features for F2212F95.x01.

Function f12 representing feature 12 is defined by (59).

f12(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ((f4(x) == 4)or(f4(x) == 3))AND(f6(y) == 1),

1 if ((f5(x) == 4)or(f5(x) == 3))AND(f7(y) == 1),

0 otherwise,

(59)

where x is the discrete pole voltage and y is the discrete pole current.

6.2.8 Feature 13 – 3 Valve Groups All Closed (True = 1, False = 0)

Features 8, 9 and 10 of valve current trends have been discussed in Section 6.2.5. Based

on features 8, 9, 10, feature 13 can be derived. If the codes of valve current trends for three

valve groups all end in 1, meaning the three valve groups are all closed in the end, feature 13

yields an output of 1. This usually implies that the whole pole line is closed.

Function f13 representing feature 13 is defined as

f13(x, y, z) =

⎧⎪⎨⎪⎩ 1 if codes f8(x), f9(y) and f10(z) are all ended in 1,

0 otherwise,
(60)

where x, y and z are the discrete normalized A, B and C phase currents in valve groups 1, 2

and 3, respectively.
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6.2.9 Feature 14 – Same Current Trend in 3 Valve Groups (True = 1, False = 0)

Based on features 8, 9 and 10, feature 14 can also be derived. If the valve current trends

of three valve groups are all the same, feature 14 gives an output of 1, which produces a

high possibility of the following three faults, fault 4, “Pole Line Fault”; fault 10, “Normal

Affected by Another Pole”; and fault 12, “Disturbance on DC Voltage”.

Function f14 representing feature 14 is defined by (61).

f14(x, y, z) =

⎧⎪⎨⎪⎩ 1 if f8(x) == f9(y) == f10(z),

0 otherwise,
(61)

where x, y and z are the discrete normalized A, B and C phase currents in valve groups 1, 2

and 3, respectively.

6.2.10 Feature 15 – Voltage Flashover in 6-Pulse

Feature 15 records the number of cycles of voltage flashover that happened in a 6-

pulse signal. A normal 6-pulse signal shown in Figure 48 is a periodic signal. When

fault 11, “Asymmetric Protection”, happens, the 6-pulse does 7 cycles of voltage flashover

and closes the valves for protection. The typical waveform of a 6-pulse signal in fault 11,

F0822405.x01, is illustrated in Figure 49.

To detect those 7 cycles of flashover, the Wavelet Multi-resolution Decomposition

(MRD) method has been applied to extract different levels of details for the recorded sig-

nals. A number of experiments have been done to evaluate the performances of different

wavelet functions such as Daubechies wavelets and the Meyer wavelet. The decomposition

can be carried out in MatlabTM using functions wavedec and wrcoef. The MRD with

the Daubechies 2 wavelet (DB2) function extracts the 7 cycles of flashover at the 6th level
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Figure 48: 6-pulse reference signal (2 cycles).

Figure 49: 6-pulse signal in Asymmetric Protection fault.

detail coefficient output. Figure 50 shows the transient signal and 7-level ‘DB2’ MRD de-

tails. The experiments with the ‘DB3’, ‘DB4’ and ‘Meyer’ wavelets extract 8 cycles of

flashover, which does not agree with the 6-pulse transient signal. The 6th level detail coef-

ficient output from ‘DB2’ MRD is further processed by 32-point averaging. In addition, 7

positive peaks with values greater than 18 are detected and shown in Figure 51. Occasion-

ally, the first 7 cycles of voltage flashover failed to close the valves and the control system

continues with another 7 cycles until the valves are closed. An example of this phenomenon

is F0922884.x01.
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Figure 50: The multi-level details of ‘DB2’ MRD applied to a 6-pulse signal in Asymmetric
Protection fault.

Figure 51: Seven peaks detected in a 6-pulse signal in Asymmetric Protection fault.

Function f15 representing feature 15 is given by (62).

f15(x, y, z) = max(g15(average(MRD(x))), g15(average(MRD(y))),

g15(average(MRD(z)))), (62)
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where g15(·) picks up the points with values of average(MRD(·)) greater than 18. The

discrete 6-pulse signals in valve groups 1, 2 and 3 are x, y and z respectively.

6.2.11 Feature 16 – Valve Currents Flashover

Feature 11, the valve current minor disturbance, has been discussed in Section 6.2.6.

In this section, a severe fault is addressed that is involved with valve current flashover.

A standard peak value for a valve current is 1400 Amps. Occasionally with a severe AC

bus error or the valve line shorted together or shorted to ground, valve currents increase

dramatically to an excess of 4000 Amps. Usually this happens within a pair of valves in a

valve group. Two valve currents increase in opposite directions to prevent the pole current

from overshooting. Examples are illustrated in Figures 52 and 53. The first example is

fault 7, “Current Arc Back”, valve current flashover happens only in one valve group. The

second one is fault 2, “AC Disturbance”, valve current flashover happens in two valve

groups.

To detect the valve current flashover, 96-point averaging is applied to derive a mean

value for each cycle. The mean value of a normal cycle is 0 and a flashover cycle is

over 1800, which is the threshold used to detect the event of current flashover. The av-

eraged waveforms of B and C phase currents for 3 valve groups in F082016A.x01 and

F08226BF.x01 are displayed in Figures 54 and 55, respectively. For F082016A.x01, there

is only one point over 1800 in Vg22; for F08226BF.x01, there are three points over 1800 in

Vg21 and two points over 1800 in Vg23. The value for feature 16 is 1 for F082016A.x01

and 32 for F08226BF.x01.

Function f16 representing feature 16 is defined as

f16(x, y, z) = Code(g16(average(x)), g16(average(y)), g16(average(z))), (63)
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where g16(·) picks up the points with values of average(·) greater than 1800. Code(·) is

the coding process used to concatenate the number of points from 3 valve groups and x,

y and z are the discrete normalized A, B and C phase currents in valve groups 1, 2 and 3,

respectively.

Figure 52: B and C phase currents in F082016A.x01, phase currents flashover in Vg22
valve group.
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Figure 53: B and C phase currents in F08226BF.x01, phase currents flashover in Vg21 and
Vg23 valve group.
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Figure 54: Averaged waveforms for B and C phase currents in F082016A.x01.
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Figure 55: Averaged waveforms for B and C phase currents in F08226BF.x01.

6.2.12 Feature 17 – Valve Current Flashover Happens Only in One Valve Group
(True = 1, False = 0)

As seen in the discussion of feature 16, valve current flashover happens in both faults 2

and 7. “Current Arc Back” usually comes with an “AC Disturbance”. However, the current

flashover in “Current Arc Back” is only due to the electronic faults in the valve group

itself. A severe AC disturbance is a bus error and affects all the valve groups. If the severe
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AC disturbance induces current flashover, it will affect almost all valve groups. To further

separate these two faults, feature 17 is added.

It is simple to obtain feature 17 based on the results of feature 16. Feature 17 will yield

an output of 1 if only one valve group gives an output of a non-zero number in feature 16.

Function f17 representing feature 17 is defined as

f17(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if only g16(average(x)) �= 0,

1 if only g16(average(y)) �= 0,

1 if only g16(average(z)) �= 0,

0 otherwise.

(64)
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7 Rough Membership Neural Network (rmNN) for PSFC

Nomenclature

Symbol Brief Explanation

rmNN Rough membership function neural network
Bj Set of attributes associated with neuron j
I Index set for fault files, I = {1, 2, ..., 12}
J Index set for neurons, J = {1, 2, ..., 11}
i ∈ I ith fault
RSij A set of ith faults represented by their attribute values of Bj

RSij \ RSkj {x | x ∈ RSij and x /∈ RSkj}, difference set
x An input fault data file, *.x01
[x]Bj

The equivalence class of x based on the attribute set Bj

µ
Bj

RSij
(x) Rough membership of ith fault for input x file based on RSij and [x]Bj

t-norm(x, y) x × y
s-norm(x, y) x + y − x × y
r → x Imply operator, min(1, x

r
)

rmfk(Bi(objn)) The rough membership estimation of kth fault based on Bi for fault file n
rij, wij Weights on connection from the ith neuron in the input layer

to the jth neuron in hidden layer in rmNN
uj Weight on the connection from the j th neuron in the hidden layer

to the output neuron in rmNN
hk

j Output of the jth neuron in the hidden layer in the kth rmNN
Ok Output of kth rmNN, estimated degree of kth type of fault
Err The error between the target and rmNN output
α Learning rate
LCs Learning Cycles
LSE Least Square Error

A form of rough neural computing based on rough sets and rough membership func-

tions [45, 58, 59, 60] is introduced in this section. A rough membership function neural net-

work (rmNN) has been designed and applied to classify power system faults [23, 24, 55].

99



7.1 Sample Information System For PSFC

The fault files recorded by TranscanTM form the universe of events U . Table 12 and

Table 13 in Section 6.2 represent the information system and have 17 features. The 17 fea-

tures in the information table are sub-grouped into 11 feature sets, B = {B1, B2, ..., B11}
(Table 19). The information system is then represented by (U, B).

Table 19: 11 Feature Sets.

A simple information system containing sample fault events and feature set B4 (Ta-

ble 20) is discussed in this section to illustrate the rough set basic theory in the application

of the power system. In this example, assume that U is a set of sample fault events. By

way of approximation of a set of objects, consider X ⊆ U defined as

X = {x|x is a fault event in the power system}
= {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01, F1112E8D.x01,

F2212CD7.x01, F223079B.x01, F0820165.x01, F112267F.x01, ...},

F = {f8, f9, f10}, defined in Section 6.2, is a set of functions representing the feature

set B4 = {A8, A9, A10).

100



Table 20: Sample information system.
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The fault events and their associated fault types are listed in Table 21.

Table 21: Fault events and associated fault types.
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Notice that each of the events in class

[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01},

has exactly the same B4 output, namely, {2, 2, 2} (Table 20).

The partition of U defined by the relation ∼B4 is as follows:

[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01},

[F0420695.x01]B4 = {F0420695.x01},

[F2913FDD.x01]B4 = {F2913FDD.x01, F0112939.x01},

[F1112E8D.x01]B4 = {F1112E8D.x01, F223079B.x01},

[F2212CD7.x01]B4 = {F2212CD7.x01, F112267F.x01, F08226BF.x01, F2410189.x01},

[F22225C4.x01]B4 = {F22225C4.x01, F0820715.x01},

[F041075C.x01]B4 = {F041075C.x01},

[F1140866.x01]B4 = {F1140866.x01, F1112BAE.x01}.

Now select a particular set X , which contains all the events of fault 1: (Table 21), i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,

F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,

F112267F.x01, F22225C4.x01, F0820715.x01}.

This choice leads to the following lower and upper approximations of the set X .

B4∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,

F0820715.x01},

B4
∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

∪ [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4
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= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,

F0820715.x01, F08101FE.x01, F1113009.x01, F0820165.x01,

F20406CC.x01, F2713113.x01, F2713116.x01, F1122499.x01,

F2212F95.x01, F1121E5D.x01, F272015F.x01, F111302A.x01,

F2913FDD.x01, F0112939.x01, F2212CD7.x01, F112267F.x01,

F08226BF.x01, F2410189.x01},

BndB4X = B4
∗X - B4∗X

= [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4

= {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01, F2913FDD.x01,

F0112939.x01, F2212CD7.x01, F112267F.x01, F08226BF.x01,

F2410189.x01}.

In effect, the lower approximation B4∗X indicates that the events in [F0420695.x01]B4

∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4 certainly are the members of set X . B4∗X is

called the “Yes” set in Section 7.2. Meanwhile, the non-empty boundary BndB4X indicates

that set X is a rough set and the events in BndB4X might belong to set X . BndB4X is

called the “YesOrNo” set in Section 7.2.

Next, consider the degree of overlap of class [F08101FE.x01]B4 with the set X , i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,

F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,

F112267F.x01, F22225C4.x01, F0820715.x01},

and

[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,

F1121E5D.x01, F272015F.x01, F111302A.x01},
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where the degree of overlap is calculated using (65)

µB4
X (x) =

|[F08101FE.x01]B4 ∩ X|
|[F08101FE.x01]B4|

=
3

11
= 0.273. (65)

This demonstrates that the degree to which the events in class [F08101FE.x01]B4 be-

long to X is 27.3%. This shows that fault events in class [F08101FE.x01]B4 and the faults

in the set X are partially related.

7.2 Rough Membership Functions

A rough membership function (rm function) makes it possible to measure the degree

to which any specified object belongs to a given set X . In the power fault classification

system, there are 11 feature sets and 12 types of faults; the universe is divided into 132

Rough Sets. A mapping of these 132 Rough Sets and the information table is illustrated in

Table 22.

Table 22: The mapping of 132 Rough Sets and information table.
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RSij is a set of the ith faults represented by function values for functions representing

a ∈ Bj . For simplicity, fault file names will be replaced by sets of values of functions, e.g.,

11of {2, 2, 2} representing class [F08101FE.x01]B4
as shown in Section 7.1.

Consider two sets, RSij and RSkj, the intersection RSij∩RSkj belongs to the “YesOrNo”

set of RSij in the case where RSij and RSkj have feature values in common. The elements

that exist only in set RSij constitute what is known as the “Yes” set. In other words,

each RSij set is divided into two sets, the “YesOrNo” set and the “Yes” set. Examples of

“YesOrNo” sets of B4 to B11 in faults 1, 2, 3 and 4 are listed in Table 23. The complete

tables of the “YesOrNo” set of all feature sets in all 12 faults are attached in Appendix B.

The “Yes” sets of all feature sets in all 12 faults are listed in Table 24. The equivalence

classes of all feature sets are listed in Tables 25 and 26.

Table 23: “YesOrNo” set of feature sets from B4 to B11 in faults 1, 2, 3 and 4.
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Table 24: “Yes” set of 11 feature sets in 12 faults.
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Table 25: The equivalence classes of feature sets B1, B2 and B3.

Table 26: The equivalence classes of feature sets B4 to B11.
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For a fault file, if its output of Bj falls in the “YesOrNo” set of RSij , it indicates that

the file could represent an ith fault; and the degree of ith fault will be estimated based on

the rough membership function in (66).

µB
X(x) =

|[x]B ∩ X|
|[x]B| . (66)

As an example, the rough membership calculation for the fault file F0822405.x01 is

explained in (67). For fault file F0822405.x01, the feature set B4 gives an output of {2, 2,

21}. Since set {2, 2, 21} is identified in the “YesorNo” set of RS34 10 times, the fault is

possibly a fault 3. In (66), the equivalence class [x]B is substituted by [F0822405.x01]B4,

where x is represented by fault file F0822405.x01 and B is replaced with B4. Meanwhile,

X is replaced by RS34. [x]B4 has 29 elements. Then the degree of overlap between [x]B4
=

[F0822405.x01]B4
and RS34 can be estimated by (67).

µB4
RS34

(x) =
|[F0822405.x01]B4 ∩ RS34|

|[F0822405.x01]B4|
=

10

29
= 34.4%. (67)

It demonstrates that the degree to which class [F0822405.x01]B4 belongs to fault 3 is

34.4%.

7.3 Rough Membership Tables for rmNN Training and Verification

By simply repeating the rough membership computation procedure described in Sec-

tion 7.2, 11 degrees to which the file F0822405.x01 belongs to fault 3 are obtained based

on RS3j (1 ≤ j ≤ 11) and [F0822405.x01]Bj
(1 ≤ j ≤ 11). The 11 degrees of member-

ship are represented as a vector, e.g., (0.19, 0.14, 0.33, 0.34, 0.12, 0.16, 0.19, 0.37, 0.28,

0.16, 0.16). In addition, for a fault file *.x01, the membership for each type of fault based

on each feature set is derived to transform the training information table (Table 12) and
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testing information table (Table 13) into 12 rough membership training tables and 12 rough

membership testing tables, respectively. One of these rough membership tables is shown in

Table 27. The first column indicates the file index. The following 11 columns contain 11

rough memberships for fault 3. The last column is the target that indicates whether it is a

fault 3 or not. The value of 1 is for “Yes” and 0.01 is for “No”. Each row in Table 27 is

employed as a training set to calibrate the rmNN for fault 3. Table 28 is the rough mem-

bership table for fault 3 rmNN verification. It is necessary to point out that both Table 27

and 28 are partial rough membership tables. Twelve complete rough membership training

tables as well as 12 testing tables are listed in Appendix C.
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Table 27: Partial rough membership table for fault 3 rmNN training.
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Table 28: Partial rough membership table for fault 3 rmNN testing.
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7.4 Design of rmNNs for PSFC

Neural networks are collections of massively parallel computation units called neurons.

A neuron is a processing element in a neural network. To design a rough membership neural

network, the rough neurons should first be defined.

7.4.1 Concepts of Rough Neurons

Typically, a neuron y maps its weighted input from Rn to [0, 1]. A selection of different

types of neurons is given in Table 29: common neurons, rough neurons, fuzzy neurons.

Table 29: Different types of neurons.

In the design of the rough membership function neural network (rmNN), the hidden

layer consists of fuzzy neurons defined using the t-norm, s-norm and → (imply operators)

from fuzzy set theory. The formal definition for a hidden neuron in an rmNN is given in (68)

using the t-norm, s-norm and → operators. The reason that this form of hidden neuron is

applied is because it provides a numerical representation of set intersection (t-norm), set

union (s-norm) and implication (→) that works well as a means of aggregating the input
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from the rough membership functions in the input layer. Let B, X, [x]B denote a set of

features, a set of files with matching fault type based on knowledge, and an equivalence

class derived from known objects, respectively. The basic computation steps performed by

a rough membership neuron are reflected in the flow chart in Figure 56.

Figure 56: Flow chart for basic Rough Neuron computation.

In Figure 56 x is a newObj, an unclassified fault file. A rough neuron measures the de-

gree of overlap of sets [x]B and X , and represents certain as well as uncertain classification

of the input newObj, x.

7.4.2 Architecture of the Rough Membership Neural Network (rmNN) for PSFC

The architecture of a rmNN for fault classification is dependent on the number of types

of available faults. Each fault will have its own rmNN. In the research reported in this

thesis, 12 separate rmNNs are employed to classify 12 types of faults. Each rmNN will

output an estimation of the degree of one type of fault for a given object. For instance, the

output neuron of the kth rmNN will aggregate all contributions from the rough neurons in

the first layer, process in the hidden layer and finally output an estimation of the degree of

kth fault. The output from 12 rmNNs will be forwarded to a fault type decider neuron. The

decider neuron simply picks up all the faults with degree values above 80%. Almost 50%

of the power system fault events are multiple faults jointed.
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The whole computational framework that contains 12 rmNNs is shown in Figure 57.

An example of the kth rmNN is shown in Figure 58, where rmfk(Bi(objn)) is the rough

membership for fault k based on the output of attribute set Bi for a given object n. The

interconnections, i.e., rij, wij and uj inside the rmNN are shown in Figure 59. There are 11

rough neurons in the first layer and 11 fuzzy neurons in the hidden layer. Each neuron

in the first layer is fully connected to the neuron in the hidden layer and each neuron in

the hidden layer is fully connected to the output neuron. rmf k(Bi(objn)) is simplified as

rmfk
i in Figure 59 as well as in the weights updating formulas.

Figure 57: Diagram of connection of 12 rmNNs.
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Figure 58: Diagram of rmNN for kth fault classification.

Figure 59: Interconnection of the rmNN for fault k.

The formula for the activation function of the hidden neuron and the output neuron

is described in (68) and (71) respectively. The formulas here are with respect to the kth

rmNN. The t-norm is defined in (68). The imply operator → is defined in (69). The

s-norm, namely probability sum, is defined in (70).

hk
j = t11i=1[rij → rmfk

i s wij ]

= [(r1j → rmfk
1 ) s w1j ][(r2j → rmfk

2 ) s w2j ]...[(r11j → rmfk
11) s w11j ], (68)
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where

(rij → rmfk
i ) ≡ min

(
1,

rmfk
i

rij

)

=

⎧⎪⎨⎪⎩
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.
(69)

(rij → rmfk
i ) s wij = (rij → rmfk

i ) + wij − (rij → rmfk
i )wij. (70)

Ok = s11
j=1[h

k
j uj]. (71)

7.4.3 Weights Adjustment with a Fixed Step Size Gradient Algorithm

In the process of tuning weights in the kth rmNN, rij , wij and uj will be updated by the

partial derivative of the error. The error is the square of the difference between the target

and the output of the kth rmNN.

Error =
(
targetk − Ok

)2
=

(
targetk − s11

j=1

((
t11i=1

((
rij → rmfk

i

)
s wij

))
uj

))2
= F (rij, wij, uj) , (72)

and

u
(new)
j = u

(old)
j − α

∂Error

∂uj

,

w
(new)
ij = w

(old)
ij − α

∂Error

∂wij

,

r
(new)
ij = r

(old)
ij − α

∂Error

∂rij

, (73)
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where α is the learning rate. The effects of the learning rate are discussed in Section 7.6.

u
(new)
j will be updated by the partial derivative of the error function with respect of u

(old)
j

in (73).

∂Error

∂ui

= − (targetk − Ok
) ∂Ok

∂ui

= − (targetk − Ok
) ∂

∂ui

[
s11

j=1[h
k
j uj]

]
, (74)

where i = 1, 2, ... 11. The overall expression can be rewritten by separating the ith compo-

nent in the overall s-norm composition,

∂Ok

∂ui
=

∂

∂ui

[
A + uih

k
i − Auih

k
i

]
= hk

i (1 − A), (75)

where factor A summarizes the remaining components of the s-norm composition, i.e.,

A = s11
j=1,j �=i

[
hk

j uj

]
. (76)

The computation of the connections between the input layer and the hidden layer, i.e.,

wij given by the second formula in (73) requires the use of the chaining rule of differentia-

tion. This implies the following,

∂Error

∂wij
= − (targetk − Ok

) ∂Ok

∂hk
j

∂hk
j

∂wij
, (77)

where wij refers to the connection from the ith node in the first layer to the jth node in the

hidden layer. The ∂Ok

∂hk
j

factor is expressed as,
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∂Ok

∂hk
j

= uj(1 − A). (78)

For factor
∂hk

j

∂wij
, the activation function will be applied governing the hidden neuron,

∂hk
j

∂wij
=

∂

∂wij

(
t11l=1

[(
rlj → rmfk

l

)
s wlj

])
=

∂

∂wij

[(
rij → rmfk

i

)
s wij

] (
t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

])
. (79)

By introducing the notation

B = t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

]
, (80)

(79) can be rewritten as

∂hk
j

∂wij
=

∂

∂wij

(
B
[(

rij → rmfk
i

)
s wij

])
= B

∂

∂wij

[(
rij → rmfk

i

)
s wij

]
= B

∂

∂wij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)
= B

(
1 − (rij → rmfk

i

))
. (81)

The same procedure applies to update the rij parameter by computing

∂Error

∂rij
= − (targetk − Ok

) ∂Ok

∂hk
j

∂hk
j

∂rij
, (82)

where rij refers to the connection from the ith node in the first layer to the jth node in the

hidden layer. The ∂Ok

∂hk
j

factor is expressed in (78), which is the same thing when updating

wij.
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∂hk
j

∂rij
=

∂

∂rij

(
B
[(

rij → rmfk
i

)
s wij

])
= B

∂

∂rij

[(
rij → rmfk

i

)
s wij

]
= B

∂

∂rij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)
= B (1 − wij)

∂
(
rij → rmfk

i

)
∂rij

, (83)

and

∂
(
rij → rmfk

i

)
∂rij

=
∂

∂rij

⎧⎪⎨⎪⎩
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.

=

⎧⎪⎨⎪⎩ −rmfk
i

r2
ij

, if rij ≥ rmfk
i ,

0, otherwise.
(84)

The program flowchart for the rmNN calibration is illustrated in Figure 60.

7.4.4 Calibration Results of Selected rmNNs for PSFC

By way of illustration, only the calibration and verification results for fault 3 and 5

rmNNs are illustrated here. The results of all 12 rmNNs are attached in Appendix D.

The error output during the training of the fault 3 and fault 5 rmNNs is shown in Fig-

ures 61 and 62 respectively. After 200 learning cycles, the error between the target and the

output of fault 3 rmNN is less than 0.8 and of fault 5 rmNN is less than 0.2.

The output for fault 3 and 5 rmNNs compared to their targets after the first learning

cycle is shown in Figures 63 and 64 respectively. Figures 65 and 66 illustrate that after 200

learning cycles, the output for fault 3 and 5 rmNNs matches their targets well.
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Figure 60: Flowchart of weights updating for rmNN calibration.

It is observed, from Figures 65 and 66, that approximately 70 fault files, which are files

from file #73 to file #96, from file #318 to file #348 and from file #405 to file #419, are

indicating combinations of fault 3 and 5.

The trained r, w and u parameters for fault 3 and 5 rmNNs are shown in Tables 30

and 31 respectively.
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Figure 61: Learning performance of fault 3 rmNN.

Figure 62: Learning performance of fault 5 rmNN.
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Figure 63: The output for fault 3 rmNN after one learning cycle.

Figure 64: The output for fault 5 rmNN after one learning cycle.
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Figure 65: The output for fault 3 rmNN after 200 learning cycles.

Figure 66: The output for fault 5 rmNN after 200 learning cycles.
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Table 30: r, w and u parameters trained for fault 3 rmNN.
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Table 31: r, w and u parameters trained for fault 5 rmNN.

7.4.5 Verification Results of Selected rmNNs for PSFC

In this section, 168 additional fault files have been used in a test set to verify the per-

formance of the rmNN power fault classification system. The test results for fault 3 and 5

rmNNs are shown in Figures 67 and 68. With the fault detection threshold set to 80%, both

rmNNs have 100% classification accuracy.
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Figure 67: Testing results for fault 3 rmNN.

Figure 68: Testing results for fault 5 rmNN.

Table 32 summarizes the accuracy of the rmNN power fault classification system. It

has been found that for each type of fault, the more fault files used in training, the more
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accurate the test results will be. For instance, a greater number of fault files were used to

calibrate the rmNNs for faults “Minor AC disturbance”, “AC Disturbance”, “Valve Current

Closed/Blocked/Deblocked”, “Line Fault”, and “Commutation Failure”. The test results

for these types of faults showed 100% accuracy. By contrast, for faults “Current Arc Back”

and “Normal affected by another pole”, 26 and 18 fault files are employed for calibration

respectively; and the corresponding accuracy of the test results were comparatively low

(Table 32).

Table 32: Accuracy of the rmNN power fault classification system.
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7.5 Effects of the Number of Neurons in the Hidden Layer

For verifying the rmNN performance, the rmNN sensitivity with respect to different

numbers of neurons in the hidden layer was analyzed. The rmNNs with 11, 9, 7 or 3 hidden

neurons are tested for the learning and verification set. The numerical results provide a very

good performance index.

To decide on the number of hidden neurons, the square root of the product of the input

and output is a good number with which to begin, in this case,
√

11 × 1 is 3.3. The test

results of the learning and verification performance with 3, 7, 9 and 11 neurons for 12

rmNNs are shown in Appendix E. The test results indicate that the performance with 3

hidden neurons is always the worst case and unacceptable. The performance with 7 and 9

hidden neurons is very close. The case with 11 neurons has the best performance for fault 7

and fault 8 rmNNs.

The learning output comparison for fault 7 rmNN with 3, 7 and 11 hidden neurons is

shown in Figure 69(a). The learning output for fault 7 rmNN with 9 hidden neurons is

omitted since its performance is close to the rmNN with 7 hidden neurons (Appendix E).

Figures 69(b), 69(c), 69(d) and 69(e) show the details of the A, B, C and D parts in Fig-

ure 69(a) respectively. They clearly indicate that, for all the true cases, the rmNN with

11 hidden neurons present the highest output, and the rmNN with 3 hidden neurons give

the lowest output. The verification output comparison for fault 7 rmNN with 3, 7 and 11

hidden neurons is shown in Figure 70(a). The verification output for fault 7 rmNN with

9 hidden neurons is omitted for the same reason. Figures 70(b), 70(c), 70(d) and 70(e)

show the details of the A, B, C and D parts of Figure 70(a) and clearly confirm the results

from learning for all the true cases. The rmNN with 11 hidden neurons gives the highest

verification score, and the verification output from the one with 3 hidden neurons yields the

lowest.
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As another example, the learning and verification output comparison for fault 8 rmNN

with 3, 7 and 11 hidden neurons is shown in Figures 71 and 72 respectively. It agrees with

the learning and verification results for fault 7 rmNN, i.e., different numbers of neurons in

the hidden layer considerably affect the performance of the rmNN. The goal is to have not

too many but enough hidden neurons to be able to learn correctly. There are no analytically

shown facts about the necessary number of hidden neurons, instead more tests are required

to find an appropriate number. In addition, some research shows that the redundancy on

hidden-layer neurons is useful in the fault tolerance of neural networks, especially for the

feedforward networks.
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(a) A broad view of the performance comparison for 508 rmNN training files.

(b) A zoom-in detail of part A in (a). (c) A zoom-in detail of part B in (a).

(d) A zoom-in detail of part C in (a). (e) A zoom-in detail of part D in (a).

Figure 69: The learning output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons.
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(a) A broad view of the performance comparison for 168 rmNN testing files.

(b) A zoom-in detail of part A in (a). (c) A zoom-in detail of part B in (a).

(d) A zoom-in detail of part C in (a). (e) A zoom-in detail of part D in (a).

Figure 70: The verification output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons.
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(a) A broad view of the performance comparison for 508 rmNN training files.

(b) A zoom-in detail of part A in (a). (c) A zoom-in detail of part B in (a).

(d) A zoom-in detail of part C in (a). (e) A zoom-in detail of part D in (a).

Figure 71: The learning output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons.
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(a) A broad view of the performance comparison for 168 rmNN testing files.

(b) A zoom-in detail of part A in (a). (c) A zoom-in detail of part B in (a).

(d) A zoom-in detail of part C in (a). (e) A zoom-in detail of part D in (a).

Figure 72: The verification output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons.
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7.6 Effects of Learning Cycles, Learning Rate and Least Square Error

To obtain satisfactory performance for an rmNN, the selection of appropriate learning

rates (α) for the rmNN is critical and challenging. Applying an improper learning rate to

the rmNN may cause the learning curve of the rmNN to oscillate. For example, suppose a

network produces an error of -0.5 and the error was adjusted at an improper learning rate

by the network. The new error is +0.5, and the next error is -0.5 again..., so on and so forth.

Apparently the learning period this system takes will be endless. On the other hand, if the

learning rate is too small, the network parameters will improve toward the best solution,

but at a very low speed. It might take hours, even days, to optimize such a network. To

gain a good learning rate requires interactive processing to achieve an acceptable overall

direction for the search.

It is sometimes seen that the learning error decreases for the learning set of data with

more and more learning cycles (LCs), but still does not lead to better classification perfor-

mance. This suggests that the network is “overfitting” due to some local minimum.

An example of an “overfitting” rmNN is observed when the rmNN is trained for clas-

sifying fault 10. Figure 73(a) shows the learning least square error (LSE) comparison for

fault 10 rmNN with different LCs and α. The details of A and B parts in Figure 73(a) are

illustrated in Figure 73(b) and Figure 73(c), respectively. Learning case 1 has LCs = 100,

α = 0.22 and LSE = 0.233; learning case 2 has LCs = 800, α = 0.22 and LSE = 0.21; and

learning case 3 has LCs = 800, α = 0.3 and LSE = 0.19. The learning cycles are increasing

and the LSEs are decreasing.
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(a)

(b)

(c)

Figure 73: Learning LSE comparison for fault 10 rmNN with different LCs and α.

Figure 74(a) illustrates the learning output comparison for fault 10 rmNN in the three

cases shown in Figure 73. Figures 74(b) and 74(c) show the learning output at points A

and B. Points A and B represent file 422 and file 471, which belong to false case and true

case respectively. From Figures 74(b) and 74(c), it is found that for case 1, points A and

B are 0.09 apart from each other; for case 2, A and B are closer with a distance of 0.07;

and for case 3, A and B locate almost at the same line with a distance of 0.01, and could

barely be distinguished. It has been found that the smaller LSE does not lead to better

classification performance. The conjecture is that the rmNN is “overfitting”, which causes

the vagueness (slight difference) between the true and false cases.
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(a) A broad view.

(b) A zoom-in detail of point A in (a).

(c) A zoom-in detail of point B in (a).

Figure 74: The learning output comparison for fault 10 rmNN with different LCs and α.

Another example shows the lower output for both learning and verification output for

true case files with a smaller LSE. Figure 75 shows the learning least square error (LSE)
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comparison for fault 7 rmNN with different LCs and α. In learning case 1, LSE = 1.3;

learning case 2, LSE = 0.54; and learning case 3, LSE = 0.41. From case 1 to case 3, the

LSE decreases.

(a)

(b)

Figure 75: Learning LSE comparison for fault 7 rmNN with different LCs and α.

Figure 76 shows the learning output for the 3 cases. Figures 76(b), 76(c), 76(d) and 76(e)

show the details of the A, B, C and D parts in Figure 76(a).

Figure 77 shows the verification output for the 3 cases. Figures 77(b), 77(c), 77(d)

and 77(e) show the details of the A, B, C and D parts in Figure 77(a).

It has been shown that, for all the true case files with a target value of 1, case 1 with the

higher LSE has the highest output and case 3 with the lowest LSE has the lowest output.
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(a)

(b) (c)

(d) (e)

Figure 76: The learning output comparison for fault 7 rmNN with different LCs and α.
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(a)

(b) (c)

(d) (e)

Figure 77: The verification output comparison for fault 7 rmNN with different LCs and α.
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The learning cycles, learning rates applied and the learning errors received for 12

rmNNs are listed in Table 33.

Table 33: The learning cycles, learning rate and learning error for 12 rmNNs.

7.7 Implementation of rmNN for PSFC

After theoretical development and computer simulation, the next sought-after step is to

build the software package for the implementation of rmNN power system fault classifica-

tion with a user friendly interface. The software package provides the following functions:

• Feature extraction

• Rough set construction

• Rough membership computation
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• Rough membership neural network calibration and verification

• Power system fault type detection

C++ programs as well as the executable codes have been developed for each function.

The executables are called and embedded in a LabVIEW program, which creates a flexible

and scalable user interface. With LabVIEW, users can interface with real-world signals,

analyze data for meaningful information, and share results through intuitive displays and

reports. The screen snapshot of the user interface for rmNN power system fault classifica-

tion is shown in Figure 78.

Figure 78: The user interface for rmNN power system fault classification.

The main GUI (graphic user interface) window for the rmNN PSFC contains five tabs

that are created for the five functions. The first tab is designed for the features extraction

function seen in Figure 78. Users are allowed to select either a fault file list or a spe-

cific fault file to be processed. An example of a fault file list is FaultFiles train.txt, which
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contains the file names of all fault files for training. The 23 signals are analyzed and 17

features are derived for each fault file. The thresholds applied in the features extraction

can be adjusted to achieve optimized feature values for the best fault classification perfor-

mance. When partial features need to be updated, the switch allocated for each feature can

be individually turned off to disable the feature extraction operation.

The second tab allows accessing the rough set construction function shown in Figure 79.

The equivalence classes, the B-low approximations (Yes Sets) and approximation boundary

sets (YesOrNo Sets) are created based on features values of all training fault files. The

rough sets need to be restructured whenever the features values are updated.

Figure 79: Rough set construction for rmNN power system fault classification.

The third tab is for the rough membership computation function illustrated in Figure 80.

Twelve rough membership training tables, which contain the training sets for the calibration

of twelve rmNNs, have been derived. These training tables need to be re-generated as well

whenever the features values are adjusted.
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Figure 80: Rough membership computation for rmNN power system fault classification.

The forth tab allows accessing the rough membership neural network calibration and

verification function shown in Figure 81. Twelve pages have been developed inside this

function for calibration of twelve rmNNs respectively. The learning rate and cycles are

the parameters to be adjusted until the best classification performance is achieved. The

learning error, learning output and test result for each rmNN are displayed in three graphs

respectively and the final calibrated weights are reported in the table at the bottom-right

quarter of the tab window.
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Figure 81: rmNN calibration and verification function for rmNN power system fault clas-
sification.

The final function is for the power system fault type detection, which is illustrated

in Figure 82. For a fault file to be classified, 17 features are derived by function 1 and

loaded by this fault type detector. The 11 rough memberships, a rough membership set,

based on 11 feature sets associated with a type of fault are estimated. Consequently a

total of 12 rough membership sets are derived and input to 12 trained rmNNs respectively.

Twelve degrees, one for each fault type, are estimated by the 12 rmNNs and forwarded

to a decider neuron, which picks up the faults with degree output greater than the preset

threshold. For example, in Figure 82, the threshold is set as 0.8; the faults detected for fault

file F1112E80Whole.dat are a combination of fault 1 and fault 4 with a degree of 0.911

and 0.985 respectively. The fault types are indicated in a text box. The threshold can be

adjusted lower to allow more fault types to be considered.
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Figure 82: Power system fault type detection.

The developed graphic user interface makes the power system fault classification easy

to operate for users. The software integrates features extraction, rough sets construction,

rough membership computation, rmNNs training, verification and fault type detection into

one system, which provides the possibility for further implementation of an adaptive learn-

ing real-time fault classification system. Currently, the most time consuming component

of the software package is the features extraction, which takes two to three seconds and

needs to be computationally optimized. The rough membership computation and fault type

detection take less than one second, which meets the need of real-time.
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8 Normal Artificial Neural Network (ANN) for PSFC

Nomenclature

Symbol Brief Explanation

Bi(Obj n) Output of attribute set Bi for a given fault data file n
rij Weights on the connection from ith neuron in the input layer to

the jth neuron in the hidden layer in the first and second type
of artificial neuron networks

wjk Weights on the connection from j th neuron in the hidden layer
to the kth neuron in the output layer in the first type of
artificial neuron network

hj Output of the jth neuron in the hidden layer in the first type
of artificial neuron network

Ok The degree estimation of the kth type of fault, the output of
the kth neuron in the output layer in the first type of
artificial neuron network

g(·) The logistic sigmoid activation function in normal artificial neuron
network

wj Weights on the connection from j th neuron in the hidden layer
to the output neuron in the second type of artificial neuron network

hk
j Output of the jth neuron in the hidden layer in kth second

type of artificial neuron network
Ok The degree estimation of the kth type of fault, the output of

the kth second type of artificial neuron network.

Before using the rmNN to classify the power system faults, two normal artificial neural

networks were investigated. Each row in the information table (Table 12) is an input to the

neurons in the first layer of both ANNs. No rough membership is computed. The perfor-

mance of these two types of ANNs is addressed in detail in the following two sections.
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8.1 A Single ANN for PSFC

First, a single ANN was considered to classify 12 types of faults. The single ANN is

designed with 3 layers, containing 17 neurons in the input layer and hidden layer and 4

neurons in the output layer. Each neuron in the output layer indicates one possible type

of fault. As seen in Table 12, some *.x01 files are involved with 4 types of faults, i.e.,

F082016A.x01 is intervened with faults 1, 3, 5 and 7. The four output neurons are expected

to output 1, 3, 5 and 7 respectively when processing fault F082016A.x01.

Figure 83: The architecture of the single ANN power fault classification system.

The architecture of the single ANN is illustrated in Figure 83, where

hj = g

(
17∑
i=1

rijBi (obj n)

)
, (85)

Ok =
17∑

j=1

wjkhj, (86)
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and g(·) is the logistic sigmoid activation function given by

g(a) =
1

1 + e−a
. (87)

The 17 neurons in the first layer receive values from functions representing 17 features.

Unlike an rmNN, the features are not grouped. Back-propagation is adopted as the network

training function. A gradient descent learning function is used as the weights updating

function, and the least squared error function is used as the learning performance evaluation

function. The learning performance is shown in Figure 84. After 1600 learning cycles, the

LSE converged to 1.23.

Once the ANN is calibrated, 168 test files are applied to evaluate the accuracy of this

ANN fault classification system. Four neuron output compared with four targets are dis-

played in Figures 85, 86, 87 and 88, respectively. It is noticeable that over 60% of testing

files failed the verification.

Figure 84: Learning performance of the single ANN for power system fault classification.
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Figure 85: Target 1 verification.

Figure 86: Target 2 verification.
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Figure 87: Target 3 verification.

Figure 88: Target 4 verification.
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8.2 Twelve Sub-ANNs for PSFC

The basic architecture of the second ANN power fault classification system is similar

to the rmNNs described earlier. Twelve ANNs are created and each of them classifies one

type of fault. An example of ANN for kth fault classification is illustrated in Figure 89. The

output from the 12 ANNs are the estimations of the degrees of the 12 faults respectively.

The output from the 12 ANNs are forwarded to a decider neuron, which simply picks up

the faults with degrees above a preset threshold.

Figure 89: The architecture of a sample ANN for kth fault classification.

In Figure 89,

hk
j = g

(
17∑
i=1

rijBi (obj n)

)
, (88)

Ok =
17∑

j=1

wjh
k
j , (89)

and g(·) is the logistic sigmoid activation function same as the one applied in the first type

of ANN.
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The 17 neurons in the first layer receive values from functions representing 17 features.

Again, the features are not grouped. Backpropagation is still used as the network training

function, the gradient descent learning function as the weights learning function, and the

least squared error function as the learning performance evaluation function. The learning

performance for fault 3 and 5 ANN is shown in Figures 90 and 91 respectively. After 800

learning cycles, both LSEs are approximately 10.

After 800 learning cycles, 168 test files are applied to evaluate the performance of

the ANNs. The testing output for fault 3 and 5 ANN are displayed in Figures 92 and 93

respectively. It is obvious that the threshold to pick up the fault has to be reduced to 60% to

generate better accuracy. The results for the calibrations and verifications of the 12 ANNs

are attached in Appendix F. The classification accuracy is listed in Table 34. Compared

with the rmNN system, the accuracy of the ANN fault classification system is fairly poor.

It either produces low detection accuracy for the desired faults or generates a great number

of unexpected false alarms.

The failure of both ANN fault classification systems is possibly due to the input, which

are the 17 feature values. Consider the feature 5 (Pole Current Trend), two possible codes

are “313” and “343”. They are very close in terms of the values of these two numbers

when treated by the ANN system. But “313” usually happens in fault 4 (Line Faults), and

“343” happens in fault 1 (Minor AC Disturbance). The rough membership computation

distinguishes these two numbers by assigning each of them with the degree of each type of

fault, which greatly improves the quality of the feature information and consequently the

classification performance.
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Figure 90: The learning performance for fault 3 ANN.

Figure 91: The learning performance for fault 5 ANN.
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Figure 92: Fault 3 ANN verification.

Figure 93: Fault 5 ANN verification.

155



Table 34: Accuracy of 12 ANNs for PSFC.
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9 Classifier Fusion

Nomenclature

Symbol Brief Explanation

LMD Linear Mean and Deviation
SORM Sum of 11 Rough Memberships

9.1 Motivation in Using a Second Complementary Classifier

A number of classifier fusion methods have been recently developed and lead to poten-

tial improvement in classification performance. In this section, a second successful classi-

fier based on mean and standard deviation evaluation of the sum of 11 rough memberships

is proposed. The goal is to take advantage of the diversity of two classifiers to improve the

performance of PSFC.

To achieve high overall performance of the classification function, the performance of

each individual classifier has to be optimized prior to using it within any fusion schemes.

That is, the fusion scheme will be able to improve the overall classification result relative

to the performance of the individual classifiers. If several classifiers with only marginal

performance are being used, the results cannot necessarily be expected to reach high per-

formance. On the other hand, if several classifiers are used that work exceptionally well,

any further gains will be exceedingly hard to accomplish because the opportunity for diver-

sity is diminished.

Recall the performance of the 12 rmNNs. Table 35 lists the minimum rmNN output for

true cases and the maximum rmNN output for false cases in both learning and verification.
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The classification performance of the rmNNs for fault 1, fault 2, fault 4, fault 5 and fault 12

are excellent and both the learning and verification output for the true cases have high

scores over 0.9, while for the false cases have low scores less than 0.16.

Table 35: Maximum and minimum rmNN output for false and true cases, respectively.

Faults 1, 2, 4, 5 and 12 do not need to be reinforced by a second complementary clas-

sifier. However, for faults 3, 6, 7, 8, 9, 10 and 11 classification, a second LMD classifier

is introduced to fusion the output from rmNNs in order to increase the overall PSFC accu-

racy.

9.2 Linear Mean-Deviation (LMD) Based Classifier

The input for the linear mean and deviation based (LMD) classifier is the sum of 11

rough memberships (SORM) in the training and testing tables for rmNNs. Figure 94 shows

the SORMs of 508 training files for fault 7.
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Figure 94: The SORMs of 508 training files for fault 7.

From all the points of SORM output, three sets are constructed. Set 1 consists of all the

points of true case with SORM values over 0.85. Set 2 contains all the points of true case

with SORM values less than 0.85. Set 3 collects all the points of false case. These 3 sets

are illustrated in Figure 95.

Figure 95: Three sets of SORMs.
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The points in sets 2 and 3 will be employed to estimate the mean and deviation values

to establish the distribution functions of set 2 and set 3. Assuming that x ij is the jth point

in set i and there are Ni points in set i. The mean and absolute deviation for set i, i.e., µi

and devi are defined as follows.

µi =
1

Ni

Ni∑
j=1

xij . (90)

devi =
1

Ni

Ni∑
j=1

|xij − µi|. (91)

The Gaussian distribution function of set i, fi(x), is defined as,

fi(x) =
1√

2π(devi)2
e

−(x−µi)
2

2(devi)
2 . (92)

Take fault 7 as an example, the mean and deviation of sets 2 and 3 are calculated, and

listed in Table 36.

Table 36: The mean and deviation of sets 2 and 3 for fault 7 training files.

The degree of fault 7 will then be calculated as described in (93)

deg(x) =

⎧⎪⎨⎪⎩ x, if x ≥ 0.85,

f2(x)+1−f3(x)
2

, if x < 0.85.
(93)

Keep the SORM as the degree of fault 7, if it is bigger or equal to 0.85. f2(x)+1−f3(x)
2

is

only applied to the points with SORM values that are less than 0.85. In this way, the degree
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of fault 7 of the points in set 2 is raised. This method is applied to faults 3, 6, 7, 8, 9, 10

and 11. For example, the degree of fault 7 of 508 training files is shown in Figure 96.

Figure 96: Fault 7 LMD classifier output for 508 training files.

Use the training files, the mean and deviation of sets 2 and 3 can be estimated to set up

the distribution function for the points of true case with SORM values less than 0.85 and

the distribution function for the points of false case. The trained distribution functions will

be applied to the test points to estimate the degree of a type of fault. In this example, the

degree of fault 7 is estimated.

The SORMs of fault 7 for 168 testing files are shown in Figure 97, and the fault 7 LMD

classifier output for 168 testing files are shown in Figure 98. The degrees of fault 7 for all

the true case points are above 0.87. One point, file 128, exists in the verification output for

fault 7 rmNN. It has a low estimation of the degree of fault 7, which is only 0.79 (Table 35,

Section 9.1).

The fault 10 LMD classifier results are illustrated in Figures 99, 100, 101 and 102. The

SORMs of 508 training files are shown in Figure 99, and the LMD classifier training output

is shown in Figure 100. The SORMs of 168 testing files are shown in Figure 101, and the
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Figure 97: The SORMs of 168 testing files for fault 7.

Figure 98: Fault 7 LMD classifier output for 168 testing files.

LMD classifier testing output is shown in Figure 102. In Figure 99, it is very clear that

only two points (file 471 and file 472) have low SORM output (i.e., 0.745 and 0.746) and

they are almost at the same level. The distribution function of set 2 is designed based on

these two points and the degree of fault 10 for these two points from the LMD classifier
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is high and raised to 0.985. In the test, the degree of fault 10 for file 159 is boosted to

0.984 as well. The rmNN classifier testing output for this point, however, is as low as 0.66

(Table 35, Section 9.1).

Figure 99: The SORMs of 508 training files for fault 10.

Figure 100: Fault 10 LMD classifier output for 508 training files.
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Figure 101: The SORMs of 168 testing files for fault 10.

Figure 102: Fault 10 LMD classifier output for 168 testing files.

The LMD classifier training and testing results for fault 6 are illustrated in Figures 103

to Figure 106. There is one point, file 90, in the fault 6 LMD classifier testing output, which

gives a low estimation of the degree of fault 6. The degree of fault 6 is only 0.786.
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Figure 103: The SORMs of 508 training files for fault 6.

Figure 104: Fault 6 LMD classifier output for 508 training files.
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Figure 105: The SORMs of 168 testing files for fault 6.

Figure 106: Fault 6 LMD classifier output for 168 testing files.

The SORMs for faults 3, 6, 7, 8, 9, 10 and 11 of both training and testing files are listed

in Appendix G. The fault 3, 6, 7, 8, 9, 10 and 11 LMD classifier training and verification

output is included in Appendix H.
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Table 37 summarizes the accuracy of the LMD classifiers. Except that the accuracy

for fault 6 classification is 0.93, the accuracy for all of the other 6 faults is 100%. LMD

classifier considers the isolated points with medium and low SORM values. For fault 7,

“Current Arc Back”, and fault 10, “Normal affected by another pole”, only 26 and 18

fault files are employed for calibration respectively; but the LMD classifier test result is

100% accurate. On the other hand, the rmNN classifier gives poorer results when it deals

with a fault with less files participate in learning. For fault 7 and 10, the rmNN classifier

verification accuracy is only 0.83 and 0.75 respectively (Table 32, Section 7.4.5).

Table 37: Accuracy of the LMD power fault classification system.

One point that needs mentioning is that the LMD classifier is not suitable for the classi-

fication for all 12 faults. Look at the SORMs for the 508 training files of fault 1 and fault 2

(Figures 107 and 108), where the SORMs of many false and true cases are comparable,

which causes the failure of the LMD classifier. The good thing is that the accuracy of the

rmNN classifier for these two faults is excellent and compensates the weakness of the LMD

classifier.
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Figure 107: The SORMs of 508 training files for fault 1.

Figure 108: The SORMs of 508 training files for fault 2.

9.3 Correlation of the rmNN and LMD Classifier

In classifier fusion, it is desirable to use classifiers that not only offer reasonable perfor-

mance but also have a mutually low correlation. If two classifiers are completely redundant,

many fusion schemes not only will not gain anything, but will actually exhibit poorer per-
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formance. Obviously, some degree of confirmatory information is desirable, but it is the

complementary information that gives the multi-classifier fusion a chance for success.

In this section, the correlation of the rmNN and LMD classifier will be estimated to

prove that they are good candidates for classifier fusion.

According to the 2-Classifier correlation analysis mentioned in Section 3.7, the formula

for the correlation is:

ρ2 =
2 × NFF

NTF + NFT + 2 × NFF
, (94)

where,

TT represents that the output of the rmm NN is T and the output of the LMD is T;

TF represents that the output of the rmm NN is T and the output of the LMD is F;

FT represents that the output of the rmm NN is F and the output of the LMD is T; and

FF represents that the output of the rmm NN is F and the output of the LMD is F;

and the following two methods are also applied for the correlation evaluation.

1. Try 3 thresholds for the ‘true’ decision making;

2. Consider both the training and testing files.

The correlation estimations of rmNN and LMD classifier for faults 3, 6, 7, 8, 9, 10

and 11 are listed in the following 3 tables for 3 thresholds respectively. Table 38 shows

that the correlations are all 0 for 7 faults when the threshold = 0.8 for ‘true’ decision mak-

ing. Table 39 shows that the correlations are still 0 when the threshold is pushed to 0.85.

Table 40 shows that the correlation for fault 6 and 11 are increased to 0.2 and 0.267 respec-

tively when the threshold is pushed to 0.86. But 0.2 and 0.267 still have a reasonably low

correlation level to ensure the success of the classifier fusion.
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Table 38: 2-Classifier correlation estimation ( Threshold for true case is 0.8 ).

Table 39: 2-Classifier correlation estimation ( Threshold for true case is 0.85 ).
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Table 40: 2-Classifier correlation estimation ( Threshold for true case is 0.86 ).

9.4 Results of the rmNN and LMD Classifier Fusion

The fusion methods are less important than the diversity of the classifier team, but still

need to consider which method is more suitable for specific problem solving.

The classifier fusion function for two classifiers can be minimum, maximum, aver-

age, median and oracle. The majority vote usually applies when having more than two

classifiers. The minimum will not help in this PSFC system. The maximum and oracle

emphasize the possible true points and it is easy to generate a false alarm. The average and

median methods are relatively soft and safe and their performances are approximately the

same. The average method is tried in this PSFC system and tested out to gain excellent

classification performance.

Once again, take fault 7 as an example. The training output for fault 7 LMD and the

rmNN classifier are shown in Figures 109(a) and 109(b) respectively. The output is the

degree of fault 7. The average of the two training output is shown in Figure 109(c). The

lowest point in the true cases from the LMD classifier is at file 350 with a value of 0.817.

On the other hand, the lowest point in the true cases from the rmNN classifier is at file 345
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with a value of 0.845. After averaging, the degree of fault 7 for file 350 is increased to

0.862, which is the lowest point after classifier fusion. In the training, the rmNN classifier

helps to lift the lowest point and improve the PSFC performance.

Now consider the verification results, which are illustrated in Figures 110(a), 110(b)

and 110(c). The lowest point in the true cases from the LMD classifier is at file 91 with

a value of 0.869. On the other hand, the lowest point in the true cases from the rmNN

classifier is at file 128 with a value of 0.792. After averaging, the degree of fault 7 for

file 128 is increased to 0.867, which is the lowest point after classifier fusion; and the

overall performance of the PSFC is improved. In the testing process, the LMD classifier

helps to lift the lowest point and improve the PSFC performance.
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(a) The learning output for fault 7 from the LMD classifier.

(b) The learning output for fault 7 from the rmNN classifier.

(c) The average of two learning output for fault7 from the LMD and rmNN classifiers.

Figure 109: The learning output for fault 7 after the fusion of the LMD and rmNN classi-
fiers.
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(a) The verification output for fault 7 from the LMD classifier.

(b) The verification output for fault 7 from the rmNN classifier.

(c) The average of two verification output for fault7 from the LMD and rmNN classi-
fiers.

Figure 110: The verification output for fault 7 after the fusion of the LMD and rmNN
classifiers.
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The Learning and testing results for faults 3, 6, 7, 8, 9, 10 and 11 after the classifier

fusion have been illustrated in Appendix H. The overall improvement of the PSFC perfor-

mance will be discussed via Tables 41 and 42.

Table 41 lists the minimum learning output from the rmNN, LMD and fusioned classi-

fier for all the true cases in the training set. It is apparent that, for faults 6, 8, 10 and 11, the

minimums from rmNNs are lower than 0.8. After classifier fusion the minimums are all

above 0.8. On the other hand, for fault 6, the minimum from LMD is 0.793, lower than 0.8.

After classifier fusion, the minimum output is raised to 0.811.

Table 41: Minimum learning output from the rmNN, LMD and fusioned classifier.

Table 42 lists the minimum verification output from the rmNN, LMD and fusioned

classifier for all the true cases in the testing set. It is apparent that, for faults 7 and 10, the

minimums from rmNNs are 0.792 and 0.656, both lower than 0.80. After classifier fusion,

the minimums are all raised above 0.82. On the other hand, for fault 6, the minimum from

LMD is 0.786, lower than 0.8. After classifier fusion, the minimum output is raised to

0.833.
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Table 42: Minimum verification output from the rmNN, LMD and fusioned classifier.

The accuracy of the PSFC, which benefits from the fusion of the rmNN and LMD

classifiers is listed in Table 43. The threshold for ‘true’ decision making is still 0.8.

Table 43: The accuracy of the PSFC system.
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It is obvious that the overall performance of the PSFC was improved via the fusion

of the two classifiers, the rmNN and LMD. The two classifiers provide complementary

information that gives the 2-classifier fusion method a chance to succeed. The accuracy

of the PSFC is 100%, which provides confident information for fault decision making and

enhances the quality of the power system protection functionality.
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10 Conclusion

This thesis introduces a rough set approach to power system fault classification. A form

of rough neural computing based on the use of rough membership functions is introduced

in the design of what is known as a rough membership function neural network (rmNN).

A rough membership function makes it possible to measure the degree that any specified

object with given feature values belongs to a given set X . The set X in this application is

a set of fault files, which represent the same type of fault. Each rmNN has 3 layers: input,

hidden, and output. The input layer contains what are known as rmf neurons, i.e., neurons

that compute the degree overlap between a specific class containing objects representing a

fault type and a set of sample objects representing fault signals to be classified. The neurons

in the hidden layer aggregate the output from the rmf neurons. The hidden layer neurons

are designed using fuzzy set theory, which is ideally suited for numerical representation of

aggregated rmf neuron output. The output neuron of an rmNN estimates the degree of a

specific type of fault.

The most significant contribution of this research is a demonstration that the rough

membership function successfully distinguishes objects with similar feature values. This

makes rmNN a reasonable choice as a power system fault classifier.

A C++ and Labview based graphic user interface is implemented for the rmNN classi-

fier, which makes the power system fault classification easy to operate.

To further improve the performance of the proposed approach to power system fault

classification, a 2-Classifier fusion method has been introduced. This fusion method takes

into account both the results of the rmNN classifier as well as a linear mean and standard

deviation (LMD) based classifier. The correlation of the rmNN and LMD classifiers was

estimated and has proved to be low enough to ensure that these two classifiers provide
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complementary information and are good candidates for classifier fusion. The ‘average’

method was selected as a fusion function.

Future work will include an extension of the TranscanTM system used by Manitoba

Hydro. In addition, it is also possible to consider various forms of unsupervised, adaptive

learning as a means of classifying power system faults.
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