
Learning with ALiCE II

by

Daniel Lockery

A Thesis
submitted to the Faculty of Graduate Studies of

the University of Manitoba
in partial fulfilment of the requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba R3T 5V6 Canada

c© by Daniel Lockery, August 2007



Learning with ALiCE II

by

Daniel Lockery

A Thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba

in partial fulfilment of the requirements for the degree of

Master of Science
in

Electrical and Computer Engineering

c© by Daniel Lockery, August 2007

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis

to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and University

Microfilms to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive abstracts from it may be

printed or otherwise reproduced without the author’s permission.



Abstract

The problem considered in this thesis is the development of an

autonomous prototype robot capable of gathering sensory infor-

mation from its environment allowing it to provide feedback on

the condition of specific targets to aid in maintenance of hydro

equipment. The context for the solution to this problem is based

on the power grid environment operated by the local hydro util-

ity. The intent is to monitor power line structures by travelling

along skywire located at the top of towers, providing a view of

everything beneath it including, for example, insulators, conduc-

tors, and towers. The contribution of this thesis is a novel robot

design with the potential to prevent hazardous situations and the

use of rough coverage feedback modified reinforcement learning

algorithms to establish behaviours.

Keywords: Reinforcement Learning, line crawling robot, target

tracking, monocular vision, rough sets, approximation spaces,

ethology

iii



Acknowledgements

Many people have been a great help to me along the way and it has been

my privilege to work with them all. My advisor, Dr. J.F. Peters has been

a fantastic source of encouragement throughout this adventure and helped

make it all possible. Many thanks to both Maciej Borkowski and Christo-

pher Henry from the CILab, who have been excellent to work with and their

help has been immeasurable. I appreciated the attention to detail provided

by the ECE machine shop when machining parts and taking our orders even

during their busy season. Thanks are also extended to the ECE tech shop for

their support with parts and helpful suggestions. Also, the work of Marco

Peluso for machining short run jobs to help make quick modifications was

invaluable throughout the design process. I would also like to express grat-

itude for the generous support of my research by Manitoba Hydro, and for

the advice and suggestions from my advisory committee, including Dr. R.

Fazel and Dr. S. Balakrishnan as well as suggestions from Dr. D.S. Gunder-

son. Also, a special thanks to Chad MacDonald for his helpful suggestions

along the way and finally I would like to thank my friends and family for

continued encouragement and their support throughout.

iv



Contents

Abstract iii

Acknowledgements iv

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Goals and Objectives . . . . . . . . . . . . . . . . . . . . . 2
1.4 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Organization of Report . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Line Crawling Environment . . . . . . . . . . . . . . . . . 5
2.2 ALiCE II Systems . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Gears and Motor Selection . . . . . . . . . . . . . . 6
2.2.2 Buck Switching Regulator . . . . . . . . . . . . . . 12
2.2.3 Interfacing Processors . . . . . . . . . . . . . . . . 16

2.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . 18
2.3.1 The Actor Critic Algorithm . . . . . . . . . . . . . 24
2.3.2 The Q-Learning Algorithm . . . . . . . . . . . . . . 29
2.3.3 The Sarsa Algorithm . . . . . . . . . . . . . . . . . 33

2.4 Rough Set Theory . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 Approximation Spaces . . . . . . . . . . . . . . . . 42
2.4.2 An Example Approximation Space . . . . . . . . . 45

2.5 Image Processing . . . . . . . . . . . . . . . . . . . . . . . 49

v



2.5.1 Template Matching . . . . . . . . . . . . . . . . . . 53
2.5.2 Average Grey Level Tracking . . . . . . . . . . . . 56

2.6 Robot Behaviour . . . . . . . . . . . . . . . . . . . . . . . 59
2.7 Ethology and the Ethogram . . . . . . . . . . . . . . . . . . 65

3 System Architecture 68
3.1 The First Prototype . . . . . . . . . . . . . . . . . . . . . . 68
3.2 The Second Prototype . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 The Line Grip . . . . . . . . . . . . . . . . . . . . . 75
3.2.2 Adding a Payload . . . . . . . . . . . . . . . . . . . 93
3.2.3 The Work Envelope . . . . . . . . . . . . . . . . . . 95

3.3 The System Diagram . . . . . . . . . . . . . . . . . . . . . 99
3.4 The Vision System . . . . . . . . . . . . . . . . . . . . . . 100

3.4.1 Image Processing . . . . . . . . . . . . . . . . . . . 106
3.5 The TS-5500 Computer . . . . . . . . . . . . . . . . . . . . 109
3.6 The PIC Controller . . . . . . . . . . . . . . . . . . . . . . 113
3.7 Communication Protocol Between the TS-5500 and the PIC 123
3.8 Locomotion and Position Control Motors . . . . . . . . . . 129

3.8.1 Locomotion Drive . . . . . . . . . . . . . . . . . . 129
3.8.2 Position Control Motors . . . . . . . . . . . . . . . 141

3.9 Power Supply Design . . . . . . . . . . . . . . . . . . . . . 145
3.9.1 Battery Selection . . . . . . . . . . . . . . . . . . . 150

3.10 Sensor Configuration . . . . . . . . . . . . . . . . . . . . . 153
3.11 Reinforcement Learning and the Target Tracking Problem . . 159

3.11.1 The Target Tracking Problem . . . . . . . . . . . . 159
3.11.2 Algorithm Selection . . . . . . . . . . . . . . . . . 164
3.11.3 Rough Coverage Modification . . . . . . . . . . . . 165
3.11.4 Classical Target Tracking . . . . . . . . . . . . . . . 170

3.12 Robot Behaviour . . . . . . . . . . . . . . . . . . . . . . . 171

vi



4 System Verification 175
4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . 175
4.2 Target Tracking System . . . . . . . . . . . . . . . . . . . . 178
4.3 Learning Methods . . . . . . . . . . . . . . . . . . . . . . . 183
4.4 PIC Control System . . . . . . . . . . . . . . . . . . . . . . 186

4.4.1 Calibration of Position Control Servos . . . . . . . . 191
4.4.2 Simple Locomotion Tests and Verification of the

DC Motor . . . . . . . . . . . . . . . . . . . . . . . 193
4.5 Robot Behaviour . . . . . . . . . . . . . . . . . . . . . . . 194

4.5.1 Sensor Verification and Calibration . . . . . . . . . 196
4.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 201

5 Experiment Design 205
5.1 Hardware Experimental Environment Setup . . . . . . . . . 205
5.2 Hardware Controllable Parameters . . . . . . . . . . . . . . 212
5.3 Software System Parameters . . . . . . . . . . . . . . . . . 213

5.3.1 The Actor Critic Algorithm . . . . . . . . . . . . . 213
5.3.2 The Q-Learning Algorithm . . . . . . . . . . . . . . 214
5.3.3 The Sarsa Algorithm . . . . . . . . . . . . . . . . . 215

5.4 Test Vector Development . . . . . . . . . . . . . . . . . . . 215
5.5 Line Crawling Experiments . . . . . . . . . . . . . . . . . . 218

6 Experimental Results and Discussion 220
6.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . 220

6.1.1 Varied Time Target Tracking . . . . . . . . . . . . . 221
6.1.2 Variable Target Speed . . . . . . . . . . . . . . . . 236
6.1.3 Random Target Trajectories . . . . . . . . . . . . . 242
6.1.4 Noise Susceptibility . . . . . . . . . . . . . . . . . 246

6.2 Line Crawling Experiments . . . . . . . . . . . . . . . . . . 252
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

vii



7 Conclusions and Recommendations 260
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . 263

Index 268

References 270

viii



List of Tables

1 Symbol descriptions for section 2.2.1 . . . . . . . . . . . . 7
2 Symbol descriptions for section 2.2.2 . . . . . . . . . . . . 12
3 Symbol descriptions for section 2.3.1 . . . . . . . . . . . . 24
4 Symbol descriptions for section 2.3.2 . . . . . . . . . . . . 29
5 Symbol descriptions for section 2.3.3 . . . . . . . . . . . . 33
6 Symbol descriptions for section 2.4 . . . . . . . . . . . . . 37
7 Sample Information System . . . . . . . . . . . . . . . . . 39
8 Symbol descriptions for section 2.4.1 . . . . . . . . . . . . 42
9 Symbol descriptions for section 2.4.2 . . . . . . . . . . . . 45
10 Decision System for an Approximation Space Example . . . 46
11 Symbol descriptions for section 2.5 . . . . . . . . . . . . . 49
12 Device selection using lower 3 bits of command byte . . . . 125
13 Higher 5 bits, command for dc motor . . . . . . . . . . . . . 127
14 Higher 5 bits, command for camera servos . . . . . . . . . . 127
15 Higher 5 bits, command for line grip servos . . . . . . . . . 128
16 Gearbox efficiency vs gear ratio . . . . . . . . . . . . . . . 131
17 Straight distance vs. 8-bit analog count for IR sensors . . . . 198
18 Lateral distance vs. 8-bit analog count for IR sensors . . . . 200

ix



List of Figures

2.1 Photograph of skywire (top) and conductor (below) . . . . . 6
2.2 Gear profile image . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Force model for line crawling robot . . . . . . . . . . . . . 10
2.4 Simple buck regulator configuration . . . . . . . . . . . . . 13
2.5 Reduced pin set used for simple RS232 communication . . . 17
2.6 RS232 8-N-1 Protocol . . . . . . . . . . . . . . . . . . . . 18
2.7 Pole balancing problem example . . . . . . . . . . . . . . . 23
2.8 Rough set example diagram from table 7 . . . . . . . . . . . 42
2.9 Demonstration of grey-scale conversion using Eq. 2.33 . . . 51
2.10 8x8 image template demonstrating decimation by a factor of 2 53
2.11 Demonstration of decimation by a factor of two . . . . . . . 54
2.12 Demonstration of template matching . . . . . . . . . . . . . 55
2.13 Diagram of states for 120x160 pixel image for AGL method 58
2.14 Layer 0 control behaviour for avoiding obstacles . . . . . . . 62
2.15 Layer 1 control behaviour for avoiding obstacles . . . . . . . 63
3.1 First prototype based on aerial tram . . . . . . . . . . . . . 69
3.2 Revised version of the prototype line crawler robot . . . . . 70
3.3 Simple obstacle avoidance with the revised prototype line

crawling robot . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4 Top of tower approximate dimensions . . . . . . . . . . . . 74
3.5 Sample obstacles (2 line clamps and 3 vibration dampers) . . 75
3.6 Construction drawing for line crawler wheels . . . . . . . . 77
3.7 Nylon wheels with rubber traction . . . . . . . . . . . . . . 78
3.8 Spur gears used in line crawler power train . . . . . . . . . . 80
3.9 Upper grip chassis assembly drawing - top view . . . . . . . 84
3.10 Lower grip chassis assembly drawing - front view . . . . . . 86
3.11 Hinge - top view . . . . . . . . . . . . . . . . . . . . . . . 88
3.12 Lower grip connection - Part one . . . . . . . . . . . . . . . 90
3.13 Lower grip connection - Part two . . . . . . . . . . . . . . . 91

x



3.14 Line grip - backbone . . . . . . . . . . . . . . . . . . . . . 92
3.15 Complete line grip construction drawing . . . . . . . . . . . 92
3.16 Line crawling robot - Second generation (ALiCE II) . . . . . 95
3.17 Diagram of vibration damper obstacle space . . . . . . . . . 96
3.18 Diagram of line clamp obstacle space . . . . . . . . . . . . 98
3.19 The work envelope for the line grip . . . . . . . . . . . . . . 100
3.20 System level block diagram with interconnects . . . . . . . 101
3.21 Creative NX camera . . . . . . . . . . . . . . . . . . . . . . 103
3.22 3D field of view for the camera . . . . . . . . . . . . . . . . 104
3.23 Creative NX Ultra mounted to position control servos con-

nected to the robotic platform . . . . . . . . . . . . . . . . . 105
3.24 A pair of line crawling robots with mounted cameras . . . . 106
3.25 Sample target, decimated and converted to greyscale . . . . 108
3.26 The TS-5500 single board PC . . . . . . . . . . . . . . . . . 111
3.27 H-bridge example circuit . . . . . . . . . . . . . . . . . . . 118
3.28 Control board schematic . . . . . . . . . . . . . . . . . . . 120
3.29 Line crawler robot motor control board . . . . . . . . . . . . 122
3.30 Command byte separated into device selection and com-

mand bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.31 Second generation, Sanyo locomotion drive installed . . . . 130
3.32 Top view of line grip space allocation for dc motor . . . . . 134
3.33 The new locomotion drive secured in place . . . . . . . . . 140
3.34 Hi-Tec servo motor . . . . . . . . . . . . . . . . . . . . . . 142
3.35 Completed buck regulator . . . . . . . . . . . . . . . . . . . 148
3.36 Two buck regulators onboard the line crawler . . . . . . . . 150
3.37 The microswitch used for contact sensors . . . . . . . . . . 154
3.38 First revision of extensions for contact switches . . . . . . . 155
3.39 Second revision of extensions for contact switches . . . . . . 156
3.40 Infrared sensors, position and alignment . . . . . . . . . . . 158
3.41 System states . . . . . . . . . . . . . . . . . . . . . . . . . 161
3.42 Directions taken pertaining to current state . . . . . . . . . . 162

xi



3.43 Layer 0 control behaviour for robot survival . . . . . . . . . 172
3.44 Layer 1 control behaviour for acquiring images . . . . . . . 173
4.1 Class diagram for the target tracking task . . . . . . . . . . 177
4.2 Class diagram including reinforcement learning methods . . 179
4.3 Class diagram for the PIC controller . . . . . . . . . . . . . 180
4.4 Setup for the IR sensor experiments . . . . . . . . . . . . . 199
5.1 Construction diagram for prototype tower . . . . . . . . . . 207
5.2 Completed prototype tower . . . . . . . . . . . . . . . . . . 208
5.3 Construction drawing of complete prototype tower setup . . 210
5.4 Replica of the monocular vision system from the line crawl-

ing robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
6.1 Template matching, 1-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 223
6.2 Average grey level, 1-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 224
6.3 Template matching, 5-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 226
6.4 Average grey level, 5-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 228
6.5 Template matching, 15-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 231
6.6 Average grey level, 15-minute tracking experiment average

RMS error results . . . . . . . . . . . . . . . . . . . . . . . 233
6.7 Template matching, 5-minute high speed (10,10) tracking

experiment average RMS error results . . . . . . . . . . . . 238
6.8 Average grey level tracking, 5-minute high speed (10,10)

tracking experiment average RMS error results . . . . . . . 240
6.9 Template matching tracking, 5-minute random trajectory track-

ing experiment average RMS error results . . . . . . . . . . 243
6.10 Average grey level tracking, 5-minute random trajectory track-

ing experiment average RMS error results . . . . . . . . . . 245

xii



6.11 Template matching tracking, 5-minute noise susceptibility
tracking experiment average RMS error results . . . . . . . 248

6.12 Average grey level tracking, 5-minute noise susceptibility
tracking experiment average RMS error results . . . . . . . 250

6.13 Compiled target tracking results . . . . . . . . . . . . . . . 251
6.14 Simple locomotion experiment in progress . . . . . . . . . . 253
6.15 About to climb a 15 degree inclined section of skywire . . . 255
6.16 The line crawler positioning to take a picture of a sample

insulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
6.17 Line crawler view of the target insulator . . . . . . . . . . . 258

xiii



1 Introduction

1.1 Introduction

Current methods for monitoring power grid health consist mainly of send-

ing individuals out to routinely examine different sections. This is generally

achieved through one of two ways, walking underneath structures or use

of a helicopter and live-line crews to gather top view information. In both

cases, digital photography is the method of capturing details for further ex-

amination to determine if preventative maintenance is required. Since the

Manitoba power grid is vast in size, this is a time-intensive and potentially

expensive task. Efforts have been made in the past to design a line crawl-

ing robot capable of automating the inspection task, but a prototype was not

completed [11, 46]. The work covered in this thesis includes a novel idea

for a line crawling robot from design to implementation.

1.2 Motivation

Since monitoring of power grid health is such a complex task, it is difficult

to keep track of developing problems, resulting in potential power failure

and the need for reactive maintenance. Costs associated with manpower in-

1



volved in manual monitoring of power transmission lines are significant as

is the alternative of outages and reactive maintenance to fix problems as they

occur. With automated inspection using a low-cost robotic system, the same

area could be covered, but on a continual basis helping to prevent outages

through supporting proactive maintenance via inspection. In turn, automa-

tion could potentially eliminate the need for manual inspection, reducing

costs and ventures into potentially hazardous environments for hydro em-

ployees. With the development of a line crawling robot, I plan to show how

it is possible to automate the monitoring process.

1.3 Goals and Objectives

The objective of this research is to describe the design and operation of

a line crawling robot that is capable of automating power grid inspection.

This will be achieved by designing, building and testing a robot following

system constraints. A safe testing environment will be developed to simulate

inactive power lines for experimental work. Sample targets will be selected

to exercise different tracking methods that employ reinforcement learning

algorithms to acquire best possible images of targets. The target images will

then be stored for later analysis by either a base station or human operator.

2



The results will be gathered and compared to discover which methods are

more robust and most suited for the inspection process.

1.4 Scope

The scope of this thesis covers the robot design, implementation and testing

in a simulated environment. Target tracking experiments using a monocular

vision system with a couple of tracking methods and an array of learning

algorithms are effected to discover the most efficient and best performer for

the autonomous design.

1.5 Organization of Report

This report is divided up into seven sections. The second chapter contains

the necessary background information required to understand the concepts

involved in the work. The third chapter includes a discussion of the system

architecture, choices made and potential alternatives where applicable. The

fourth chapter discusses system verification and implementation of hard-

ware and software systems. Followed by chapter 5 experimental design,

which includes the experimental setup and associated choices made in de-

veloping test vectors to facilitate comparison. The sixth chapter contains

3



the results of the experimental work and a discussion based on the findings.

The final chapter concludes the written report and elaborates on the possible

direction of future work and expansion for the project.

4



2 Background

2.1 Line Crawling Environment

Although the ALiCE II robot (Automated Line Crawling Equipment, ver-

sion 2) is a prototype design, it is intended to operate in a potentially harsh

outdoor environment. The line crawling robot as its name implies was de-

signed to crawl along power lines whilst gathering sensory information to

report on the health of the power grid around it. Rather than using the con-

ductors as pathways for travelling, an alternative was found in the form of

skywire at the top of the towers, also known as a ground wire since it acts

like a surge arrestor to protect the power lines.

The skywire is a normally inactive (with exception during surge condi-

tions) wire that presents a much friendlier environment for a line crawling

robot to navigate along. There are no concerns of interfering with live con-

ductors or experiencing the harsh environment that they encounter. The

example tower structures that were used for the basis of this study are found

along the Bishop Grandin Boulevard stretch from Pembina Highway to Lag-

imodiere Boulevard in southern Winnipeg.

5



Figure 2.1: Photograph of skywire (top) and conductor (below)

2.2 ALiCE II Systems

The ALiCE II robot is composed of several systems that required some addi-

tional theoretical background information. These include sections on gears

and motor selection, power supply design, interfacing of processor boards

and timing considerations. Each of these topics are addressed in detail for

the context of a line crawling robot.

2.2.1 Gears and Motor Selection

The transfer of momentum from the motor drive to the wheels of the robot

was accomplished through a gearing arrangement. There were a number of

6



Symbol Description
L Maximum safe tangential load at the pitch diameter in pounds
S Allowable unit stress for the material in psi
F Face width of a gear in inches
Y Outline factor
Fapp Applied force necessary to move a given load
Ff Frictional force
Fw Force due to the weight of the load being driven
r Wheel radius
ma Force due to acceleration of gravity
V Velocity
Fn The normal force to the load
μ The coefficient of friction

Table 1: Symbol descriptions for section 2.2.1

different choices available when examining the possibilities for what type

of arrangement to use. A discussion on the selection criteria can be found

in the next chapter on system architecture in Sec. 3.2.1. Gear selection was

based on the following theoretical considerations.

For proper meshing of the components, the characteristics of both the

drive and follower gears were selected with the same profiles. This included

the diametral pitch, the number of teeth and the pressure angle. All of these

factors help contribute to preventing undue wear, excessive noise or prema-

ture breakdown [9]. The diametral pitch is derived from the pitch circle as

shown in Fig.2.2. The value for the diametral pitch is represented by the

number of teeth per unit measurement of the circumference of the pitch cir-

cle diameter [54]. The pitch circle is an imaginary circle that goes through

7



Figure 2.2: Gear profile image

the contact point where gears mesh with each other (approximately the cen-

tre of the diameter of the gear teeth) [9]. The pressure angle corresponds

to the slope of the gear teeth as seen in Fig. 2.2. The gear tooth profile is

slightly rounded on both sides for proper meshing in the forward and reverse

directions. The pressure angle is measured between the gear tooth and a line

perpendicular from the pitch circle [9]. The number of teeth per gear can

differ, but the diametral pitch and the pressure angle must be as close to the

same as possible to ensure proper meshing between gears [9].

Another important consideration when specifying gears is to derive the

maximum amount of force that can be applied to them safely. For the case

of the line crawler, this would occur upon contact with obstacles when the

8



motor is still driving toward the obstacle before any evasive actions occur.

Let S,F,Y, and P denote stress, face width, outline factor, and diametral pitch

respectively. Further, let L denote maximum safe tangential load at the pitch

diameter in pounds. Using Lewis’s formula (Eq. 2.1), it is possible to ap-

proximate the maximum force that the gears will be subjected to [50].

L =
S · F · Y

P
(2.1)

The maximum static torque that a gear can withstand uses the tangential

load at the pitch diameter (L), the number of teeth and the diametral pitch

of the gear; see Eq. 2.2.

StaticTorque =
L · #Teeth

P itch

2
(2.2)

Although the gear theory presented here is far from complete, it is sufficient

to select the necessary parts for the design to ensure safe operation.

Next, the necessary background for motor selection of the locomotion

drive is included. The basic model can be seen in Fig. 2.3. The acting forces

on the line crawling robot are shown helping to establish the driving force

required to move. The wheels navigate along skywire which can be treated

similarly to rolling on smooth terrain including varied angles of inclination

9



and declination.

Figure 2.3: Force model for line crawling robot

The components in Fig. 2.3 consist of V , the velocity, Fapp is the applied

force, r is the wheel radius, Fn is the normal force, ma is acceleration due

to gravity, Fw is the weight causing the line crawler to slip down a given

incline on the sky wire, and Ff which corresponds to the frictional force.

The applied force to move the robot is defined in Eq. 2.3, composed of two

parts, the frictional force and the weight causing the robot to slip on the sky

wire. Overcoming these two forces will result in movement in the direction

of choice.

Fapp > Ff + Fw (2.3)

10



The two forces can be represented separately by their own equations [9].

Ff = μ ·ma · cos(θ) (2.4)

Fw = ma · sin(θ) (2.5)

The angle θ refers to the angle of inclination of the sky wire that the line

crawler is travelling on. The term μ corresponds to the coefficient of friction

that is usually a small value ranging from 0 to 1 [9].

There are a couple of intermediary steps when moving from the original

force model to discovering the required output power and torque of the mo-

tor. First, multiplying the applied force and velocity together results in the

output power necessary to drive the load, as seen in Eq. 2.6

P = Fapp · V (2.6)

The angular velocity can be derived from the velocity as shown in Eq. 2.7,

thus providing the necessary components for deriving the required torque

from the drive.

ω =
V

r
(2.7)

11



With all of the previous steps, we arrive at the final equation (Eq. 2.8) for

discovering the necessary torque to overcome the forces acting on the line

crawler, resulting in locomotion [9].

T =
P

ω
(2.8)

Using the model discussed here for specifying a locomotion motor drive

required some design decisions for specifying a few of the unknowns in-

cluding angle of inclination and the coefficient of friction. These terms and

the reasons behind the selections are discussed further in Sec. 3.8.1.

2.2.2 Buck Switching Regulator

Symbol Description
V 1 Voltage drop across the Schottky diode, D1
V out Regulated output voltage
L Inductance value in Henrys
i Current measured in amperes
ton Time that transistor T1 is turned on
toff Time that transistor T1 is turned off
T Period associated with switching operation of transistor T1
D Duty cycle of switching regulator

Table 2: Symbol descriptions for section 2.2.2

A buck switching regulator was chosen to supply the required voltages

for the various sub-systems contained within the ALiCE II robot. The buck

configuration is a common dc-dc voltage converter that provides regulated

12



dc voltage at its output from a given input source (batteries in this case). A

simplified schematic of the circuit design is provided in Fig. 2.4. A brief

Figure 2.4: Simple buck regulator configuration

overview of circuit operation follows. When power is applied to the circuit

and the transistor (T1) turns on, the inductor current increases. After the

transistor turns off, stored current will flow through the inductor but instead

through the loop containing the Schottky diode. This provides an input duty

cycle which yields a desired average output value. This also implies that for

the case of the robot’s power supply, a continuous current mode design was

used (the current never drops to zero). For the buck configuration in Fig. 2.4,

a standard input voltage range will provide a fixed, regulated output voltage

based on design parameters.

The buck regulator design takes advantage of a switched input voltage,

meaning that it has a duty cycle and is on for only part of the time during one

13



cycle. The duty cycle of the input voltage dictates the output voltage level.

To demonstrate how this works, analysis of the inductor voltage follows.

First, the expression for the voltage across the inductor, L1 is shown in

Eq. 2.9 [27].

V 1− V out = L · di

dt
(2.9)

Next, isolate the rate of change in current, di, yielding Eq. 2.10.

di =

∫
ON

(V 1− V out)dt +

∫
OFF

(V 1− V out)dt (2.10)

The value of L is constant and assumed to be 1 for simplicity. To further

simplify the analysis, it is assumed that there is no voltage dropped across

the transistor T1 when it is on and also that it exhibits an ideal switching

profile [27]. The result is V1 equals Vin when T1 is turned on and Vout is

zero when T1 turns off [27]. Adding the upper and lower bounds relating to

the duty cycle leads to Eq. 2.11.

0 = di =

∫ ton

0
(V in− V out) · dt +

∫ ton+toff

ton

(−V out)dt (2.11)

This can be readily simplified to:

0 = (V in− V out) · ton − V out · toff (2.12)

14



Since ton + toff is equal to one full period, denoted as T , this expression can

be further simplified to:
V out

V in
=

ton
T

(2.13)

The duty cycle is equivalent to the amount of time that a signal is on during

divided by the total period. The right hand side of Eq. 2.13 corresponds to

the duty cycle, also referred to as the letter D.

D =
V out

V in
(2.14)

From Eq. 2.14 it can be seen that the output voltage of the circuit is equal

to the input voltage (Vin) multiplied by the duty cycle. Adjusting the duty

cycle directly affects the output voltage of the buck switching regulator.

Practical dc-dc converters often have more complicated controllers built

into pre-packaged chips or SOT packages using a power MOSFET that al-

lows for variable duty cycles and improved performance over the traditional

configuration shown in Fig. 2.4 [58]. Further discussion of the design pa-

rameters as well as its associated pros and cons can be found in the system

architecture chapter (see Sec. 3.9).

15



2.2.3 Interfacing Processors

As the project evolved, an additional controller was added to accommodate

the increased amount of peripherals and tasks that were needed to operate

the ALiCE II robot. An extra controller introduced the problem of interfac-

ing and timing issues for bidirectional communication. After investigating

a few possible communication schemes, the most established and reliable

method for both controllers was the RS-232 serial data transmission stan-

dard.

The RS-232 protocol has been around since the 1960’s [64] and is well

documented. However, the amount of detail covered in this section provides

just enough information to demonstrate what was needed so that the reader

can see the advantages and why it is suited to ALiCE II’s communication

protocol. The first thing to note is the standard pinout for the RS232 cables.

The inter-processor communication used a reduced version of the DB-9 con-

nector, shown in Fig. 2.5, which has the pins labelled. Using this setup, all

of the remaining handshaking signals were ignored. The intent behind this

was to speed up communication to ensure as close to real time processing

as possible for critical operations. Keeping this in mind, I selected a bit-rate

16



Figure 2.5: Reduced pin set used for simple RS232 communication

with the smallest percentage of error to help reduce the problem of incorrect

data packets.

This is a bi-directional scheme that allows communications to be initiated

from either processor. The standard provides some flexibility in choice of

how data is transmitted, but a common configuration is 8-N-1 [64]. This

refers to the number of bits, whether parity-checking is being used and the

number of stop bits, respectively. The flexibility of packet size depends

upon the number of bits included and whether parity or stop bits are used.

Fig. 2.6 shows the protocol pattern that was used, including a start and stop

bit as well as eight bits of data. Thus for each 8-bit data transfer there will

be one start bit and one stop bit, for a total of 10 bits transferred. Another

point of interest with the RS232 protocol is that the logic and voltage levels

17



Figure 2.6: RS232 8-N-1 Protocol

are counter-intuitive. A logic 1 is represented by negative voltage levels and

a logic 0 is represented by positive voltage levels. Also, the voltage values

are represented with non-standard logic, ranging from +/- 3-25 volts for the

receiver and +/- 5-15 volts for the transmitter.

The knowledge of signal voltage levels and the communication protocol

allows a good understanding of the timing constraints for inter-processor

communication, helping select a desirable bit rate and physical configura-

tion for interfacing processors. The configuration and choices made are

discussed further in the system architecture chapter, Sec. 3.6 and Sec. 3.7.

2.3 Reinforcement Learning

Reinforcement learning (RL) is the technique used in this thesis to help the

ALiCE II robot learn desired behaviours for achieving its goals. For the con-

text of this report, reinforcement learning is applied to an agent (specifically,

the ALiCE II robot) that must learn behaviour through trial and error experi-

ences derived from an array of input sensors in a dynamic environment [23].

18



The trial and error method has associated rewards and punishment values for

each action taken [23]. A benefit of this technique is that the rewards and

punishment values can be provided without giving a definite specification

of how the tasks or goals are to be accomplished [23] [67]. The goal of

this type of learning is to direct the actions taken by the agent toward a de-

sired outcome or a given action dependent upon the current state. This is an

iterative procedure with the agent learning by selecting both desirable and

un-desirable actions, gathering experience and then basing future decisions

in tune with the pre-defined goals or tasks it has been given. Intelligence

through reinforcement learning draws parallels to human intelligence after a

fashion since it starts with sensory systems, gathering information and then

based on those experiences, generating predictions about what will happen

in similar circumstances at a later point in time [17] The iterative nature of

reinforcement learning follows Eq. 2.15 as a general form of the update rule

for each step in refining a policy [67].

NewEstimate←− OldEstimate + StepSize[Target −OldEstimate]

(2.15)

19



To avoid getting stuck continually selecting actions that provide high re-

wards early on potentially resulting in missing out on selecting even better

actions later in time, it is important to balance exploration with exploita-

tion [23], [67], [75]. This allows for the possibility of higher valued actions

that could reveal themselves only through exploring or sampling a range

of possible actions. Balancing exploration and exploitation of actions for

any given state can often be found as part of any reinforcement learning

method. The experience gathered by learning algorithms is often broken

up into episodes to help simplify the processing stage, however continuous

learning is also possible as it is better suited to some types of problems.

Some algorithms are more dependent upon episode length as they process

information to revise their estimates at the end of each episode. For the work

reported in this thesis, the experience can be separated easily into episodes

as the nature of the problem is discrete with individual time steps. In addi-

tion to simplifying processing for some algorithms, episodes can help mon-

itor performance and intermediate results throughout the learning process.

The informal goal of learning methods discussed in this thesis is to maxi-

mize the available returns in accordance with a pre-defined set of desirable

behaviours corresponding to the agent in its environment.

20



There are three main parts included in a reinforcement learning scheme,

states, actions and rewards. These three components make it possible to de-

scribe the state space in terms of a range of possible actions and their associ-

ated rewards [75]. The intent of each scheme is to come up with a mapping

from states to actions based upon experience and the resulting rewards [23].

The mapping is commonly referred to as discovering a policy (denoted π)

for exhibiting a desired behaviour based on pre-programmed goals through

selecting actions meriting the greatest rewards [23]. Reinforcement learning

differs from many other methods of artificial intelligence by being an unsu-

pervised, experience-based technique. The term unsupervised refers to how

the mapping is discovered. As opposed to having a ’supervisor’ providing

training examples of correct behaviour, agents are left to discover appropri-

ate behaviour through exploration and associated rewards and punishments.

This approach to learning more closely approximates experiences seen in

every day life (learning by doing) as opposed to supervised learning which

more closely approximates learning in a classroom environment. Another

benefit of reinforcement learning is that multiple actions can occur that pro-

duce the best reward in a given situation and previous experience will dictate

which one to select or the fact that either are equally good choices, allowing

21



both of them to be possible selections [23]. Another important distinction

for the learning environment is its dynamic nature. There are two possi-

ble extremes, a stationary environment where the rewards remain the same

for all time and the opposite where rewards differ based upon a changing

environment. For the work reported in this thesis, dynamic environments

with non-stationary rewards are of interest since they more closely approx-

imate actual conditions that are expected in the field. For example, when

the line crawling robot is travelling along the sky wire in windy conditions

or through terrain with variable illumination due to shadows and simulta-

neously attempting to gather images it needs to be able to compensate for

external influences. There will also be periods of calm with a more static

environment and the associated rewards will change accordingly. One more

point about reinforcement learning that is important in affecting behaviour

is the use of delayed rewards [75]. The example contained in [75] is the

well known pole balancing problem where a pole is supported on a cart that

moves in the vertical plane and the pole is hinged on the cart to move in

the vertical plane as well. The goal of the problem is to create a policy that

allows the cart to move in such a fashion that it counter-balances the pole,

keeping it upright at all times. One extra constraint are stoppers at each end

22



of the track to prohibit unlimited movement in any direction. In this ex-

ample, it is easy to see that actions taken in the moment can have dramatic

effects later on as the cart approaches the end of the track if it is moving

too quickly toward the end, the pole will easily topple over and become

unbalanced (See Fig. 2.7 for my rendition of the pole balancing problem).

With these points in mind, the next step is to include a discussion of the

algorithms that employ these principles.

Figure 2.7: Pole balancing problem example

There are a number of different algorithms to implement reinforcement

learning. The work reported in this thesis includes a few of them, the actor-

critic method, Q-learning, and sarsa. These algorithms provide a main-

stream view of temporal difference reinforcement learning. Each algorithm

23



is discussed in turn, developing the theory and presenting the formal algo-

rithm in the corresponding section. Further discussion of the implementa-

tion of each algorithm along with variable parameter selection can be found

in the corresponding sections of the system architecture and verification dis-

cussions (See Sec. 3.11.1 and 4.3).

2.3.1 The Actor Critic Algorithm

Symbol Description

π(s, a) Policy mapping state to action selection
p(s, a) Preference associated with selecting action, a, given state, s
β Step size parameter for preference revision
δ Temporal difference error
r The reward provided for selecting an action in a given state
γ Discount factor for weighting future rewards
V (st) The value assigned to the current state at step ’t’
α The learning rate step size adjustment parameter

Table 3: Symbol descriptions for section 2.3.1

The actor critic algorithm is composed of two separate parts, an actor

and a critic. The main idea stems from a concept called reinforcement com-

parison [67] where positive actions are encouraged and negative actions are

discouraged by adjusting the preference of selecting them for future deci-

sions in a positive and negative manner respectfully [67]. The given policy

being followed is referred to as a search element or actor since it is respon-

sible for mapping any given state to an action [65], [67]. The value function

24



or estimate is labelled the critic element since it is able to quantify the ac-

tions taken by the actor and suggest improvements to the policy [65], [67].

Together, the interaction of the policy and the value function make up the

actor critic approach to reinforcement learning.

First, the main principles of the actor critic method are discussed before

delivering the formal algorithm. As previously mentioned, the actor is the

name provided to the policy being followed as it is acting on sensory input

from the agent’s environment. The policy converts sensory input to a given

state which is then mapped accordingly to a desired action. The range of

possible actions have preference values associated with their selection [67].

The preference of selecting an action is a helpful way to balance explo-

ration and exploitation since it helps uncover the best possible actions. This

balance is achieved through a softmax action selection method which en-

courages selection of better actions whilst discouraging poor action choices

as seen in Eq. 2.16 from [67].

π(s, a) =
ep(s,a)∑
b ep(s,b) (2.16)

The preference of any given state action pair is the probability of select-

ing the action in that state. Through using the softmax selection method,

25



this helps to ensure that extremely poor actions are unlikely to recur whilst

helping positive actions become more likely. This is comparable to human

learning in nature, once a really poor outcome is experienced, it is highly

unlikely that choices will be made to re-visit that same situation. As seen in

Eq. 2.16, the policy values are determined from the preferences for selecting

a given action. The idea mentioned earlier about reinforcement comparison

also applies here as preferences are modified based on the reward associated

with selecting a given action. The adjustment of preference values are made

using Eq. 2.17 [67].

p(s, a)←− p(s, a) + β · δ (2.17)

Preference adjustment introduces two new terms, β and δ. The value of β

is always positive and it is a step-size parameter that determines the amount

of adjustment to the preference value that takes place at any given time step

during the learning process [67]. The value of δ is referred to as the tem-

poral difference (TD) error and can be expressed as Eq. 2.18. The TD error

provides the critic with a performance measure for generating feedback for

26



the actor regarding its current policy.

δ = r + γ · V (st+1)− V (st) (2.18)

Several new terms are introduced in the TD error, including r, γ, and V (s).

The first new term, r, constitutes the reward value given in a particular state

for taking an action, a. Next is γ referred to as the discount rate. The value

of γ is a positive number, generally between 0 and 1 that provides a mea-

sure of the current value of a future reward [67]. The result of adjusting γ

is as follows, as it approaches zero, the value of the current state becomes

more important, taking more of a greedy stance. As the value of γ moves

closer to one, future rewards are given more weight. This can be thought

of as how some people plan for the future, there are some that want every-

thing right here and right now (γ = 0) and others that put off immediate

reward by pursuing an alternate path that provides greater rewards later on

(γ closer to 1). Finally, the last new term is V (s), which refers to the value

of being in a given state [67]. This value, as seen in the equation refers to

future rewards or what can be expected in return for visiting a particular

state [67]. Since the actual expected values are unknown for anything but a

completely specified model of an agent’s environment, the value function is

27



an estimate [67]. The estimate comes from sampling the next state and ad-

justing the value function accordingly [67]. This method of updating lends

itself well to real time applications with dynamic environments, creating a

favourable candidate for the ALiCE II platform. The term α referred to

Algorithm 1: The Actor-Critic Method
Input : States s ∈ S, Actions a ∈ A(s), Initialize α, γ.
Output: Policy π(s, a) responsible for selecting action a in state s.
for (all s ∈ S, a ∈ A(s)) do

p(s, a)←− 0;
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

end
while True do

Initialize s;
for (t = 0; t < Tm; t = t + 1) do

Choose a from s using π(s, a);
Take action a, observe r, s′;
δ = r + γV (s′)− V (s);
V (s)←− V (s) + α(r + γV (s′)− V (s));
p(s, a)←− p(s, a) + βδ;
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s←− s′;
end

end

as the learning rate, is used in updating the value estimate controls the step

size of the adjustment at each step. This is a useful parameter in specifying

how much correction to value estimates occur, small values of α are useful

for minor corrections when the policy is performing well and larger values

28



of α are useful for poorer performance. The value of α can be determined

experimentally or set up using prior knowledge, it is commonly selected as

a constant value between 0 and 1.

The policy being followed by the actor critic algorithm is considered the

actor (π) and the value function provides the critic (V (s)) or feedback per-

formance on how the actor is doing at any given time step. Through refining

the actor’s approach, the critic helps to direct the agent’s focus toward the

best policy for achieving its goal [48].

2.3.2 The Q-Learning Algorithm

Symbol Description

Q(s, a) Action value, associated with state
α The learning rate step size adjustment parameter
r The reward provided for selecting an action in a given state
γ Discount factor for weighting future rewards
π(s, a) Policy mapping state to action selection

Table 4: Symbol descriptions for section 2.3.2

The Q-learning algorithm presents an alternate approach to the learning

problem from the actor-critic method in that it learns based on the action

(or Q) value associated with each state as opposed to using the value func-

tion associated with being in a given state. Q-learning was developed by

Watkins, formally reported in 1989 [75], which is why the algorithm is often

29



referred to as Watkins’ Q-learning. Since there is only a single component

(actor) in this method, it is simpler to implement, but it makes use of some

different concepts for its operation. This section includes a brief description

of the algorithm operation followed by a closer look at the key steps and

finally the formal algorithm will be included for completeness.

Q-learning in its simplest form is a single step temporal difference learn-

ing method that is capable of maximizing the action value of an agent re-

gardless of the policy being followed [67], [23], [76], [75]. The basis of a

single step algorithm is that it looks into the future one step in advance when

estimating the best course of action to take from the current state. The best

action is generally the choice that maximizes the future discounted reward

available from all possible actions pertaining to the current state. Another

important point in discussing Q-learning is that it doesn’t matter what policy

is being followed, it will always maximize the action value [75]. Q-learning

falls into the category of off-policy algorithms [67]. This implies that the

decisions made for selecting a course of action do not necessarily follow

the policy that is exploring the state space [67]. Depending on the situation,

it may be advantageous to follow the same policy for both exploring and

action selection, but that is discussed further in the next section. An advan-

30



tage of using the off-policy approach is that the exploration vs. exploitation

problem discussed earlier can be addressed directly. The policy can include

an element of exploration that allows all states and actions to be explored

and at the same time for examining the best course of action, a greedy pol-

icy that chooses the maximum discounted reward for the next step ensures

the best possible action is subsequently taken. Together they make a strong

case for discovering the best policy and there have been several works that

detail convergence proofs for Q-learning including [75], [76], and [21].

In understanding the algorithm mechanics, there are a couple of points

that will be expanded upon including policy initialization and the update

rule for revising the action value. During the initialization of the algorithm,

a policy must be established to determine a preliminary (most likely sub-

optimal) mapping from states to actions. As listed in the formal algorithm,

this policy is not greedy implying that there is a possibility that it will not

always follow the action with the highest reward. There must be at least a

small chance that this policy will explore alternate actions, providing po-

tential visits to all actions since it is possible they may return increased

long term rewards. During the learning process of single step Q-learning,

state-action pairs are examined one step ahead. Rather than following the

31



original non-greedy policy that is selecting actions, a greedy policy is used

to determine the best action to take from the current state.

Q(s, a)←− Q(s, a) + α[r + γ ·maxa′Q(s′, a′)−Q(s, a)] (2.19)

As seen in Eq. 2.19, although the non-greedy policy is selecting actions,

the update is affected by the maximizing greedy policy inherent in the Q-

learning update rule. The algorithm parameters that can be found in Q-

learning are γ, and α which correspond to the discount factor and the learn-

ing rate step size adjustment as discussed in the previous section for the

actor critic algorithm. Further discussion of the actual values chosen are in-

cluded in Sec. 4.3. The last step in the discussion of Q-learning is inclusion

of the formal algorithm.

One additional point regarding the formal algorithm is the introduction

of an episode. As previously discussed, this refers to a length or amount of

time steps present in an episode of analysis for the reinforcement learning

process. In some cases, at the end of an episode, extra processing can take

place for performance analysis or to adjust some of the algorithm parameters

or possibly to determine when to stop the learning process (especially in

static environments). In continuous learning environments however, where

32



Algorithm 2: The Q-Learning Method
Input : States, s ∈ S, Actions a ∈ A(s), Initialize Q(s,a), α, γ, π to an arbitrary

policy (non-greedy)
Output: Optimal action value Q(s,a) for each state-action pair
while True do

for (i = 0; i ≤ #ofepisodes; i + +) do
Initialize s
Choose a from s, using policy derived from Q
Repeat(for each step of episode):
Take action a; observe reward, r, and next state, s′

Q(s,a)←− Q(s,a) + α[r + γmaxaQ(s′, a′)−Q(s, a)]
s←− s’; a←− a’;
until s is terminal

end
end

there are no clearly defined episodes, this can be ignored and the algorithm

operates continuously, revising its policy toward the focus indefinitely or

until a stopping criteria is met. For the work reported in this thesis, clearly

defined episodes were used throughout the learning process.

2.3.3 The Sarsa Algorithm

Symbol Description

Q(s, a) Action value, associated with state
α The learning rate step size adjustment parameter
r The reward provided for selecting an action in a given state
γ Discount factor for weighting future rewards
π(s, a) Policy mapping state to action selection

Table 5: Symbol descriptions for section 2.3.3

The final algorithm included is sarsa, named by Sutton [66], [59]. Origi-

33



nally, sarsa was treated as a variant of Q-learning and it was first introduced

as modified Q− learning in the literature by Rummery and Niranjan [56].

A concern with single step Q-learning was that it would select only greedy

actions with the nature of its off-policy approach to maximize the next state-

action selection, potentially missing out on actions that could provide much

improved rewards at a later point in time [56]. The sarsa algorithm was de-

veloped out of this concern to improve performance. This section includes a

brief discussion of how sarsa differs from Q-learning, as well as the formal

algorithm and an overview of how it operates.

The main difference between Q-learning and sarsa is in their approach

to updating action values. Unlike Q-learning, sarsa uses an on-policy ap-

proach for learning [67]. This implies that the policy that is exploring is

also the same policy that is used for updating the action value estimates

Q(s,a) [67], [56], [66], [59]. The formal update rule for sarsa is provided in

Eq. 2.20.

Q(s, a)←− Q(s, a) + α · [r + γQ(s′, a′)−Q(s, a)] (2.20)

The difference in the update rule is that the next state-action pair is not max-

imized for action value as it is in Q-learning. The updated value is instead

34



drawn from the acting policy π(s, a), which selects the next action from the

given state following the same policy that is used to explore state space.

Often the exploring policy will be somewhat greedy, usually based on a

parameter ε, also known as ε − greedy policies [67]. This provides some

degree of exploration along with a generally greedy trend when selecting ac-

tions. The parameter ε is often selected through trial and error or from prior

knowledge about the operating environment. Lower values favour more sta-

tic environments where greedy tactics prevail and higher values favour more

dynamic environments where some exploration is required to find the best

actions. Next, the formal algorithm for sarsa is included (Alg. 3).

Algorithm 3: The Sarsa Method
Input : States, s ∈ S, Actions a ∈ A(s), Initialize Q(s,a), α, γ, π to an arbitrary

policy (non-greedy)
Output: Optimal action value Q(s,a) for each state-action pair
while True do

for (i = 0; i ≤ #ofepisodes; i + +) do
Initialize s
Choose a from s, using policy derived from Q
Repeat(for each step of episode):
Take action a; observe reward, r, and next state, s′

Choose action a′ from state s′ using policy derived from Q
Q(s,a)←− Q(s,a) + α[r + γQ(s′, a′)−Q(s, a)]
s←− s’; a←− a’;
until s is terminal

end
end

35



Sarsa makes use of the policy being followed when selecting an action

for the next state during the update process. This policy employed encour-

ages exploration as it is soft or non-greedy and it is used to generate a′ for

the next state prior to the update rule. Besides the policy followed, updating

the action value takes on the same form as Q-learning, using the discounted

future reward to adjust the current value. The output of the sarsa algorithm

are optimal action value estimates Q(s,a) for each state-action pair. A formal

discussion of this convergence for on policy methods can be found in [60].

The last remaining subtle difference is that the next state-action pair will

contain whatever action the current policy being followed selected as op-

posed to the always greedy action. This is how the name sarsa came about

as each iteration of the algorithm uses the current state, action, reward, and

the following s′tate, a′ction pair [66].

2.4 Rough Set Theory

This section of the report provides some background and introduces the de-

tails of rough set theory used in conjunction with the reinforcement learning

algorithms previously discussed. Rough set theory was introduced by Zdzis-

law Pawlak in the early 1980’s as a means to deal with data or sets with im-

36



Symbol Description
U A non-empty, finite set of objects
A A non-empty, finite set of attributes
IS(U, A) An information system composed of (U,A)
Va Value(s) associated with attribute a ∈ A
∼B Indiscernibility relationship for X (an IS) over B (B ⊆A)
B∗X Upper approximation of set X ⊆ U based on attributes B ⊆ A
B∗X Lower approximation of set X ⊆ U based on attributes B ⊆ A
BNB(X) Defined boundary area of set X ⊆ U based on attributes B ⊆ A

Table 6: Symbol descriptions for section 2.4

precise boundaries, referred to as rough sets [42]. Since its inception, there

have been a number of different fields reporting applications including busi-

ness, environment, electrical and computer engineering, finance, and medi-

cine to name a few (eg. [44], [78], [2], [41], [19], [74]). An introduction

to rough set theory including a simple example to demonstrate the ideas

follows.

Rough sets are used as a tool for addressing imprecision, vagueness or

unknowns in data with the goal being to uncover patterns, rules or knowl-

edge [25]. The philosophy behind rough sets is that they treat every object

in the universe of discourse as an item with attributes [44]. The attributes

can consist of any feature of the data provided such as colour, shape, thick-

ness or numerical quantities. Representation of objects and attributes occurs

in the form of data tables to facilitate the processing steps [47]. A data table

37



is referred to as an information system (IS) and is composed of a pair, U

which refers to a non-empty finite set of objects and A, a non-empty finite

set of attributes [25].

IS = (U, A) (2.21)

Each row in the data table represents an instance of the type of data being

examined, for example using a medical data table, each row might repre-

sent an individual patient [25]. Every attribute a ∈ A contains a set of

values, Va referred to as the domain of a [45]. Often an extra column is

added to an information system in the form of a decision attribute. This is

for applications where an outcome for any instance of the given data set is

known [25]. Using an IS that contains decision attribute(s) can be seen as a

form of supervised learning since any kind of processing benefits from the

prior knowledge of the outcome from each object [25]. A simple IS example

including a decision attribute can be seen in Table 7 and is commonly re-

ferred to as a decision system (DS) [25]. This is a simple IS with a decision

attribute for determining whether to work outside or not depending upon

weather conditions. Each row in the table can be treated as an ’If...Then’

statement [39] where if the attributes indicate a given pattern, the outcome

38



xi temp. wind precip. work outside

x0 20◦C light none Y es
x1 35◦C stormy heavy rain No
x2 24◦C none none Y es
x3 20◦C light none No
x4 15◦C strong light rain Y es
x5 8◦C none none Y es

Table 7: Sample Information System

will be followed. Although this is an extremely simple example of a data

table, it is helpful for demonstrating some key concepts.

First, the concept of indiscernibility can be shown from cases x0 and

x3. The attributes for these cases are identical, yet the decision attribute

is opposite. This is referred to as an indiscernibility relation and is more

formally described by Eq. 2.22.

∼B= {(x, x′) ∈ U 2|∀a ∈ Ba(x) = a(x′)} (2.22)

Where C = (U, A) is an IS and B ⊆ A, the two cases for a(x) and a(x′) are

indiscernible from one another [25] based on the attributes found in B. The

example for the case of x0 and x3 from Table 7 show that using the features,

temperature, wind, and precipitation these two instances are indiscernible

from one another (formally shown in Eq. 2.23).

[x0]B = {x0, x3}, (2.23)

39



where B = {temperature, wind, precipitation}.
Set approximations provide a distinction of whether a set is roughly de-

finable or crisp. First, let X ⊆ U , and include B as a set of attributes for

each element in X, giving the pair IS = (X, B). There are two approxima-

tions of interest when determining if an instance in the IS belongs to X, the

upper and lower set approximations. They are denoted B∗X and B∗X for

the upper and lower approximations respectively [47].

B∗X = {x ∈ U |[x]B ∩X �= ∅} (2.24)

B∗X = {x ∈ U |[x]B ⊆ X} (2.25)

where [x]B ∈ U
∼B

[47]. Using the approximations provided in Eq. 2.24 and

2.25, it can be discovered if a set is crisp or rough. The lower approximation

is composed of all members of the set that are definite members of X [25].

The upper approximation is composed of elements that can potentially be

members of X [25]. The result of generating these approximations is three

separate areas of distinction in the partition of the Universe represented by

B. They are members that can be classified with certainty as belonging

40



to X, those that do not belong to X, and those that possibly belong to X.

The upper and lower approximations help define a boundary area which is

provided in Eq. 2.26 [68].

BNB(X) = B∗X − B∗X (2.26)

The difference between the upper and lower approximations provide the

boundary condition and the difference between rough and crisp sets be-

comes apparent [68]. When the boundary region BNB(X) is equal to the

empty set ∅, then X is referred to as crisp with respect to B [68]. Alter-

nately, if the boundary region is not empty, then cases exist that can not

clearly be defined as a part of X and accordingly the set is referred to as

rough.

Using the information from Table 7 as a simple example, it is possible to

determine if the set is rough or crisp. Through the use of a simple diagram,

it can be seen that this IS is roughly-definable as the instances x0 and x3 are

indiscernible from one another making it impossible to define with certainty

if either belongs to X or not. A pictorial representation is shown in Fig. 2.8

including the upper and lower approximations and the boundary region. The

boundary BNB(X) contains more than just the empty set, indicating that the

41



Figure 2.8: Rough set example diagram from table 7

set is not crisply definable.

This concludes the introduction to rough set theory, for more in depth

material there are many resources available, including [42], [43], [25]. The

next step is to extend the concept of rough sets to include approximation

spaces which are part of the application for the work described in this thesis.

2.4.1 Approximation Spaces

Symbol Description
U A non-empty, finite set of objects
Ind Indiscernibility relation on subsets of U
P(U) The power set of U
I Uncertainty function for developing blocks of similar instances
ν Overlap function [0,1] for two subsets of U

Table 8: Symbol descriptions for section 2.4.1

42



Approximation spaces were originally introduced by Pawlak [42] and

have since been expanded to a generalized version. Approximation spaces

provide the basis for bridging reinforcement learning and rough set the-

ory together to achieve a common goal of learning acceptable patterns of

behaviour in the context of a line crawling robot. This section introduces

approximation spaces and the generalized version with rough inclusion and

coverage.

The definition of an approximation space provided by Pawlak [42] con-

tained the pair (U,∼B). Where U corresponds to a non-empty finite set and

∼B represents an indiscernibility relation [42]. More recently, a generalized

approximation space was introduced by Skowron and Stepaniuk [61], [63]

represented by a triple, (U, I, ν).

• U is a non-empty set of objects, and P(U) is the powerset of U ,

• I : U → P(U) is such that x ∈ I(x) for any x ∈ U ,

• ν : P(U) x P(U) → [0, 1] is an overlap function (inclusion or cover-

age).

Similar to the classical description, U corresponds to a non-empty, finite

set. The uncertainty function, I provides a neighbourhood for all sample

43



elements in U [47] such that a given object x is associated with a set of

objects that are similar in some respect. This function can also be used

to help define a covering of U [47]. Pertaining to coverage of sets, ν is a

measure of overlap and is referred to as inclusion or coverage depending

upon the configuration of the expression, Eq. 2.27 shows the format for

rough inclusion [63].

ν(X, Y ) =

⎧⎪⎨
⎪⎩
|X∩Y |
|X | , if X �= ∅,
1 , if X = ∅.

(2.27)

Although they are similar, rough coverage, represented in Eq. 2.28 has the

opposite term in the denominator. For the purpose of this paper, rough

coverage is used as a measure of set overlap to provide a performance met-

ric.

ν(X, Y ) =

⎧⎪⎨
⎪⎩
|X∩Y |
|Y | , if Y �= ∅,
1 , if Y = ∅.

(2.28)

Both inclusion and coverage provide a means of measuring the overlap

for any sets X, Y ⊆ U . The value of ν represents the degree of coverage,

ranging from 1, when the sets are equal to one another (X = Y ) to the

minimum value of 0, when there are no common elements in X and Y (X

44



∩ Y = ∅) [63]. Anything in between 0 and 1 represents at least some degree

of overlap between the two sets in question. A brief example is included to

demonstrate the key concepts for approximation spaces.

2.4.2 An Example Approximation Space

Symbol Description
U A non-empty, finite set of objects
A A non-empty, finite set of attributes associated with objects in U
d A decision attribute belonging to any instance
DS(U, A ∪ {d}) Decision system
B A block of attributes, B⊆A
D Decision class, instances where d = 1 (accepted or true value)
B∗D Lower approximation of set D ⊆ U based on attributes B ⊆ A
ν Overlap function to determine rough coverage value [0,1]

Table 9: Symbol descriptions for section 2.4.2

In this section, a brief example of an approximation space is presented.

The context of the example begins with a decision system modelled after

the actual tables used for the line crawler experiments. The data will then

be partitioned into subsets or blocks based on attributes. The final step is to

take the blocks and measure the degree of coverage with an accepted set of

positive observations (the lower approximation). The simple example will

provide a big picture of how this idea could be extended to more compli-

cated situations with a greater number of entries and attributes to provide a

measurement of system performance.

45



First, a decision system is included with similar attributes to those used

during experimental work with the line crawling robot. The decision sys-

xi state action preference reward decision

x0 1 4 0.37 0.62 1
x1 2 7 0.42 0.50 1
x2 1 3 0.34 0.16 1
x3 1 3 0.34 0.16 0
x4 2 7 0.42 0.50 1
x5 3 2 0.17 0.18 0
x6 3 3 0.24 0.21 1
x7 0 4 0.08 0.12 0

Table 10: Decision System for an Approximation Space Example

tem is represented by (U, A ∪ {d}), representing the universe U , the set of

attributes for each instance A, and the decision attribute d associated with

each instance. The table presented in this section is considered a sample

(X) as it represents a very small part of any of the actual tables used un-

der normal conditions. Often when creating a block of attributes, a subset

B ⊆ A is chosen. For this example, B = A, but for notation, I will refer to

the block as B. This implies that the block B = {state, action, preference,

reward}. The next step is to establish the decision class, I selected d = 1

as my accepted instances, yielding a decision class shown in Eq. 2.29.

D = {x ∈ X : d(x) = 1} = {x0, x1, x2, x4, x6} (2.29)

Subsequently, blocks are generated based on the indiscernibility relation

46



between the objects in the decision system. A block, B(x) consists of all el-

ements in the table that have the same attribute values in B. This is formally

defined in Eq. 2.30.

[x]B = {y|a(x) = a(y)∀a ∈ B} (2.30)

At this point, each block in the table is defined according to Eq. 2.30.

B(x0) = {x0}
B(x1) = {x1, x4}
B(x2) = {x2, x3}
B(x5) = {x5}
B(x6) = {x6}
B(x7) = {x7}

Even though there are eight instances in the table, two of them have match-

ing instances that are indiscernible, resulting in only six blocks. At this

point, the lower approximation is developed (See Eq. 2.25).

B∗D = {x0, x1, x4, x6} (2.31)

47



The lower approximation represents accepted cases or desired behaviours.

The degree of overlap for the instances in the sample table with already

known desired outcomes is an important performance metric. This can be

measured through rough coverage shown in Eq. 2.28 by substituting in terms

from the example, resulting in Eq. 2.32.

ν(B(x), B∗D) =

⎧⎪⎨
⎪⎩
|B(x)∩B∗D|
|B∗D| , if B∗D �= ∅,
1 , if B∗D = ∅.

(2.32)

The rough coverage values provide a means for gauging how similar the

current blocks are compared to accepted or existing blocks from the lower

approximation. The values for ν demonstrate the degree of overlap for each

case.

ν(B(x0), B∗D) = 1/4 = 0.25

ν(B(x1), B∗D) = 2/4 = 0.50

ν(B(x2), B∗D) = 0/4 = 0.00

ν(B(x5), B∗D) = 0/4 = 0.00

ν(B(x6), B∗D) = 1/4 = 0.25

ν(B(x7), B∗D) = 0/4 = 0.00

48



These results indicate that the behaviours exhibited in blocks 0, 1, and 6

have some degree of overlap with previously known acceptable cases. The

remaining blocks have no overlap and are represented by ν values of zero

indicating undesirable behaviour. This metric provides performance feed-

back that is helpful in finding out how well current performance agrees with

previously known acceptable cases.

2.5 Image Processing

Symbol Description
M The number of rows in a 2D image
N The number of columns in a 2D image
R Red component of a pixel, range from 0-255
G Green component of a pixel, range from 0-255
B Blue component of a pixel, range from 0-255
I Grey level intensity, consists of RGB components added and averaged
D Decimation factor, an integer value

Table 11: Symbol descriptions for section 2.5

This section includes an introduction to image representation, processing

operations and the approaches used for tracking targets in conjunction with

the line crawling robot.

Representation of images in the context of this work is in two dimen-

sional space. As a result, they can be treated as matrices (of dimensions

MxN ) [20]. Each element of the matrix represents an individual picture

49



element or pixel [22]. When dealing with pixels, the origin of the image

coincides with the first element in the (0,0) position [22]. The images dis-

cussed in this work were all initially captured in colour. For most cases,

the human eye contains a group of sensors known as cones and it is these

cones that are responsible for colour detection, responding to light at differ-

ent wavelengths [15]. Generally, these include red, green and blue, which

is a triple that coincides with the values of any given pixel [72]. Raw im-

ages are sensed and recorded in colour so each pixel is represented by three

quantities corresponding to the red, green and blue content [15]. The val-

ues of each colour component are represented by an integer, often ranging

from 0-255 (represented by 8-bits). The makeup of any given pixel is some

combination of these three values to provide a composite colour. The end

result is a matrix containing MxN pixels of data with each pixel composed

of three elements, an R, G, and B component.

Since the line crawling robot has limited capabilities, image processing

is required to reduce the computational cost of gathering information from

them. The first measure taken was to convert the image pixel values to

grey scale, immediately reducing the amount of data by a factor of three.

Conversion of colour images draws parallels to the natural sensitivity of

50



(a) Colour image (b) Grayscale image

Figure 2.9: Demonstration of grey-scale conversion using Eq. 2.33

the rods in the human eye which vary for the different wavelengths in the

order of approximately 65% for red light, 33% for green light, and 2% sen-

sitivity to blue light [15]. For simplicity, Eq. 2.33 was used, giving each

colour channel the same weighting. An insulator is shown on a hardwood

flooring background to demonstrate the results of using this conversion (See

Fig. 2.9). This was sufficient for the working environment presented in this

thesis to provide grey scale images from the original RGB components.

I =
R + G + B

3
(2.33)

In addition to converting images to grey scale, the size of images were

shrunk to help reduce the amount of required processing power. Reduction

51



of 2D-images works the same way as 1D-signal processing but expanded

to two dimensions. This is achieved through spatial decimation along the

rows and columns of the matrix representation for an image. Decimation

of an image results in a reduced amount of data preserving the larger fea-

tures but at a cost of losing fine details [52]. The process of decimation is

similar to filtering as it keeps only the desired information and rejects the

excess [52]. For a two dimensional image using a filtering system, deci-

mation operates by passing multiples of an input based on the decimation

factor D and rejecting all other information (See Eq. 2.34).

f̃(x, y) =

(#rows/D)−1∑
y=0

⎡
⎣(#cols/D)−1∑

x=0

f(xD, yD)

⎤
⎦ (2.34)

A small image template of 8x8 pixels in size can be seen in Fig. 2.10 with

dark squares representing pixels that are kept and light coloured squares

representing pixels that are discarded when using a decimation factor of

2. The reduction in pixels is four times fewer as they are decimated in

both the x and y directions, producing a 4x4 image. The loss of detail is

evident from looking at Fig. 2.10, but for the context of the work reported in

this thesis, the example images are large enough that decimation by a small

52



Figure 2.10: 8x8 image template demonstrating decimation by a factor of 2

factor still provides sufficient detail. The sample image seen in Fig. 2.9 has

been included with a normal grey scale version of the scene next to a copy of

the image decimated by a factor of two. The loss of detail is easily noticed

but the coarse features of the image are still well defined and useful for the

tracking methods discussed in the next sections.

2.5.1 Template Matching

The first method discussed for target tracking is template matching. The

main concept behind this approach is to have a target template and attempt

to locate that target within a larger image. This assumes that the image will

always be larger than the template. This type of method is similar to what

was used by Gaskett in his work with robot navigation when searching for

53



(a) Greyscale image (b) Decimated by factor of 2

Figure 2.11: Demonstration of decimation by a factor of two

targets [14].

Template matching is fairly straight forward to implement using the sum

of squared differences (SSD) as a measure for the best match. The SSD

method for template matching uses Eq. 2.35 to derive SSD values for each

sub-image of template-size within the original image.

SSD(x, y) =
∑

j

∑
k

[input(j, k)− template(j − x, k − y)]2 (2.35)

When implementing Eq 2.35, the best match of the template in the target

image will occur at the point where the SSD value is lowest. Ideally, a

perfect match would result in a value of zero and anything above indicates

the target is not contained (or not entirely contained) within the template.

Template matching operates similar to correlation but yielding the smallest

54



(a) Image template (b) template matching states

Figure 2.12: Demonstration of template matching

output for a match instead of the largest respectively [15]. A very small

sample image of 4x4 pixels is shown in Fig. 2.12 with a template size of 4

pixels, giving a possible nine template cell matching states. The states are

represented by s0 through s8 and the numbers located in each cell indicate

the distance from the origin at the centre (0,0).

This method has some advantages and disadvantages that made it suit-

able for use in preliminary experimental work. First, the main advantages

are that this method is fairly straight forward to implement and it provides

good results for translational changes. However, there are some disadvan-

tages associated with it as well. The processing power required to perform

the SSD method on larger images where many templates fit into each image

55



can be cumbersome. Also, template matching is not very adaptable to scal-

ing, and sometimes rotational changes depending upon the target in ques-

tion. For the context of the work in this report, template matching is well

suited to smaller sized images with translational tracking and cases where a

target (or targets) is previously known and can be referenced.

2.5.2 Average Grey Level Tracking

The average grey level tracking method was implemented with the intent of

reducing the processing power required for the tracking problem as well as

reducing the effects of scaling issues that thwart template matching. This

section of the report includes a brief discussion of the assumptions made,

how the technique works, and the potential advantages and disadvantages

associated with it.

The average grey level tracking method makes an assumption in locat-

ing targets as it searches for the darkest part in its field of view. For the

experimental procedures, targets were used that were distinctively dark on

a light background. Target images were divided up into a number of sub-

sections and the average grey level for each was generated. The lowest grey

level represented the target of interest and in the presence of several low val-

56



ues, the centre segment was considered the target. The idea stemmed from

an attempt to reduce the amount of computation as well as from examin-

ing adaptive thresholding techniques [15]. Instead of having a template as

seen in the previous approach, each sub-section containing MxN pixels is

operated on with Eq. 2.36 to generate its average grey level.

AGL =
1

M ·N
M−1∑
y=0

N−1∑
x=0

f(x, y) (2.36)

The section containing the lowest grey level becomes the target or in the

event of multiple sections with the same average grey level, the section in

the centre of the group is selected. Once a target has been acquired, tracking

coordinates are provided to re-position the camera. The current state as seen

in Fig. 2.12 dictates the action(s) that need to be taken in order to track the

target.

Since the amount of computations were reduced to additions, a single

multiplication and division, support for larger images was provided. For

example, the state diagram for a 120x160 pixel image is seen in Fig. 2.13,

including a larger number of possible states and allowing for finer control

based on the improved resolution. There are advantages and disadvantages

associated with the average grey level tracking method. The main advantage

57



Figure 2.13: Diagram of states for 120x160 pixel image for AGL method

of this method is the reduced amount of computations, resulting in faster

computational speed. This also makes it possible to use larger images with

higher resolution to help improve accuracy when hunting for targets. The

main disadvantage of this method is that the target accuracy is only as good

as half the height and width of the size of a sub-section of the image. This is

because the targets are not based on individual pixels within the image but

the actual sub-sections of images. Comparing this to the previous method,

the average grey level tracking method appears faster but also incurs the

potential of more error in the targeting process. Increasing the resolution of

the images processed is a potential means to offset the disadvantage of the

58



increased error but at the trade off of more computational requirements for

a larger image size.

2.6 Robot Behaviour

The line crawling robot was designed with more than one goal in mind.

Besides acquiring useful imagery of power lines and associated equipment,

survival value and obstacle avoidance were two other immediate concerns

that needed to be addressed. In order to run a robot with multiple simulta-

neous goals, a layered set of behaviours supported in a hierarchical fashion

was helpful. The hierarchy was a key point since depending on the situation,

certain behaviours would be more important to deal with than others. The

type of architecture that most suited this need was developed by Brooks,

referred to as subsumption architecture [4] and has been seen in several

examples since [5, 6, 10]. This section of the report discusses the details of

how this method operates, an example and finishes by addressing its limita-

tions.

The subsumption method was first reported by Brooks in the mid-80’s

as a control architecture for autonomous robots. His intent was to provide a

control scheme that was structured with layers to increase the competence of

59



robot operation [4]. Each layer specifies a class of behaviours for the robot

in question meant for any environment it encounters [4]. The lower layers

are reserved for more general behaviours as opposed to the higher layers

which are included for more specific goals [4]. Each subsequent layer of

competence beyond the first is provided by additional sensory awareness

and processing of the additional input to derive the desired behaviour [4].

The idea of multiple goals enters into each layer as well, they all have sep-

arate goals and can be worked on nearly simultaneously. The sensory input

can be used by all of the different behaviours and often it is not used in the

same capacity by each layer [4]. The hierarchy of these behaviours allows

the higher level layers to effectively bypass or sub − sume the lower level

behaviours, preventing them from driving the outputs to help the higher sta-

tus behaviours achieve their goals [4]. The lowest layer generally consists

of a rudimentary control scheme, exhibiting survival behaviour. This layer

is designed and implemented first and once finished, usually remains un-

changed even through the addition of subsequent layers [4]. When adding

new layers to the behaviour hierarchy, additional processors may need to be

added to support them depending upon the level of complexity [4]. The hi-

erarchical architecture is setup in such a way that it easily supports the idea

60



of an individual processor for each behaviour with minimal communication

required between levels [4].

To solidify the concepts, a brief example based on an early design of the

line crawling robot is included. The first level of the design (layer 0) in-

cluded rudimentary control over the motor drive and position servos. The

goal for this level was to prevent damaging the robot by avoiding immedi-

ate obstacles in the near vicinity during travel along the skywire. Infrared

sensors were used to monitor the position of the grip relative to the sky wire

and collision detection switches were used to sense objects in the pathway

of travel. Together, these types of sensors comprise the layer 0 inputs re-

sponsible for defining the obstacle avoidance behaviour. In Fig. 2.14 the

connections for sensors and the motors they control can be seen as well as a

block for the direction and speed control provided to the locomotion drive.

This allows for complete control of robot movement in conjunction with the

first layer in the hierarchy.

The next layer of the design had a similar goal of obstacle avoidance but

with the addition of avoiding contact with external forces completely. This

was achieved through the addition of proximity sensors which use infrared

signals to determine when objects are in their field of view and take action

61



Figure 2.14: Layer 0 control behaviour for avoiding obstacles

accordingly rather than the collision detection switches that require contact

before sensing. This layer is able to shut off the behaviour from the lower

level if it senses an obstacle in its proximity so it can respond more quickly

to achieve its goal of avoiding contact. The diagram in Fig. 2.15 is nearly

identical to the previous layer with exception to the introduction of a new

block connected to both control lines from the contact switches. This con-

tact point acts like an over-ride for the proximity sensor obstacle avoidance

behaviour. When the proximity sensors fire indicating an obstacle is in the

field of view, the layer 1 behaviour will take over from layer 0 and direct

62



the course of action for the line crawling robot, proactively avoiding hard

contact with the obstacle. Subsequent layers can be added after this point as

Figure 2.15: Layer 1 control behaviour for avoiding obstacles

needed depending upon the goals of the robot. Besides obstacle avoidance,

acquiring useful images is another primary goal of the line crawling robot.

An example layer 2 would include a vision system that seeks out targets to

take images of and could also be used to determine where obstacles are and

map them out for improved obstacle avoidance and cooperative behaviour.

During the stages where information from level 2 were used, the other two

layers would be suppressed, allowing it to take control.

63



The subsumption control architecture discussed in this section of the

report is convenient for implementing during stages of development. The

layers of competence are added with increasing complexity as the project

evolves. As a result, the first layer of competence is the most rudimentary

and yet essential control, whilst the second, third, and beyond are later ad-

ditions that provide improved or more sophisticated control. The additional

layers are not essential but they are often helpful additions that improve the

reliability of the design.

There are a couple of limitations associated with this control method.

First, the control layers are fixed once they are in place. This means that

each layer provides a reflexive set of responses to given inputs but anything

outside of its repertoire during runtime will not necessarily be handled well.

Including a learning component along with the fixed responses allows for

some flexibility that helps prevent the behaviour constraints once imple-

mented. The second potential problem is for larger systems with more lay-

ers and a complex hierarchy. With many more goals and behaviours being

active all at once, it is likely that the goals will interfere with one another

and there is no way to resolve multiple outputs simultaneously, there needs

to be a minute delay between their resolutions. For the example case and

64



the early stages of the work presented here, the level of sophistication is not

great enough to be a cause for concern.

Subsumption is an attractive control scheme for a project during the

build stages due to its modularity and simplicity of the hierarchical structure,

helping address multiple goals as they are added to the system. However,

when moving beyond a simple ’insect-like’ intelligence level, an alternate

means for behaviour control are necessary [55]. To take this type of archi-

tecture one step further, a learning element was added (see Sec. 2.3).

2.7 Ethology and the Ethogram

This section discusses Ethology and the ethogram and how it relates to the

work in this report. Ethology is defined as the study of animal behaviour

and an ethogram is a table containing a list of the different behaviours that

an animal species can exhibit. A brief overview of Ethology is included

followed by an explanation of how it parallels the way behaviours are dealt

with in the learning methods and rough set techniques for the context of the

line crawling robot.

In the work of Tinbergen [71], he refers to Ethology as a biological study

of behaviour. There are four main parts that are included in his discussion,

65



causation, survival value, evolution, and ontogeny [71]. In the context

of behaviours, they have the following meaning. Causation, also known as

proximate cause refers to the event or situation leading up to the behaviour

that has occurred. A simple way to think of it is as the cause of whatever the

effect was. Next, the survival value is the opposite, examining this quan-

tity involves looking at the result or effect of the behaviour that has taken

place already and how it has either improved or reduced the survival value

of the species in question. The third part is the evolution of behaviours

and this refers to the how a species has evolved into a certain pattern of be-

haviours over time based on previous experience or conditions. The fourth

and final part referred to in [71] is ontogeny. Similar to evolution but on a

lifetime scale, ontogeny refers to the development of the species over time.

These four categories make up parts of an ethogram used to study animal

species.

Similar concepts from Ethology and the ethogram are relevant to the

work reported here. The reinforcement learning environment used for the

tracking tasks parallels the study of behaviours using two of the four parts

of Ethology that Tinbergen refers to, including causation and survival

value. The cause and effect pair draw parallels with state and reward values

66



in the context of reinforcement learning. Also, an ethogram is employed

and generated throughout the learning process to record and process behav-

iours. The information regarding states, actions, rewards, selection prefer-

ence and decisions are all recorded in a table of behaviours. These tables are

then processed using rough set theory and approximation spaces to gener-

ate a performance metric to adjust the behaviours accordingly for improved

performance. The inspiration for these methods stems from the concept of

the ethogram and Ethology presented in Tinbergen’s work.

67



3 System Architecture

Building upon the background theory presented in the previous chapter, this

section describes the system architecture. First, an introduction to the evolu-

tion of the ALiCE II robot design is included, followed by a block diagram

representation of how everything fits together and then subsections describ-

ing each aspect in the diagram. The design choices are explained along with

any alternatives investigated and the associated trade offs.

3.1 The First Prototype

The first step in developing the line crawling robot after the problem had

been addressed was to investigate potential prototype designs. This section

includes a brief discussion of the design evolution from the conceptual level

to the first prototype and proof of concept implementation. The prelimi-

nary work used Lego Mindstorms R©as a development platform due to the

availability and speed of prototyping over a short period of time. Due to a

vast number of commercially available sets and many different shaped parts

within each, there was no need to have custom machined parts built and the

operating system included provided rapid development of simple control

68



programs, encouraging quick design revisions as needed.

During the first stages of the design, several possibilities were explored

in developing a line crawling robot. Existing systems were looked to for

inspiration, starting with commercial tram cars and gondolas commonly

used as ski lifts or transport for tourist attractions located in hard to reach

areas [26]. These were both suitable models of established line crawling

devices. A prototype line crawler based on an aerial tram was developed

using the Lego R©platform (see Fig. 3.1). The first prototype relied on grav-

Figure 3.1: First prototype based on aerial tram

ity and slow speeds of the line crawling robot to keep the wheel securely

attached to the line. The single contact point highlighted a potential weak

69



(a) Improved Line Grip (b) Prototype v2

Figure 3.2: Revised version of the prototype line crawler robot

point in the design and warranted a revision to the first generation of the

line crawler. The next step was to improve the stability of the design and

add more sensory perception so that when obstacles were encountered, rudi-

mentary avoidance occurred. The first set of changes resulted in a new line

grip design seen in Fig. 3.2. The new grip included contact sensors facing

both directions to avoid collisions and a pair of wheels to distribute contact

with the line.

The final revision of the first prototype robot investigated the possibil-

ity of taking more evasive action during obstacle avoidance rather than just

moving in an opposite direction. To accomplish this, potential methods for

disconnecting the grip from the line and then re-attaching were entertained.

70



Using biological systems as inspiration, brachiation (swinging) motion as-

sociated with gibbons was investigated. The main idea was to have a pen-

dulum style of disconnect and reconnect action [1, 57]. Since the prototype

materials exhibited too much flex and posed difficulties in spreading the

weight evenly, the end result for the design settled on a connected scheme

taking advantage of cooperation with multiple line crawlers. Stability from

additional support was helpful but it still exhibited weaknesses of its own

and required human assistance to perform even the simplest of acrobatics.

A simple sequence of figures presents the revised prototype line crawler

demonstrating the obstacle avoidance routine in Fig. 3.3

Although the Lego R©version of the line crawler was not stable enough

to perform the obstacle avoidance routines without external support, the de-

sired concept was demonstrated in the sequence of images for future re-

visions. Extra motorized prismatic joints were added to increase the de-

grees of freedom for a wider range of movement. In addition to the stan-

dard locomotion of the wheels, both a horizontal and vertical position drive

were added to allow movement of the robot when the locomotion drive was

disconnected. Both position systems operated with rack and pinion tracks

which helped secure the robot during operation.

71



(a) Step 1 (b) Step 2

(c) Step 3

Figure 3.3: Simple obstacle avoidance with the revised prototype line crawling robot

72



At this stage in the development of the prototype robot, the capabilities

of this platform had been exhausted as the design was already using three

processing units, nine motors and six sensors. Coordinating the operation of

all of the different aspects of the system was beginning to present a problem

for the operating system and controller. Since the ideas were well developed

at this point and a number of potential difficulties had been investigated,

a solid background was prepared to begin the second version of the line

crawling robot design.

3.2 The Second Prototype

This section includes an introduction to the dimensions of the problem, in-

cluding sample obstacles, and the skywire. After discussing preliminary de-

tails, the development of the second version of the ALiCE robot is included

in two parts consisting of the line grip and the payload.

The shape and dimensions of the line crawling robot were the first prob-

lems addressed when beginning the second generation design. A set of

sample distribution towers along Bishop Grandin Boulevard from Pembina

Highway to Lagimodiere Boulevard were used to help model the work space

available for the line crawling robot. The top of these towers contained a

73



trapezoid shaped space underneath each line clamp where the skywire trav-

els through. The dimensions of the trapezoid shaped space are shown in

Fig. 3.4, giving an idea of the amount of room available for the line crawler

to work in. There are two main types of obstacles that were of interest when

Figure 3.4: Top of tower approximate dimensions

allowing room for the possibility of obstacle avoidance, vibration dampers

and line clamps. These two obstacles can be seen in Fig. 2.1, additionally,

Fig. 3.5 shows a close up of the same components (samples provided cour-

tesy of Manitoba Hydro). The first prototype had a fixed contact point with

the line of travel and needed to be lifted up to disconnect and avoid obsta-

cles, since fighting gravity is already a problem faced by a suspended robot,

the new design opted for a grip more like a hand that can open and close

over the line. A sample of the skywire was also provided from Manitoba

74



Figure 3.5: Sample obstacles (2 line clamps and 3 vibration dampers)

Hydro. The diameter of the wire is approximately 9mm and it is twisted

presenting an uneven surface. Keeping these constraints highlighted, the

next step involved specifying the line grip which is the contact point with

the skywire.

3.2.1 The Line Grip

The line grip was the first part addressed in the second generation design

of the ALiCE II robot. This was the contact point with the sky wire mak-

ing it a crucial part of the design since mechanical failure would result in a

substantial plummet to the ground and certain damage to the robot. Draw-

75



ing upon previous experience with the proof-of-concept robot, a new ’C’-

shaped clasping mechanism was built, similar to having two fingers above

the line and a thumb below. This provided enough contact with the line

to secure the grip even in potentially unstable conditions. This section is

organized as follows, the wheel design is discussed first, followed by the

upper grip and lower grip chassis designs followed by their connections to

the backbone structure.

The wheels were designed first, being the direct contact point between

the robot and the medium it travels upon. The idea for the shape of the

wheels was derived from the proof-of-concept robot. Their primary func-

tion was to travel along wire, which calls for a wheel that has a concave

profile similar to a pulley wheel or sheave [54]. During the specification

process, several extra considerations were made based on materials, sizing

and potential pitfalls. A number of different possible materials were con-

sidered but the least expensive from a cost and weight perspective ended up

being nylon. This material was soft enough to manipulate into the desired

shape and rigid enough to support the weight of the line crawling robot. The

width of the skywire was known to be 9mm in diameter but with the addi-

tion of splices and repairs the maximum possible diameter was estimated

76



closer to 14mm in diameter. The wheel material was very smooth, provid-

ing less than adequate friction to drive the robot up an inclined section of

skywire resulting in the need for extra room to improve the traction. Also,

the wheel diameter was selected to accommodate a common sized bore as

well as providing room to drill a set screw for torque transfer. The shaft size

was selected as 1/8” since it was strong enough and a common bore size

making it simpler for interfacing to other components in the drive train [32].

The construction drawing for the wheels is provided in Fig. 3.6.

Figure 3.6: Construction drawing for line crawler wheels

The inside of the wheels had sloped side walls based on two diameters

of curvature, inner and outer dimensions corresponded to 11mm and 18mm

77



respectively. The extra spacing for both was provided to add increased trac-

tion on the surface that was added after the wheels were machined. The new

surface with greater friction consisted of applying an activator followed by

a cyanoacrylate-based glue to adhere rubber strips to the nylon wheel. The

rubber strips were cut from a bicycle inner tube with a thickness of approx-

imately 1mm and including the height of the glue, the new dimensions after

adding traction was 9 and 16mm respectively (see Fig. 3.7. That spacing

Figure 3.7: Nylon wheels with rubber traction

allowed the skywire to rest completely inside the wheel grooves, provid-

ing maximum support from the wheels and increasing the integrity of the

connection with the sky wire. In addition to fitting a larger wire diameter,

the outer measurement of 16mm provided a larger tolerance for connecting

to the sky wire, giving a small degree of passive compliance. The thick-

78



ness of the interior of the wheels is 10mm which provided enough room

for the space of the shaft (1/8” thick or 3.175mm), leaving equal spacing of

3.4125mm of nylon on either side of the shaft. The extra space in the wheels

next to the shaft allowed room for the introduction of a set screw to assist in

transferring torque from the motor drive to the wheels.

The next part of the design consisted of developing the upper chassis.

This component of the line crawler housed the wheels and the power train,

making it the main interface from the backbone of the line crawler to the

skywire. The original shape is much the same as the current revision but

several changes occurred throughout the evolution of the design.

Initially, a number of readily available parts were provided and the design

was built to accommodate them with some added flexibility in the event of

any future changes. After the wheels, the next step of the design was selec-

tion of gears. The main purpose of the gears was to translate motion from

the DC motor to the wheels. The secondary purpose was to separate the

wheels, helping spread out the weight distribution over a greater section of

the sky wire and improving stability. In addition, separation of the wheels

provided space for the lower section of the grip to mesh from underneath for

a relatively simple gear train, using a 1:1 ratio. The torque output from the

79



locomotion drive was sufficient for direct drive and speed was not an issue

since the line crawler was designed for low speed operation. The simplest

and most common type of gear is the spur pair seen in Fig. 3.8. For translat-

Figure 3.8: Spur gears used in line crawler power train

ing motor torque directly from the drive shaft to a pair of follower wheels,

three spur gears were selected, one connected to the motor drive shaft, and

the other two connected to the follower wheels. Both the driver and the fol-

lower gears were selected with the same characteristics and ordered from

the same manufacturer to ensure proper meshing. With reference to the the-

ory presented in Sec. 2.2.1, the gear specifications are as follows. Since a

1:1 ratio was employed, the driver and follower gears were selected with the

same number of teeth. The diameter of the gears were chosen to separate

the wheels far enough apart that a third wheel from the lower chassis would

80



fit in between when both sections of the line grip were clamped onto the

skywire. The resulting specifications were a 48-pitch, 65 tooth, 20 degree

pressure angle gear with a 1/8” bore. Although there were various values

of diametral pitch available, a lower value of teeth-per-inch was selected to

provide higher static-torque resistance in the event of any rapid braking ac-

tion that could potentially cause damage to the gears [50]. The value for the

maximum safe tangential load at the pitch diameter calculated using Eq. 2.1

resulted in a value of 460.4 oz-in of static torque resistance, more than three

times the torque output from the locomotion drive in the event of a complete

stop due to crashing into an obstacle. Although the initial bore size was se-

lected at 1/8”, a later revision of the locomotion drive required an increase

to 1/4” bore for the driver gears (see Fig. 3.8, the driver gear is on the left).

Shafting material was selected next for the follower gears and wheels.

A bore size of 1/8” was selected when specifying gears as it provided a

large enough shaft to easily support the weight of the line crawler. There

were a number of shafting sizes available depending upon the application,

since it was meant to fit inside the wheels and gears a reduced diameter of

0.1247” (3.17mm) was selected. The smaller dimension was chosen to fa-

cilitate integration into the gears and wheels and still work with set screws.

81



The material selected was solid core precision ground stainless steel, the

available alternative was aluminum however the shafts were expected to be

supporting a large amount of weight from the line crawler and since they are

not large components, the additional weight of using steel over aluminum

was negligible and the extra hardness of steel made it an appealing choice

since the shafts were expected to experience wear over their lifetime. Spac-

ers and locking collars were added to ensure that the gears were positioned

properly and to secure the shafts eliminating any unwanted motion.

With the power train completed, the next step was to build a chassis to

house all of the components together. To help minimize the weight of the

robot, the chassis was specified using aluminum instead of a steel alloy.

Each piece of the upper chassis was specified as 1/16” (1.5875mm) thick

aluminum since it was durable enough and still light-weight. The difference

in strength between aluminum and stainless steel was insufficient to be a

concern and the weight of aluminum components was approximately 1/3

less than steel. The chassis was designed to house the gears, wheels and

the dc motor all in one structure. The wheels and gears were separated into

individual compartments to make the spacing more manageable and provide

a rigid support structure. This was done with separate pieces of aluminum

82



folded and secured within one another. Since the aluminum was folded,

a bend allowance was required to account for excess material taken up in

the folding operation. An additional one third thickness of the material

was added to the measured lengths of the aluminum inside the fold, and

two thirds thickness was included for the exterior measured lengths [73].

This bend model applied to the chassis which was specified for 1100 series

aluminum, a common light duty chassis material [73].

An assembly drawing is included in Fig. 3.9 showing a top view of the

upper grip chassis including the drive train and the wheels. The final point

regarding the upper chassis was fastening the dc motor to the line grip. An

unfurled hose clamp was used, drilling it out to fit a machine screw at ei-

ther end, and then tapping the chassis for the screws to guarantee a secure

connection. The dc motor rested on the platform at the back of the upper

grip chassis and was secured with the hose clamp. The motor drive shaft

connected to the wheels through the gear train, transferring torque and pro-

viding locomotion for the robot. At this stage, the upper line grip design

was completed and the next step was to include the lower grip chassis.

An important distinction between the upper and lower chassis housing is

that the lower part contains only a single wheel and it was a follower, not

83



Figure 3.9: Upper grip chassis assembly drawing - top view

84



on a torque-driven shaft. The main function of the lower line grip design

was to improve the integrity of the line crawler’s connection to the skywire.

Both the wheel dimensions and the available space between the two upper

wheels were previously known quantities.

The lower chassis design took advantage of prior knowledge from de-

veloping the upper chassis for spacing constraints as they were both fitted

for travel on skywire. The lower grip contained a single follower wheel,

eliminating the need for a set screw. This introduced another small passive

degree of compliance as the extra 3mm of space either side of the wheel

allowed for movement when the line grip closes.

The specifications of the lower chassis component used the same mater-

ial (1100 series aluminum, 1/16” thick) and the corresponding bend model.

Extra space was left underneath the wheel in the chassis for attaching fas-

teners. The lower chassis was then attached to the the backbone completing

the grip-like shape and defining a work envelope. The assembly drawing for

the lower grip chassis is shown in Fig. 3.10.

After completing the upper and lower chassis components, the next step

was to join them together with a backbone structure, completing the line

grip. To provide a flexible shape, the connection point with the backbone

85



Figure 3.10: Lower grip chassis assembly drawing - front view

86



for both the upper and lower grips needed to be actuated. Servo motors were

selected for the task (see Sec. 3.8).

The servos were intended to support the gripping action, making it nec-

essary to develop a specially formed hinge to attach both the servo and the

chassis components to the backbone. This problem required development

of a connection that would fasten two perpendicular surfaces to one another.

The dimensions of the hinge for the upper chassis were specified to

mount underneath the flat compartment housing the dc motor and the side

connected to the servo motor was sized to fit an array of servo horns. The

hinge mounting plates were over-sized to allow room for adjustment as

needed to secure it. Hole placement for the upper chassis was 2cm far-

ther apart than the motor so the machine screws avoided obstructing the dc

motor mount when fastening the hinge. A 90 degree fold to the hinge pro-

vided a simple connection to the servo motor. A servo horn was selected that

contained pre-drilled pilot holes and was modified by drilling and tapping

them for machine screws. With the hinge attaching to the servo, mounting

the motor provided some flexibility in placement for aligning the upper grip

to provide a nice clean motion for raising and lowering. The hinge was

composed from the same 1100 series aluminum as the chassis structures.

87



Figure 3.11: Hinge - top view

The dimensions are shown in Fig 3.11 including the location of holes

drilled for 6-32 machine screws to fasten with the upper chassis. This size

and number of machine screw was chosen to provide a strong enough con-

nection to the upper chassis whilst reducing the required amount of space

(0.144” or 3.66mm hole).

The next step in development was to address how to connect the lower

chassis assembly to the line grip. Since a similar servo motor was selected

to drive the lower half of the line grip, the established hinge design was

reused. The only difference with this connection point was that the servo

motor location was connected lower on the backbone and as a result, needed

88



to be compensated for to allow the lower assembly to close under the sky-

wire. Some flexibility was provided in the lower line grip pertaining to

variable height adjustment of the lower chassis. The design of the lower

grip connection was done in two parts, coincidentally referred to as lower

grip attachment part 1 and part 2.

Part 1 is a length of aluminum (1100 series, 1/16” or 1.5875mm thick)

that spanned the distance from the hinge to part 2. The connection between

the first and the second part included extra tolerance for height adjustment.

A bolted connection (#10 bolt) in conjunction with the two individual plates

that join part 1 and part 2 provided a total range of movement from 5 cm

to 0.5cm above the hinge. The initial design was meant to be manually

adjusted. However room for automating (at a later date) was left to allow

the line crawler to compensate for changes in skywire widths on the fly. The

first part of the lower grip connection is shown in Fig. 3.12.

The second part of the grip attachment was designed with the same shape

as part 1 on one side and the same dimensions as the base of the lower

chassis on the other. The resulting component completed the lower grip,

linking it into one piece. The structural drawing of the second part can

is shown in Fig. 3.13. The built-in manual adjustment was secured with

89



Figure 3.12: Lower grip connection - Part one

a wing nut and lock washer combination. The adjustable position proved

useful when servo motors were replaced as there was enough room to alter

the height for the new servo and still maintain connection to the skywire.

The final part of the line grip design was a backbone structure to join

the upper and lower grip into a complete unit. The original design specified

the same 1100 series aluminum material which was sufficient to support the

initial weight. As the design evolved and extra components were added the

weight of the grip exceeded the strength of the backbone. A revision to the

design substituted the original part with a piece of square aluminum tubing

90



Figure 3.13: Lower grip connection - Part two

drilled out with the same pattern to support the upper and lower line grip (see

Fig. 3.14). The servo motors were connected directly to the backbone and

secured using unfurled hose clamps due to the strength and malleability of

the metal. Holes were drilled in the clamps and the backbone was drilled and

tapped to ensure a rigid connection. Once screwed down, the servo motors

were able to repeatedly raise and lower their respective grip mechanisms

accurately. The completed line grip construction drawing can be seen in

Fig. 3.15, showing how all of the components fit together. This concludes

the discussion of the detailed design for the line grip. The next part of the

design included developing and connecting a platform to support a payload

91



Figure 3.14: Line grip - backbone

Figure 3.15: Complete line grip construction drawing

92



for the line crawling robot.

3.2.2 Adding a Payload

The line grip design was intended to support the later addition of a plat-

form for supporting a payload. Once the decisions were made for necessary

equipment to promote basic survival of the line crawling robot, the platform

design began. An important principle behind the design decisions was to

keep the weight and space to a minimum. This section includes a discus-

sion of the platform design and how it attached to the line grip.

To keep things small and straight forward to manufacture, a rectangu-

lar base was selected with added space for future expansion of the payload.

The main control board dictated the size and shape of the platform with

some additional space left for power supplies, control peripherals and room

for expanded payloads. The result was a rectangular platform constructed

out of the same 1100 series aluminum as the rest of the robot. The dimen-

sions were 29.4cm in length x 15.2cm in width, with standoffs provided to

raise the control board allowing the power supply to fit underneath. During

preliminary verification, the weight of the line crawler was discovered to be

too heavy. The platform material was revised, switching from aluminum to

93



acrylic of the same thickness. The main concern in switching to acrylic was

rigidity and support for the payload. However, after performing strength

testing experiments, the new structure held up and ended up being the cho-

sen material for the platform design, providing a weight reduction of 70%

compared to its metal counterpart. Construction of the acrylic platform was

done by hand, cutting components from sheets of material and then using

cyanoacrylate-based glue to bond everything together for a permanent fit.

To connect the platform and the line grip, a handle and mounting bracket

were developed. The handle for the platform was centred across the mid-

dle and contained evenly spaced holes tapped and drilled for 6-32 machine

screws. The pattern of the holes matched with the mounting bracket de-

sign allowing for placement of the line grip anywhere along the handle to

help balance the payload with positioning. The other part of the mounting

bracket was drilled and tapped to match the hole pattern on the backbone,

fastening with 6-32 machine screws as well. The completed line crawling

robot can be seen in Fig. 3.16. This includes the acrylic platform with the

revised backbone material, the entire payload, all of the wiring and the sen-

sor array. The last point for discussion of the second prototype robot covers

the work envelope of the line grip relating to its range of motion.

94



Figure 3.16: Line crawling robot - Second generation (ALiCE II)

3.2.3 The Work Envelope

This section covers the details for the space available that the line grip re-

quired based on dimensions of obstacles expected to be encountered. The

sample obstacles provided by Manitoba Hydro demonstrated that a variety

of shapes and sizes existed for each part. The largest samples were chosen

for the design providing maximum spacing when planning the work enve-

lope. Obstacle diagrams were developed to study the space taken up by

vibration dampers and line clamps. Although this section appears after the

line crawler design in this report, it was covered before and the information

gathered was used to identify space constraints prior to development of the

robot.

95



The first obstacle considered was the vibration damper. Figure 3.5 shows

that the shape of the dampers are non-uniform from one end to the other.

To simplify matters the largest dimension was used to create a rectangular

shape around the entire obstacle providing a worst case estimate. The ob-

stacle diagram for the vibration damper can be seen in Fig. 3.17, giving a

guideline for the maximum area that is taken up by the obstacle. In addition

Figure 3.17: Diagram of vibration damper obstacle space

to the space taken up below the skywire, the dampers take up space above

the sky-wire (approximately 1.5cm). In order to avoid the vibration damper,

the line grip needed to move both the upper and lower parts of the grip.

96



The amount of movement for the two differed greatly as the upper grip only

needed to move 1.5cm before being able to roll along the top of the obsta-

cle . Conversely, the lower grip had to move completely out of the way to

the fully open position, pointing straight down. The space taken up by the

largest damper was 3.4cm either side of the skywire and up to 12cm below

the skywire. The line grip work envelope was able to position the lower

grip chassis at 17cm below the skywire, moving the entire lower arm 7cm

to one side, giving ample room for the future development of an obstacle

avoidance routine.

The other obstacle diagram for the line clamp was much simpler to de-

velop as it can be represented by a single 3D rectangular shape that extends

below and above the skywire. The line clamp was considered to extend

above the skywire as it connected directly to the tower structures fastening

the line. The depth of the object (referenced as ’C’ in Fig. 3.18) corre-

sponds to the maximum possible depth that the bolts hang below the line as

they were the lowest point. The space required for the line clamp was 3.5cm

either side of the skywire and 5.5cm below, fitting easily into the flexibility

of the lower line grip work envelope previously discussed. The upper line

grip opened 90 degrees in the clockwise direction, providing 6.5cm of space

97



Figure 3.18: Diagram of line clamp obstacle space

98



between the skywire and the gears which were the lowest protruding com-

ponent of the upper line grip, also providing ample space to avoid the line

clamp with both the upper and lower grip movement.

After examining both types of obstacles and establishing the space con-

straints for each, the next step was to outline the work envelope of the line

grip to ensure it was capable of avoiding them. When assessing the work en-

velope, all of the protrusions above and below the chassis assemblies were

considered to gain a better picture of exactly how much space there was be-

tween grip and obstacle at any position of the line grip. The fully closed grip

and all of the corresponding measurements are seen in Fig. 3.19. The wheels

and gears protruded above and below the chassis assemblies and the position

servos moved 90 degrees in opposite directions (the upper grip servo rotated

clockwise, whilst the lower grip servo rotated counter-clockwise) providing

a picture of the available range of movement, leaving room for an obstacle

avoidance plan.

3.3 The System Diagram

The next part of the system architecture discussed are the components that

make up the systems that drive the robot. A block diagram showing the

99



Figure 3.19: The work envelope for the line grip

various components and how they interconnect is provided in Fig. 3.20.

As seen in the connection arrows, not all components are bi-directional in

nature. The following sections of this chapter elaborate further on the details

of each component.

3.4 The Vision System

After developing the structure of the robot, the next step was to provide a

means for acquiring images. A number of different options were considered

and the final selection was based on system constraints, required specifica-

tions, ease of interfacing, and cost.

100



Figure 3.20: System level block diagram with interconnects

Digital photography equipment had become readily available and inex-

pensive at the time of construction so a number of options were investigated.

One of the primary considerations was to keep the camera features to a min-

imum as the line crawling robot only required still imagery. The nature

of an autonomous design also warranted a minimum amount of power ex-

penditure, weight and simplicity of interface. Surveillance and spy camera

technology was considered due to the nature of the size, however the cost

and power requirements were surprisingly prohibitive. Web cameras pro-

vided a reasonable alternative for acquiring images. These types of cameras

were ready-made to interface with computers and basic models provided

few features beyond taking pictures, minimizing the space and power re-

quirements of the device. A single camera (monocular vision) system was

101



selected. This still provided the necessary imagery and at the same time

reduced the cost, power requirements and weight of an individual robot.

Although there were many options available, the field of choice was nar-

rowed to two possibilities. Both Creative webcam products, the NX and the

NX Ultra. The cameras were similar in size but differed in shape, with the

NX being more rounded and bulky (see Fig. 3.21) where the NX Ultra was

more narrow and slender (see Fig. 3.23) complete with flat panels, easier

for mounting. Both cameras supported USB interfaces, making them easy

to connect directly to a processing board eliminating the need for separate

power inputs. The maximum resolutions offered by each camera differed

with the NX rated at 640x480 and the NX Ultra reaching 1280x960 pixels.

Although preliminary resolutions used during the experimental phase were

low, the appeal of the NX Ultra for future expansion, space constraints and

ease of mounting resulted in it being an easy choice for the vision system.

After selecting the camera, the next problem to tackle was how and where

to mount it on the acrylic platform. The Creative NX Ultra comes complete

with a stand built in ready for perching on a monitor or desk. For the purpose

of mounting on the line crawling robot the stand was removed, leaving the

body of the camera as the direct contact point. Based on load balancing and

102



Figure 3.21: Creative NX camera

to provide the best possible views for the camera, it was mounted so that the

neutral position was in the centre of the platform underneath the robot. This

location provided adequate protection for the camera and left enough room

that it did not interfere with the cabling during movements. The range of

motion (work envelope) associated with the camera was limited by the wire

connections and the maximum rotation of the position control motors. A

diagram demonstrating the camera’s field of view can be seen in Fig. 3.22.

Although the camera was positioned for forward travel of the line crawling

robot, it was mounted with an adhesive foam tape, making it possible to

remove and remount in alternate orientations as needed.

The last point of this discussion includes a look at how the camera was

mounted to the position control servos allowing for the field of view shown

103



Figure 3.22: 3D field of view for the camera

in Fig. 3.22. Rather than any additional mounting hardware, the camera was

connected directly to a position control servo which was in turn, mounted

directly to another position control servo that was adhered to the underside

of the platform (See Fig. 3.23). All of the connections were made using

indoor/outdoor foam tape with a maximum strength rating guaranteed to

secure the camera and servos (rated to 907g). This provided two degrees

of freedom when operating the camera, pan and tilt. The constraints of

movement for the camera stemmed from the range of the servos (on aver-

age 180 degrees), the wired connections from the camera and servo motors,

and finally from the platform which restricted any upward movement of the

camera. Although the field of view is approximately equal to one quarter of

104



Figure 3.23: Creative NX Ultra mounted to position control servos connected to the robotic
platform

a sphere, this was sufficient to view details on the tower structures as the line

crawling robot rode along the skywire at the top of towers looking down on

everything. Positioning the panning servo so that it looks in the forward di-

rection of travel at 0 degrees and then moves +/- 90 degrees from the origin

allows for a complete field of view in the direction of travel. The alterna-

tive would have been to position the origin perpendicular to the direction

of travel to provide a field of view on one side of the line of travel. Either

option was viable as the intention of the line crawling robot design was to

extend to multiple robots (see Fig. 3.24) on the skywire working in cooper-

ation. Along with multiple line crawlers, having one line crawler viewing

the left side of travel and another viewing the right side would provide a full

105



Figure 3.24: A pair of line crawling robots with mounted cameras

field of view below the line crawling robots.

3.4.1 Image Processing

A description of onboard image processing for the line crawling robot is

included in this section. At the time of writing this report, the template

matching approach was the main method employed (see Sec. 2.5.1). How-

ever, work was being done to compare the efficiency and performance of the

average grey level tracking method. A description of the template matching

method details are provided here along with some insight into the average

grey level method and how they differ.

The images provided for processing were all gathered using the Cre-

ative NX Ultra camera via the SPCA50X USB Linux driver [79]. The steps

106



involved in the target tracking task for image processing were as follows.

First, a target was acquired, this was done manually during the experimental

phase by positioning the camera toward a target and grabbing a still image

used for the template. Due to the restrictions of the computational power

of the TS-5500 controller, the minimum image size of 160x120 from the

camera was decimated by a factor of four, yielding an image for processing

of 40x30 in size and using greyscale pixel values. Even though the image

being processed was reduced in both size and colour, it was still possible

to discern the sample target (see Fig. 3.25). The template size for the re-

duced image was 28x21, leaving a possible space for movement away from

the centre at 12x9 pixels. The image space was divided up into 9 states

(discussed further in Sec. 3.11.1) and a corresponding set of actions were

available for each state to provide a means to move so that the target re-

mained centred in the camera field of view.

The average grey level method of tracking was similar with respect to the

number of states, actions and rewards, but locating the target was handled

differently. Rather than matching a template, prior knowledge of the size of

the images were used to divide them up into subsections and then discover

average grey levels contained within. The targets used during experimental

107



development contrasted well with their backgrounds, generally employing a

dark target on a light background (see Fig. 3.25). The size of the subsections

Figure 3.25: Sample target, decimated and converted to greyscale

of any image were dependent upon the original dimensions. For the exper-

imental work provided in this report, the size of the input image for both

tracking methods was kept uniform at 40x30 pixels. To divide up the 40x30

image, a total of 15 cells were used in a 5x3 configuration providing the po-

tential for more states than the 9 included in the template matching method.

There was also a reduction in accuracy dependent upon the resolution of

the cells as the centre of a cell with the lowest grey level was considered the

target instead of the centre of a template placed on any pixel. The maximum

resulting error was +/- 0.5xM in the horizontal direction where M was the

number of rows in a subsection of the image and +/-0.5xN in the vertical

108



direction, where N corresponded to the number of columns in a subsection

of the image.

The average grey level method was configured to assume that a dark

target would be present on a light background. This required some prior

knowledge about the background and limited the technique as opposed to

template matching which was able to operate regardless of what the back-

ground was like. A possible extension of this method could employ vari-

ance instead of average grey levels using the same structure. This may be

more well suited for the problem of spotting targets like smooth surfaced

insulators with a background consisting of fields, trees, towers, or anything

with potentially higher variance. The average grey level method was im-

plemented for preliminary experimental work but it was not expected to

perform as well as template matching in the experimental environment.

3.5 The TS-5500 Computer

During the development stages of the line crawling robot, work was be-

ing done in the computational intelligence lab (CILab) using a single board

computer. Taking advantage of the work and experience of the CILab group,

selecting the TS-5500 (Technologic Systems) as the main processing board

109



for the ALiCE II robot was a simple decision. Although there were a num-

ber of other options available for controllers, the availability, cost and prior

knowledge made the TS-5500 the clear choice.

The TS-5500 was a full-featured single board computer chosen to coor-

dinate the various systems of the line crawling robot. It was modelled after

the x86 family of PCs and as a benefit had the same sort of memory map,

simplifying access to system I/O [69]. The central processing unit onboard

the TS-5500 was the AMD Elan520 processor, an 0x586 class processor

operating at 133MHz [12]. Input ports included two universal serial bus

(USB) ports, a PCMCIA (personal computer memory card international as-

sociation) slot, three communication ports and an RJ-45 network port were

available, providing for a number of possible interfacing solutions. The dig-

ital I/O and the A/D converter provided support for low level devices and

sensors. As shown in Fig. 3.26, the TS-5500 is a compact unit. The di-

mensions are 17.8cm in length and 13.2cm in total width. When a card was

plugged into the PCMCIA slot, an additional 5.2cm was added to the overall

length, still leaving enough room in the line crawler platform for its payload

and room to spare.

The TS-5500 also provided good support for software and software-

110



Figure 3.26: The TS-5500 single board PC

related processing. An onboard flash drive of 2MB was present, as well

as 32MB SDRAM (synchronous dynamic random access memory), and a

compact flash port for additional memory. A minimized version of the Red-

Hat Linux 9 kernel (Shrike) operating system [29] was installed and used

to manage the line crawling robot. Using a large compact flash card with

512MB of storage in the expansion port provided ample support for the op-

erating system and program code for running and interfacing with all of the

robot systems.

The array of features provided by the TS-5500 for interfacing and com-

putational power made it very appealing but there were a couple of draw-

backs as well. First, the power requirements were more demanding than

initially expected. Quiescent power draw of the TS-5500 was measured at

111



approximately 0.5 amps. During heavier processing stages such as control

of devices and communication, the current draw increased to approximately

1 amp. The power requirements for this type of board warranted some de-

sign changes in the power supply (see Sect. 3.9). The other drawback came

in the form of control of the digital I/O and timing. To control position ser-

vos, generation of fine resolution control signals was required (in the order

of microseconds). The TS-5500 was unable to provide such a fine reso-

lution using its onboard real-time-clock chip which provided at best 122

microsecond square waves. Using a software interface to the main proces-

sor was no better since it was only accurate to the millisecond range. Rather

than switching to an alternate platform, a separate PIC controller was added

to interface with the motors (see Sect. 3.6).

Although there were a couple of drawbacks associated with the TS-5500,

overall it provided a solid performance as the brains behind the line crawl-

ing robot. Having a full computer on a single board allowed interfacing

with many types of devices. Using the Linux environment, GNU C was

used for code development providing a familiar and powerful interface for

programming. The benefits associated with the TS-5500 outweighed the

drawbacks making it an easy choice to fit into the system architecture as the

112



main controller for the robot.

3.6 The PIC Controller

Since the TS-5500 was unable to manage fine resolution clock operations

for controlling servo motors, a separate controller was added. The total

number of motors onboard the line crawling robot was five. There were

four position control servos and one dc motor for the locomotion drive.

Rather than split up control of the two types of motors, a control board

was designed to operate all five of them. A PICMicro controller was used

to operate all of the motors. This section includes a discussion of selection

for the device, as well as what was needed to complement the PIC for in-

terfacing, power requirements, and finally layout and creation of the control

board.

When looking for a secondary controller to operate the motors there were

many options available ranging in price, size and power requirements. Dur-

ing the original building phase of the line grip, a Handy Board [31] was used

to operate all of the motors and sensors for verification purposes. The Handy

Board was an all-in-one controller providing its own proprietary high level

language for programming (Interactive C), as well as hardware interfaces

113



for controlling servo motors and dc motors and for running both analog

and digital sensors [31]. The Handy Board was dropped since the TS-5500

eclipsed its functionality on all levels except for fine control of clock sig-

nals and since it was large and required more power, smaller controllers

were favoured in its place. When considering small-scale controllers, there

were many available, including products from Motorola, Zilog, Texas In-

struments, and Microchip to name a few. For the most part, each of the

controllers provided similar features, with the odd difference between them.

As a result, any of them would have been sufficient. However, there were

several reasons why the PICmicro was selected over the others. First, some

members in the CILab (including myself) had previous experience with

PICs and the technical staff on campus provided support and lab facilities

that were already in place. Also, they were one of the least expensive alter-

natives at around five dollars per unit. In addition to that, development tools

such as MPLab and CC5x were readily available online and free, both ex-

cellent products, making testing and implementing code for the PIC much

faster. There was also a wealth of information documented online from

many sources due to the popularity of PIC controllers (for a few examples,

see [77, 62, 53]).

114



Due to a wide range of PIC processors available, a list of needs was the

starting point for selecting the device. Requirements for the controller in-

cluded the ability to provide fine resolution clock pulses for servo motor

control, support for communication in the form of an onboard UART (Uni-

versal Asynchronous Receiver Transmitter), support for a minimum of five

digital I/O ports, and flash memory for programming and allowing easy up-

dates of new code revisions. With those needs in mind, a mid-range device

in the 16 series was chosen, the 16F871 [49]. This PIC met all of the require-

ments with room for expansion, offering 33 I/O channels, an A/D converter,

2K of memory for instructions, an internal or external clock and an onboard

USART (Universal Synchronous/Asynchronour Receiver Transmitter) for

interfacing seamlessly with the TS-5500. Running off a 5 volt power sup-

ply, current draw of the PIC was rated typically at 1.6mA during operation

at a clock speed of 4MHz and less than 1μA in standby mode adding very

little extra power demand on the robot [49]. The most important condition

that needed to be satisfied was fine resolution control of the digital outputs to

create position signals for the servo motors. The 16F871, running at 4MHz

was able to provide a resolution of 10μS which was inside the desired range

of 2-12μS that was sought after. In order to achieve a fine resolution with

115



consistency, an external crystal oscillator circuit was necessary as the inter-

nal RC-oscillator on the PIC did not have the same quality factor or stability.

A 4.000000MHz crystal was selected with 15pF stability capacitors for an

accurate and stable clock speed [36]. The next problem explored was how

to interface the PIC to all of the different input and output devices.

The PIC was unable to interface on its own with all of the external de-

vices. Difficulties were encountered with communication using the RS232

standard (see Sect. 2.2.3) and with operating the dc motor. To solve these

problems, additional components were added to the control board in the

form of an RS232 transceiver and an intelligent h-bridge.

The reason that the PIC required an RS232 transceiver is because the

standard voltage levels for PIC outputs corresponded to CMOS logic levels,

low between 0-1.5 volts or high between 3.5 - 5 volts [30] and as discussed

in Sect. 2.2.3 that did not coincide with bipolar logic (see Fig. 2.6). Also,

the voltage range for RS-232 communication is from +/- 3 to 25 volts, low

voltages can be subject to distortion error due to attenuation in transmis-

sion cables. These problem were addressed through the addition of a Lin-

ear Technology RS232 transceiver (part#LTC1383) [28]. The transceiver

operated from a five volt supply and through the use of internal circuitry

116



and some external capacitors it boosted the output voltage to a +/- 7 volt

swing [28], easily interfacing with the RS232 protocol. Since this was a

low power device, rated at 220μA unloaded and it operated off a single five

volt power supply, it was a suitable choice to meet line crawler’s needs.

Control of a dc motor required the addition of an intelligent h-bridge to

the control board. Without getting into the theory of operation in too much

depth, the main idea of an h-bridge is to allow control of a dc motor with

logic level voltages and the power to the motor can be much higher depend-

ing upon the size of the motor. An h-bridge is designed with four transistors

around a motor and these four create two separate paths from the power

supply to ground through the windings of the motor when connected [33].

This allows control of the motor in either a forward or reverse direction. A

simple example can be seen in Fig. 3.27 where a partial circuit has been

drawn for convenience. Through the use of the h-bridge, logic level inputs

to I1, I2, I3 and I4 turn on the transistors which provide a path for the cur-

rent from the voltage supply V+ to ground. The power supply V+ can be

any dc value and is commonly higher than the levels driving the transistors.

For the case of the line crawling robot, the input control voltages are derived

from the five volt power supply whilst the dc motor voltage is 9.6 volts. To

117



Figure 3.27: H-bridge example circuit

clarify the forward and reverse operation of the motor, a quick scenario is

included. When the robot received a cue from the TS-5500 to drive forward,

both I1 and I4 are triggered, turning on Q1 and Q4, generating a path for

the current through the motor in the positive direction in turn causing it to

drive forward. To reverse, the opposite inputs (I2 and I3) are driven high

and the current path goes through the motor in the opposite direction. When

stopping, there were two possibilities depending on the nature of the stop

required. The first possibility was a slow stop where power to all inputs

was removed and the motor coasts to a stop. The second possible stopping

method is braking, achieved by turning on inputs I1 and I2, which in turn

forces the motor to stop turning by having it work against itself. The rea-

118



son this works is because a motor generates a voltage (like a generator) and

when the terminals are both connected to the same point (either high or low

voltage), it is seen as a short across the terminals and the generator voltage

will counteract itself as it will seem that an equal and opposite voltage is

being applied across the terminals, causing a braking effect [7].

When examining the possibilities for driving the dc motor, a few alter-

natives were investigated. First, the possibility of building a standalone h-

bridge much like the circuit in Fig. 3.27 was examined and then discarded

shortly afterwards due to space and power requirements. Several h-bridges

contained on a chip complete with intelligent control were found. Versions

from Allegro, National Semiconductor (NS) and Texas Instruments (TI)

were compared. The device with the simplest interface and lowest power

requirements was manufactured by TI. The TPIC0108B [70] from TI was

selected to operate the dc motor locomotion drive for the line crawler. This

chip was a surface mount package intended for low power or battery oper-

ated circuits so special considerations were taken into account when includ-

ing this device in the control board layout.

The input voltage requirements for the PIC and its associated devices

were similar. The RS232 level transceiver operated from five volts, as did

119



the PIC, however the TI chip had a rated minimum input voltage of six

volts. In order to run multiple power levels to the different devices, two taps

were made from the battery pack for the control board. The first tap was

unregulated dc straight from the batteries at 9.6 volts. This was the supply

voltage for the motors as well as the h-bridge chip. A second tap was after a

voltage regulator (see Sect. 3.9), providing a regulated 5 volts to the PIC and

the transceiver. The benefit of taking two taps off the same battery pack was

a reduction in circuitry to provide two voltage levels and the h-bridge chip

and motors were resilient enough that any fluctuation of input voltage would

not affect normal operation until the batteries started failing. A completed

schematic of the interconnects for the PIC control board (see Fig. 3.28) was

used as an aid to set up the board layout.

Figure 3.28: Control board schematic

120



The last stage of the PIC control board development was layout and con-

struction of the prototype. When allotting space on the control board for

each device, the size, the number of discrete components it required and

the position relative to the other devices was included in the layout design.

The largest integrated circuit (IC) was the PIC so it was placed first, fol-

lowed by the RS232 transceiver and finally the motor control chip. Since

the h-bridge IC was a surface mount package special considerations were

necessary to add it to the perf-board construction. A surf-board was added

with a single inline set of pins to allow for easy insertion into a through-hole

board. Each of these devices had some additional through-hole hardware to

accompany them. The PIC was operated with an external crystal oscillat-

ing at 4MHz, this required a crystal and a pair of capacitors. The RS232

transceiver required an additional 4 capacitors to operate its charge pump

circuit for boosting voltage levels and finally the h-bridge control IC had an

additional coupling capacitor for the power supply inputs for safety. Adding

each of these devices to a compact board arrived at dimensions of 8.5cm x

6.5cm, shown in Fig. 3.29. Each of the through-hole IC’s and the surf-board

were socketed to allow for quick dis-assembly as needed and safer soldering

avoiding heating up any of the electronics by removing them. In addition to

121



Figure 3.29: Line crawler robot motor control board

that, socketing the PIC allowed for easy access to remove and install it dur-

ing times when the operational software was updated and the device needed

to be reprogrammed. All of the wiring and soldering was done on the un-

derside of the perf-board requiring stand-offs, providing space underneath

the board to avoid damage once installed in the platform.

With the addition of the PIC control board, low level control of devices

external to the TS-5500 were made possible with a minimum additional

cost, both financial and power related. Running at a clock speed of 4MHz,

the PIC was able to generate fine resolution signals for position control of

the servo motors as well as operating the dc motor and there were also ad-

ditional ports left available for future expansion. The interface between the

PIC and the TS-5500 was accomplished with a serial link and a hardware

122



UART at each end. The transmission protocol for communicating was de-

veloped for speed and efficiency and has a more detailed discussion in the

next section.

3.7 Communication Protocol Between the TS-5500 and the PIC

Once the two control boards had been established, a means to communicate

between the two of them needed to be devised. This section covers the

choices made and the reasons behind how the communication protocol was

developed. A general discussion of an overview of the protocol is included,

followed by a break-down of how devices were selected and commands

were issued.

During the construction stage for the PIC controller a number of tests

were done to verify proper operation and communication with the device.

Several considerations for the communication protocol arose from the re-

sults and problems encountered during testing. To keep the demand on the

PIC to a minimum, one byte of data was selected to contain all of the infor-

mation necessary to issue a command. The PIC USART module contained

a 2 byte FIFO buffer (First In First Out), allowing up to two bytes of infor-

mation to be stored at any given time without incurring a loss of data [49].

123



Communication was originally designed to be uni-directional with the TS-

5500 issuing and the PIC executing commands. At a later stage in the evolu-

tion of the line crawling robot, two-way communication was included allow-

ing feedback from the PIC. Transmission of information in both directions

used the serial port on both controllers in asynchronous mode using an 8-

N-1 protocol (signifying 8 bit transmission, no parity bit and one stop bit).

A communication speed of 9600 bits per second was selected as it provided

the best ratio of transmission speed versus bit error rate [49]. Each com-

mand byte was separated into two parts, the lower three bits represented the

device selection with two exceptions for the value of six and seven which

correspond to a query and reset command respectively. The upper five bits

corresponded to the command issued to the device (see Fig. 3.30). With

Figure 3.30: Command byte separated into device selection and command bits

three device selection bits there was a possibility of addressing eight sepa-

124



Bin. Dec. Description
000 0 DC motor is selected
001 1 Camera panning servo is selected
010 2 Camera tilting servo is selected
011 3 Upper chassis grip servo is selected
100 4 Lower chassis grip servo is selected
101 5 —Currently unused—
110 6 Position feedback command for camera servos
111 7 Reset camera servos to origin positions

Table 12: Device selection using lower 3 bits of command byte

rate devices. The five command bits allowed for thirty-two possible com-

mands available for each device.

Device selection was needed to choose which motor to control and since

there were only five choices, that left room for three additional commands.

As the system evolved, it was discovered that a reset and a query com-

mand were useful for operating the camera servos, taking up two of the

three extra spots, leaving one more for future expansion. The command

tables presented in this section link bit patterns to commands. First, the

device selection bits can be seen in Table 12 The device selection bits are

self-explanatory with the exception of the sixth and seventh commands. The

sixth (or 110) command is received as ’XXXXX110’ where the X’s are any

value. This command had the PIC send feedback to the TS-5500 contain-

ing positions of the camera servos so that the TS-5500 could quickly locate

125



where the camera was pointing. The position of the two camera servos were

reported using two bytes, the first byte was the pan servo and the second

byte corresponded to the tilt servo. Both position bytes ranged in value

from 0 to the number of possible steps for the brand of servo in question.

The reset command (or 111) is received similarly as ’XXXXX111’ where

the high bits can be any value. Upon receiving a reset, both camera po-

sition servos were reset to their origins. For a number of operations and

setting up experiments, it was convenient to have a built in reset command

for initial placement of the servos. Also, once reset, both camera servos

possessed known positions, providing a means to quickly locate the camera

in the event of a loss of power.

Once device selection had been decided, the next stage in development

was to establish commands issued to any given device. As previously men-

tioned, devices 101, 110 and 111 have no commands associated with them,

unlike the rest that all have commands based on function. The first device

in Table 12 was the dc motor. The associated commands for the dc motor

can be found in Table 13. The TS-5500 was able to issue any one of these

four commands to drive the dc motor in a forward or reverse direction in

addition to turning off or using the brake to halt the existing locomotion.

126



Bin. Dec. Shifted Dec. Description
00000 0 0 Stop
00001 1 8 Brake
00010 2 16 Forward
00011 3 24 Reverse

Table 13: Higher 5 bits, command for dc motor

Bin. Signed Dec. Dec. Shifted Dec. Description
10000 −16 16 128 Move servo by -16 steps
10001 −15 17 136 Move servo by -15 steps
10010 −14 18 144 Move servo by -14 steps
...

...
...

...
...

11110 −2 30 240 Move servo by -2 steps
11111 −1 31 248 Move servo by -1 step
00000 0 0 0 Move servo by +1 step
00001 1 1 8 Move servo by +2 steps
...

...
...

...
...

01111 15 15 120 Move servo by +16 steps

Table 14: Higher 5 bits, command for camera servos

Next, a separate set of commands were included for the position control

servos associated with the camera. Both the pan and tilt servo motors used

the same set of control commands that can be found in Table 14. The ta-

ble lists a number of steps moved for each command, the actual step size

varied slightly for each brand of motor but on average was approximately

0.8 degrees per step. The camera servo motors were free to move anywhere

within their range. To prevent exceeding the range of a servo motor, protec-

tion software was written in the firmware to avoid moving to unattainable

positions potentially burning out the motors or wrecking the gears.

127



Bin. Dec. Shifted Dec. Description
00000 0 0 Open grip
00001 1 8 Close grip
00010 2 16 Future expansion
...

...
...

...
11111 31 248 Future expansion

Table 15: Higher 5 bits, command for line grip servos

The final control commands were issued to the servo motors belonging to

the line grip. To simplify matters, two commands were used for running the

line grip, an open and a close command. These were intended for devices

3 and 4, implying that both parts of the line grip were controlled separately.

Table 15 shows the commands used and room available for expansion to

allow for various positioning of the line grip. This leaves a total of thirty

additional positions available for each of the line crawling grips for future

expansion. At the time of writing this report, the first two were all that was

needed, allowing the grips to open and close.

This section has established the protocol that was used to communicate

between the PIC and the TS-5500. All of the motors were easily managed

using this standard and room was still available for expansion.

128



3.8 Locomotion and Position Control Motors

Description of the different types of motors used to power the line crawling

robot were split into two parts, locomotion drive and position control. The

motors went through several revisions throughout the evolution of the robot

design based on the changing demands placed upon them. The locomotion

drive will be discussed first, including the design requirements, alternative

motors explored throughout the project and the final motor selection. Next,

the position control motors will be discussed, the various requirements for

each will be included along with a discussion of performance and alterna-

tives where applicable.

3.8.1 Locomotion Drive

The starting point for motorizing the line crawling robot was to include

a locomotion drive. The first drive that was integrated into the line grip

was a standard dc motor without a gearhead. This was effective for the

initial design with no payload, however the speed was too high and the

torque was too low for satisfactory control and pushing any sort of moderate

weight. This forced a revision into a second generation of motor drive with

the introduction of a payload.

129



Increasing the weight due to additional control boards, power supplies

and wireless communication devices required a stronger motor drive to meet

the demands placed upon the line crawler. When specifying the new loco-

motion drive the considerations included slower rated output shaft speeds,

higher torque and the introduction of a gear-head motor. The second gen-

eration, Sanyo GM-14 gear motor (gear ratio of 297.1:1) can be seen in

Fig. 3.31. Unfortunately, shortly after the modifications were made to mount

Figure 3.31: Second generation, Sanyo locomotion drive installed

the Sanyo motor on the line grip, it was discovered that increased payloads

were needed and the torque was insufficient to drive the line crawler once

again. This was as a result of two factors, newly added weight in the pay-

load that was not compensated for in the original torque calculations, and

the efficiency lost in the gear train weakened the output strength. Both of

130



Gear Ratio Gearbox Efficiency

6 : 1 81%
30 : 1 73%
75 : 1 66%
100 : 1 66%
180 : 1 59%
300 : 1 59%
500 : 1 59%
800 : 1 53%
1000 : 1 53%
3000 : 1 48%

Table 16: Gearbox efficiency vs gear ratio

these factors were corrected and compensated for in the third revision of

the locomotion drive. The efficiency of the gearhead was estimated from

Table 16 [9].

The latest revision of the locomotion drive was based on the discussion

in Sec. 2.2.1. To provide a more robust locomotion solution, the variables

that were revised included the angle of inclination of the sky wire as well

as the coefficient of friction. The new estimates were strengthened to allow

for the possibility of the addition of a greater payload for the line crawler

in future revisions. The original estimate for θ, (the angle of inclination)

was 15 degrees, this was upgraded to 45 degrees to include steeper inclines

as there were no standards provided from Manitoba Hydro with regards

to the angle of inclination of sky wire. The coefficient of friction, μ was

originally selected at 0.4 (from a range of 0 - 1), which was based on the

131



early revisions of the line crawling robot. Rather than risking slippage on the

skywire, the revised estimate was increased to 0.9 as the rubber-lined wheels

provided extra traction, increasing the friction to get underway. The value of

acceleration due to gravity, a was -9.8m/s2, and the estimated weight of two

completed robots was 3.6kg. With these values established, the equations

presented in Sec. 2.2.1 were used to generate a minimum set of requirements

for the locomotion drive.

The value for Fw using Eq. 2.5 gave the force of the weight causing the

line crawler to slip backwards on an incline at 24.95kg ·m/s2. The frictional

force, Ff , provided in Eq. 2.4 yielded a value of 22.45kg ·m/s2. The total

applied force, Fapp was the addition of the two, 47.4kg · m/s2. Next, the

power (see Eq. 2.6) and angular velocity (see Eq. 2.7) were derived to pro-

vide a better picture of motor operation. The radius, r was a known quantity

at 6mm for the interior of the wheels including the rubber that came into

contact with the skywire. The remainder of the variables in these two equa-

tions were unknowns. One of the design decisions made for the line crawler

was to keep the velocity low since many problems were avoided as a re-

sult, including smashing into other line crawlers and obstacles or moving

too quickly in critical situations such as acquiring images. An angular ve-

132



locity of 2π radians/s was specified. This resulted in a velocity of 3.77cm/s.

After substituting this value into Eq. 2.6, the resulting power requirement

was 1.787 Watts. Using the value for power in Eq. 2.8, the torque neces-

sary to drive the line crawler up 45 degree inclines was 0.28441N ·m. As

most of the motor suppliers were from US origin, the value was converted

to imperial units, resulting in 40.27oz-in of required torque.

Calculated values and decisions from the model provided in Sec. 2.2.1

were used to specify commercially available options. In addition to the

torque and speed, the operating voltage needed to be selected. The previous

motors operated from the original five volt power supply used for the con-

trollers, however since the new torque requirements were increased, fewer

low power motors were available to meet those specification. Common op-

erating ranges for commercially available dc motors were either 6 or 12

volts. Since the line crawler was operating off regulated battery power, the

lower of the two voltages was more appealing. Besides these three parame-

ters, there were spacing constraints to consider as well. Since the line grip

had already been established at this point, the most favourable option was

one that did not require a complete overhaul of the grip design. The spacing

available can be seen in Fig. 3.32 which represents a top view of the line

133



grip. The dimensions available for the new dc motor were tight considering

Figure 3.32: Top view of line grip space allocation for dc motor

the increased requirements. In Fig. 3.32 the important dimensions to con-

sider were the total width of the rear compartment (approximately 4.7cm) as

well as the spacing for a gear head to fit should it have hung below the upper

grip (2cm in width) and finally the height that the drive shaft interfaced with

the power train needed to be considered (approximately 1cm from the base

of the motor was the desired value). Too much of a change in the drive shaft

location would have warranted a re-design of the line grip, so it was one of

the more important constraints when specifying a replacement locomotion

134



drive. The remaining dimensions of the motor and its weight (maximum

allowable weight was 300 grams) were easier to accommodate.

Three alternatives for a locomotion drive were considered, a parallel

shaft configuration, an offset shaft, and a motor with less than the required

torque but with an added external gear train to reduce the speed and increase

the torque. Each of these possibilities were considered in turn and based on

utility, how close they matched our requirements and availability

The first configuration considered was the parallel drive shaft. This type

of dc motor consisted of a gearhead with an output shaft parallel to the drive

shaft, often making for a long slim construction dependent upon the type of

gearing configuration. The most important attributes specified for this op-

tion included speed, power and torque. The spacing was not quite as much

of a concern since parallel shaft motor shapes were well suited to the line

grip. A motor available from MicroMo Electronics [37] was discovered that

was close to meeting all of the specifications for performance and size. This

was a two part construction, with a dc micromotor, the ’Series 2230 006S’,

and a gear head, the ’38/3’. The micromotor weighed 50 grams and was

rated with 82% efficiency. The maximum output torque was 2.5mNm and

the output shaft speed was 8,000rpm. In addition to the motor ratings, the

135



shaft was 1.1cm from the base of the motor making it nearly identical in po-

sition to the desired height of 1cm. Adding the ’38/3’ gearhead to the motor

changed the motor dimensions and capabilities. The overall length of the

motor and the gearhead was 5.84cm which was greater than the maximum

width in the upper compartment. However, the advantages associated with

adding the gearhead made it far more appealing as the maximum output

torque increased to 1200mNm, or 169oz-in. The efficiency of the gear train

was rated at approximately 53% with a reduction ratio of 689:1 and the addi-

tional weight was 92 grams making for a total weight increase to 142 grams.

Adding the gearhead reduced the speed to approximately 11rpm which sat-

isfied the original maximum allowable speed constraint. The only potential

problem introduced with the gearhead was the shaft height and bore size.

The new shaft height with the gearhead was 1.2cm, warranting more work

to lower the dc motor mounting shelf and the new bore size of 1/4” required

ordering new driver gears. Taking into account the loss of performance due

to the motor efficiency and the gearhead, the output torque was estimated at

approximately 73.45oz-in at the output shaft which was nearly double the

amount required to drive twice the weight of a single line crawler. This ex-

tra torque allowance provided some additional room to move on the motor

136



efficiency curve and still ensure satisfactory operation.

The second configuration for a locomotion drive was the offset shaft vari-

ety. For this type of motor, rather than having the main drive shaft operating

in parallel with the motor, an offset due to the introduction of a gearhead

relocates the output drive shaft away from the motor drive shaft. This posed

a new mounting problem since the gearbox could be quite large and the dc

motor quite small. As a result, the centre of mass and how the motor at-

tached to the grip would likely require mounting blocks to secure it. This

motor was selected based on the same requirements as the previous par-

allel shaft motor with the only exception related to spacing. A promising

solution from Merkle-Korff Industries [34] was discovered, the size was ap-

pealing as it would fit into the compartment space available with only minor

modifications. The desired model was the D47 Plastic Series DC gear mo-

tor. There were both 6 and 12V varieties available with torque ratings equal

to 40in-lbs, corresponding to 640oz-in and rotational speeds of 25rpm. The

efficiency and motor characteristics were not provided on the suppliers web-

site and were estimated based on experience with other dc motors of similar

size and parameters. Similar to the parallel option already discussed, a 0.25”

shaft was suitable as it was a common bore size. Unfortunately, the weight

137



of the motor was not provided in the datasheets or on the website so it was

estimated based on dimensions and materials to equal approximately the

same weight as the parallel configuration.

The final alternative considered was an under-powered motor, strength-

ened with a gear train to reduce speed and increase torque. The extra loss

of efficiency from adding a small gear ratio after the motor would be neg-

ligible. The most significant motor characteristics for this option was the

torque, which could be approximately cut in half and the speed, being in-

versely proportional was approximately doubled. This resulted in finding

motors that provided around 25oz-in of torque and speeds of 120rpm ac-

ceptable. The motor that most closely met the needs for this alternative was

from Micro Drives [35], one of their dc gearmotor series, model number

MD3636 + MD35C. Corresponding to the dc motor and the gear head pair.

The dc motor model was the MD3636 A006V, the 6V version of this mo-

tor. The motor efficiency was rated at 70% and the gearhead selected had

an efficiency rating of 59%. Together they provided an overall efficiency of

41.3%. The output torque was rated to 588mNm or 83.3245oz-in. Includ-

ing the loss due to efficiency this dropped to 34.413oz-in at the output shaft,

leaving some room to operate below max efficiency. An additional gear

138



ratio of 3:1 in the power train brought the overall output torque up to an

acceptable level of 103.239oz-in. The overall weight of the motor/gearhead

and extra gears was not provided but was estimated to be less than the maxi-

mum acceptable 300 gram limit. The output shaft speed was 24rpm, and the

overall length of the motor was 52.5mm, excluding the output shaft. Similar

to the other two alternatives, some modifications would need to be made to

the upper grip to house this new motor.

Each option was considered before deciding on the parallel shaft geared-

motor configuration. This selection was the simplest to install as it was clos-

est in fitting the available dimensions. The output characteristics exceeded

the required specifications in a smaller package, weighing less than half the

maximum amount. The only change in gearing was a replacement driver

gear with a bore size to match the new shaft dimension of 0.25”. The other

motors were not without merit, but the offset shaft motor turned out to be

unavailable in small quantities and since it would not have been favourable

to purchase hundreds, this choice was discarded. The final option with the

reduced performance requirements was also discarded due to the need of

additional gearing hardware and the space requirements meant too many

changes were needed to support this alternative.

139



When mounting the new drive, a similar form from an unfurled hose

clamp was used to secure it to the mounting tray. The tray had to be low-

ered by 0.2cm in order for the new shaft to mate properly with the gear

train. This was achieved through drilling out the holes in the chassis and us-

ing nuts and lock washers for the screws to drop the platform 0.2cm below

the original value and then locking it into place with the new motor secured

as part of the drive train (see Fig. 3.33). One additional point to note re-

Figure 3.33: The new locomotion drive secured in place

garding the new motor install was that the problem with the overall length

was solved by cutting space in the back of the chassis to allow the motor to

protrude behind the line grip. This did not interfere with normal operation,

completing integration of a new drive into the line grip.

140



3.8.2 Position Control Motors

To control position of the joints for the line grip as well as two degrees

of freedom for the camera, position control servo motors were employed.

Three different brands of servo motors were used with slightly different

specifications for each. They included, Futaba servos for camera position-

ing, Hobbico servos for camera positioning and lower line grip operation

and finally Hi-Tec servos for upper line grip operation. A brief discussion

of position servos followed by each particular brand used and its function

follows.

Servos are often small dc motors providing high torque at their output

shaft due to large internal gear ratios [9] (see Fig. 3.34). They commonly

have three wires, one for power, one for ground and one for a control signal.

With power and ground connected and a signal present on the control wire,

the intended position of the output shaft will be maintained. The refresh rate

for most servo motors ranges from approximately 12-26ms. Changes in the

signal on the control wire result in changes of the position of the output

shaft. Length of the signal present on the control wire dictates the desired

position of the output shaft. Each type of servo motor has its own range for

141



Figure 3.34: Hi-Tec servo motor

acceptable control signal lengths. Most servos are limited to 180 degrees of

possible movement [9].

The first type of servo was used for the camera pan operation, this was a

Futaba S3003 standard servo. The requirements for the panning servo were

very relaxed as the weight of the camera and the tilt servo was estimated

at 100 grams. Converting grams to ounces yielded 3.53oz for the camera

and tilt servo. As a result, the specifications for this servo exceeded the

requirements. The Futaba servo was rated to 44oz-in, more than ten times

what was required and only weighed around 37 grams, it was overqualified

for the desired task. The main reason for selecting this servo was that it had

142



the least expensive price tag in that range of performance.

The second type of servo was used for tilting the camera as well as op-

erating the lower grip motion, this was a Hobbico CS-35 model servo. For

the first task of tilting the camera, this had even less stringent requirements

than the Futaba servo used for panning the camera as it was only required

to support its own weight and that of the camera (less than 100 grams). The

range of motion required for the tilting servo was 90 degrees due to the

shape of the camera. The output torque at the shaft was rated for 54oz-in,

and the overall weight of the servo was 27 grams, making it an even lighter

alternative than the Futaba servo. The reason that this servo was not used

for panning as well was due to the cost as it was almost double the price of

the Futaba standard servo. The second task of operating the lower line grip

required slightly more torque however still nowhere near the output torque

provided by the Hobbico motor. With a weight of approximately 150 grams,

the Hobbico servo provided over three times the necessary torque to drive

the lower grip up and down over a 90 degree range.

The third and final type of servo was used for operating the upper line

grip motion, this was accomplished with the Hi-Tec HSR-5995TG. Based

on the design of the line crawling robot, the upper grip servo motor was

143



responsible for supporting the bulk of the weight. As a result, the servo

selected for the task had much higher ratings. The estimated weight for a

single line crawler was approximately 1.6kg. The maximum output torque

was rated at 417oz-in. Working backwards, this implied that it could support

3.6kg, slightly more than double the weight of a line crawler. In addition

to the much improved output torque, the gears inside were all constructed

from titanium alloys, providing a longer lifetime compared to the plastic

gears found in the other servo motors. The overall weight of the Hi-Tec

servo was 62 grams, adding very little to the line crawler and providing a

strong workhorse for upper grip support during operation. This servo was

selected based on its performance. At the time the line crawler was being

built it had the highest output torque rating available, making it the most

suitable selection (see Fig. 3.34).

This concludes the discussion of motors selected to control position of

the line grip, the camera and the locomotion drive. After selecting and in-

tegrating these five motors, various positions were obtainable for both the

grip and the camera and the locomotion drive was strong enough to scale

inclines of 45 degrees providing motion in either a forward or reverse direc-

tion at acceptable speeds for safe operation. Further details on motor control

144



are provided in Sec. 4.4.

3.9 Power Supply Design

Another key part of the design of the line crawling robot was the power

supply. A couple of different regulator designs were explored as well as the

idea of multiple supplies to improve the range of the robot. There were a

number of considerations including estimated load demands, various device

voltages, minimizing space, and weight limitations.

Two types of power regulators were investigated to compare suitability

for the line crawler, linear and switching regulators. Linear regulators have

an advantage in the form of being simple in construction and operation, but

with the drawback of poor efficiency [16]. Often they consist of a single

regulator component. Additional stability capacitors and a heat sink may

be necessary depending upon the situation. For setups with large current

draws, heat sinks will almost always be required. This adds more weight,

takes up more space and in turn requires more power to haul around the

weight. The efficiency of linear regulators was the main disadvantage as

it is rarely very high. For the case of supplying power to the TS-5500 at

a nominal voltage of approximately 1 amp, the efficiency would be at best

145



around 30 to 40% [16]. Since the design was meant for a mobile robot with

a limited power source, this was a concern. The initial power supply during

experimental stages made use of a linear five volt regulator (a 7805 device)

including a heatsink. The average lifetime of the supply when using 8 ’AA’

batteries (rated at 2200mAh each) was approximately two hours. This was

sufficient for running shorter experiments, but posed a problem for extended

operation.

The alternative approach investigated used a switching regulator. The

main advantage of switching regulators over linear ones is a much greater

efficiency in power transfer, data sheets often claim efficiencies of 80% or

higher [40]. The reason for such improved performance is related to the

output duty-cycle, for a more in depth discussion, see Sec. 2.2.2. This large

improvement in efficiency is appealing for an autonomous design with lim-

ited power available. Switching regulators do come with disadvantages as a

price for the improved efficiency. The circuitry required is commonly more

complicated and heavier than that of linear regulators [16]. Also, switching

regulators are inherently noisy and can cause electro-magnetic interference

(EMI) problems [16]. To help limit the EMI problem, switching circuit de-

signs need to be kept as compact as possible [16, 40]. There are several

146



types of common switching regulators, the Buck, Flyback (or Buck-Boost),

and variable switching regulators. The line crawling robot needed a regu-

lated five volt supply and the onboard battery packs provided 9.6 volts dc.

Since the regulator needed to step down from a higher input voltage to the

regulated supply voltage, the Buck configuration was most suited for the

task [16].

The schematic of a buck regulator is shown in Fig. 2.4. The switching

controller is provided in a complete package from manufacturers resulting

in a need for only a few discrete components to complete the design. Two

capacitors, a diode and an inductor were necessary. The component values

and the reason for selection follows. The input capacitor, C1 was 100μF

electrolytic capacitor rated for 35 volts, selected with over three times the

maximum input voltage rating and at a value that provided input stability

to the regulator [40]. Diode, D1 was a 3A Schottky diode (1N5820), se-

lected for quick response to provide a return path for current stored in the

inductor and rated as high as the maximum output current [40]. The output

capacitor, C2 was 1000μF , 25 volt electrolytic capacitor, selected to filter

the output smoothly and the voltage rating provided an improved equivalent

series resistance (ESR) to help reduce the output ripple [40] The inductor

147



L1 was selected as 68μH rated for 3A, the value was kept low to operate

in constant current mode with a current rating able to support the maximum

output from the regulator [40]. The switching controller selected was a Na-

tional Semiconductor LM2576, TO-220-5 package with a 3A rating. The

frequency of the switching regulator was internally fixed at 52kHz. This de-

sign provided enough current for the heavier processing requirements of the

TS-5500 during learning, image processing and more complicated sensing

routines. In order to reduce the chance of any ground loops, EMI, or wiring

inductance, the leads of the devices and connections were cut as short as

possible. When laying out the devices for construction, this resulted in a

compact perf-board size of 4cm x 3.5cm. The finished product can be seen

in Fig. 3.35. From examining Fig. 3.35, there are only four visible compo-

Figure 3.35: Completed buck regulator

148



nents because the catch diode was installed underneath the board.

With the regulator design complete, the next step was integration into

the system, replacing the preliminary linear regulator. The linear regulator

provided approximately 2 hours of operation for the line crawler. Changing

to the switching regulator doubled the life of the batteries, yielding over 4

hours of continuous operation. When the newest locomotion drive from Mi-

croMo was installed into the line crawler, the power needs of the robot were

addressed again. The TS-5500 was known to draw approximately 1 amp

of current during regular operation and the PIC control board current draw

was rated at 3mA, almost negligible in comparison. The motors and sen-

sors were rated to collectively draw about 800mA of current, to account for

any fluctuations or operation under extreme conditions, an estimated value

of 1 amp was chosen. The devices were separated as follows, the TS-5500

was powered from one regulator and the PIC, the RS232 transceiver, the

h-bridge chip, the motors and sensors were powered from a second regula-

tor. The pros of having separate power sources and using the extra weight

to help balance the payload outweighed the cons associated with additional

weight. Rather than creating a new design and since the power requirements

were almost identical, the existing buck regulator was duplicated and an ex-

149



tra battery pack was added to the robot (see Fig. 3.36). This helped boost the

Figure 3.36: Two buck regulators onboard the line crawler

life of the line crawler to a minimum of 4 hours regardless of the amount of

onboard processing. There was one exception to the use of regulated volt-

age inputs and that was for the locomotion drive (as discussed already in

Sec. 3.8.1). Both the intelligent h-bridge IC and the dc motor were driven

from the raw dc voltage of the battery pack (9.6 volts). All other remaining

devices were powered by the five volt buck regulator.

3.9.1 Battery Selection

The next step was to select batteries to power the line crawling robot. This

section includes a brief look at the power requirements, limitations, the

products available and the final decision for power solution.

150



As mentioned previously in Sec. 3.9, eight ’AA’ batteries were used to

power the line crawler. The voltage regulators provided a five volt out-

put from a step-down voltage of 9.6 volts (8’AA’ batteries) and the power

requirements were estimated at approximately 1 amp during heavy opera-

tion. The restrictions applied when specifying a set of batteries consisted

of space constraints, weight allowance, price, availability, product lifetime

and charge density. With the intent of providing a degree of autonomy to

the line crawler and to reduce cost and waste, rechargeable batteries were

the only variety considered.

The four types of batteries examined included lead-acid, nickel-cadmium

(Ni-Cad), nickel-metal-hydride (NiMH) and lithium-ion (LI). The lead-acid

batteries proved to be too bulky for the space and weight constraints. The

remaining three options were available in suitable sizes, and weight. At the

time of specification, the price and availability of the LI cells were more

expensive and harder to acquire, leaving only two types of batteries.

The nickel-based cells maintained popularity for consumer electronics,

making them widely available and relatively inexpensive. The Ni-Cad bat-

teries were favourable as they provided the cheapest alternative with an es-

timate life cycle of up to 1000 charges [8]. However, the maximum charge

151



density available during the specification was 1000mAh, implying that the

batteries would have supplied enough power for 1 hour of operation. Also,

the Ni-Cad cells were susceptible to a memory − effect more predom-

inantly than the NiMH batteries [8]. This referred to the capacity of the

battery being reduced over time due to development of crystals on the cell

plates [8]. In order to reduce the likelihood of developing this problem, reg-

ular, complete discharge of the Ni-Cad cells was needed [8]. A complete

discharge of battery power would have caused problems for the line crawler

since the position control motors supporting the line grip would let go in

unpowered conditions, potentially causing disaster. The NiMH cells offered

much greater charge density, rated up to 2500mAh, but with a reduced life

cycle, estimated around 300 charges, and a more rapid rate of discharge

when unused [8]. The availability and cost of both nickel-based batter-

ies were very similar. As a result, taking into account the trade-offs and

the fact that the Ni-Cad batteries contained much higher concentrations of

toxic metals, the type of cells chosen were NiMH. The extra charge-density,

lower susceptibility to the memory−effect and the more environmentally-

friendly construction were the highlights considering the remaining system

requirements were met by both varieties.

152



3.10 Sensor Configuration

The sensor configuration of the line crawling robot provided a means for

interaction with its environment in both a reactive and proactive manner.

There were a few different sensors employed by the robot, including con-

tact switches, infrared (IR) sensors and a camera system (see Sec. 3.4 for

more information regarding the camera). A discussion of the sensors, their

placement, and use are included in this section.

The first set of sensors added to the robot were contact switches. As

their name implies, they were intended to detect contact with external ob-

jects during locomotion. Four sensors were placed around the line grip to

allow for detection of any obstacle near the work envelope. A 3 amp lever

micro-switch was used for all of the contact sensors (see Fig. 3.37). The

lever on the switches covered little surface area and was not easily triggered

by obstacles so custom extensions were fabricated and fitted to each. The

extensions were created in pairs, two for the upper grip and two for the

lower grip. Each of the extensions was formed to help broaden the contact

area for triggering the switch upon contact with the types of obstacles en-

countered on the skywire. The upper grip switches were meant to detect

153



Figure 3.37: The microswitch used for contact sensors

line clamps or obstacles that extended above the wire whilst the lower grip

switches were intended to trigger when vibration dampers or obstructions

hanging below the skywire were encountered. A conceptual drawing of the

first revision of the upper and lower extensions for the contact switches can

be seen in Fig. 3.38. The sensors were placed in pairs on either side of the

upper and lower grip to cover both directions of travel. The micro-switch

extensions were cut and formed from a standard three inch hose clamp, sim-

ilar to the material used to secure the locomotion drive. The shape for the

upper grip extensions were formed pointing out and downward from the up-

per line grip. The intention was to have contact with the line clamp or any

154



Figure 3.38: First revision of extensions for contact switches

obstacle extending above the skywire hit the extension first, triggering the

micro-switch. The switch was connected to the upper line grip with high

strength foam tape and centered over the direction of travel to ensure the

best possible angle of contact with any obstacles in its path. The lower grip

contact switches were placed upside down on the lower chassis so that the

extensions would push up and trigger the micro-switches during encounters

with the vibration damper or obstacles encountered beneath the sky wire.

The lower extensions were similarly formed outward and away from the

contact switch to fall into the path of obstacles hanging below the skywire.

After some preliminary testing both the upper and lower switch extensions

were revised to provide a more sensitive contact during obstacle encoun-

ters. The revised components are shown in Fig. 3.39. The upper extensions

were lengthened and added increased flexibility to allow for a more sensi-

tive touch as opposed to the more rigid original design. The lower exten-

155



Figure 3.39: Second revision of extensions for contact switches

sions were inverted and lowered to allow contact from beneath to trigger the

switches more readily as it was discovered during verification that facing the

other way was difficult to trigger the switch. Both the upper and lower ex-

tensions remained centred over the skywire for their respective direction of

travel to provide immediate notice if and when obstacles were encountered.

Next, infrared sensors were added to the sensory plan as part of the line

grip control layer. The main function was to provide a means of feedback

regarding position of the upper and lower line grip assemblies with respect

to one another. Although the position servos adjusted the shape of the line

grip to allow it passage around obstacles on the skywire, the possibility

of attempting to close over an obstacle or blockage would not have been

registered except internally to the servo electronics. A quick verification of

156



line grip position using the infrared sensors provided a means of discovering

whether the grip had closed properly or not.

The Fairchild Semiconductor, QRD1114 IR Reflective sensors came in

pairs, both the upper and lower grip were outfitted with an IR sensor. The

location was chosen at the front of the upper and lower chassis modules

on the outside, with the transmitter receiver pair facing down on the upper

chassis and up on the lower chassis. The mounting consisted of 2-sided

foam tape to mount the sensors to the line crawler with additional mounting

tape wrapped around the outside to protect and secure them from damage

due to external forces.

The IR sensors were intended to be used as a feedback tool during oper-

ations that required the line grip to open and close. When the grip opened,

the IR beam from the two transmitters would cease to point at each other,

registering increased sensor values, indicating that the grip was open. Con-

versely, when the line grip closes, the IR beams pointed at each other again,

returning the sensor value to its original intensity, indicating a successful

grip closure. In the event that an obstacle prevented the line grip from clos-

ing properly, the IR sensors would indicate a problem when polled and pro-

vide feedback that re-alignment was needed to solve the problem. The lo-

157



cation of the two IR sensors can be seen in Fig. 3.40, the light emitted from

the transmitters had infrared wave-lengths which are normally invisible to

the human eye, but the CCD (charge-coupled-device) of a digital camera

was able to sense IR and displayed it as a light purple or violet colour. For

more details about the IR sensors, see Sec. 4.5.1

(a) Upper grip IR sensor (b) Lower grip IR sensor

Figure 3.40: Infrared sensors, position and alignment

The final sensory input used by the line crawling robot was the cam-

era. A detailed discussion of the camera selection and implementation can

be found in Sec. 3.4. From a sensory perspective, the camera was used to

aim at and acquire images of specified targets. In addition to these devices,

proximity sensors were investigated as a means to reduce potential vibration

damage to the robot by sensing approaching obstacles and taking action be-

fore the contact switches triggered. Unfortunately, at the time of writing

158



this report, the proximity sensors had not yet been implemented. This com-

pletes the discussion of the sensory equipment configuration on the ALiCE

II robot.

3.11 Reinforcement Learning and the Target Tracking Problem

The reinforcement learning process discussed in Sec. 2.3 contained three

main parts, states, actions and rewards. This section of the report discusses

the target tracking problem, and shows how the three parts were developed

around the problem, algorithm selection including a section discussing the

rough coverage modified versions of each and any additional changes nec-

essary for their operation. Followed by a brief discussion of the classical

target tracking algorithm that was used as a baseline for comparison with

the learning methods.

3.11.1 The Target Tracking Problem

The starting point for developing a RL system was the problem definition.

The goal of the target tracking system was to lock onto a target and track it

during movement, keeping it centered in the field of view for the camera at

all possible times until the target was no longer needed. This translated into

159



a useful behaviour for the ALiCE II platform, being able to track objects

of interest to gather meaningful images from several vantage points during

travel. The stages in developing the reinforcement learning environment

included defining the possible states, outlining actions to be taken in any

given state and generating reward values.

States were based on two components, image size and how it was sep-

arated into sections. To keep the processing requirements as low as possi-

ble, the initial image size was selected at 160x120 pixels, then converted to

greyscale, and further decimated by a factor of 4, yielding a 40x30 greyscale

pixel image. During tracking, a target could be located anywhere in the field

of view consisting of the 40x30 image, subsections were created to provide

further knowledge where the target was in relation to the centre. Images

were divided up into 9 parts, as seen in Fig. 3.41 with each state labeled S0

through S9 consisting of a block of pixels. The goal state, S4 was the target

as it centred the camera’s field of view, providing the best possible images.

Each state had a corresponding set of actions for re-positioning the camera

as needed to support the goal of centring the camera view on the target.

Actions were selected based on the location of the target with respect to

the field of view. The camera was able to distinguish between nine different

160



Figure 3.41: System states

regions (states) shown in Fig. 3.41. In order to move toward the goal state,

actions were defined that provided a number of steps to move the servos in

the direction of the target. The states belonging to the 4-neighbour configu-

ration only required a single direction of travel while the remaining 4 states

from the 8-neighbourhood required both vertical and horizontal movement.

The directions of movement for any given state were setup with h repre-

senting the horizontal or panning motion and v representing the vertical or

tilting motion (see Fig. 3.42). These divisions in Fig. 3.42 coincided with the

states from Fig. 3.41. For example, this implied that for state 0, the motors

activated will be both the horizontal and vertical servos. Positive numbers

indicate that the direction of travel was made with positive step increments

161



Figure 3.42: Directions taken pertaining to current state

toward the goal and negative numbers indicate the the action was provided

with negative step increments to achieve the goal. There were a total of

twelve possible actions for any given state. Limiting the amount of avail-

able actions was done to restrict the size of the RL problem and demands

placed on the TS-5500 during the learning process. The twelve actions con-

sisted of step increments ranging from 0 to +/-11. Each step increment or

decrement to the servos provided a rotation of approximately 0.8 degrees in

the selected direction with an accuracy of +/-0.25%. Once the actions had

been established, it was important to devise a means of rating performance

of the actions, which leads into a discussion of the rewards.

The reward function varied from 0 to 1, with 0 representing the worst

162



case and 1 indicating the goal state. To create a range of rewards from

any position in the camera view, a Euclidian distance metric was used to

measure from the target (x,y) to the centre of the field of view (0,0). Since

the centre was at the origin, the distance calculation simplified to Eq. 3.1.

distance =
√

x2 + y2 (3.1)

The reward function represented in Eq. 3.2 shows how the current distance

divided by the maximum distance subtracted from 1 provided a unique nor-

malized measure corresponding to anywhere in the camera field of view.

reward = 1− distance

maxdistance
(3.2)

The maximum distance is the worst case, which will yield a reward of zero

and for anything less than the maximum distance the reward becomes pro-

gressively better until it reaches one. This occured when the current loca-

tion coincided with the origin of the image (0,0). With the RL framework

in place, the next step was to select the algorithms.

163



3.11.2 Algorithm Selection

The next important stage in developing the RL solution for target track-

ing was selecting algorithms suited for the task. Constraints relating to the

portable nature of the ALiCE II platform were considered. First, processing

power needed to be minimized as the more computations required, the less

lifetime the batteries would provide. Also, for a real-time problem where ac-

tions needed to be resolved and processed quickly, faster algorithms would

provide more favourable results. A number of different methods were con-

sidered when selecting the most suitable algorithms.

The temporal difference (TD) algorithms were most suited to the require-

ments as they met both criteria. Using single-step TD methods that took

advantage of bootstrapping, less processing power was required and learn-

ing with bootstrapping implied that each step revised the algorithms per-

ception of its environment during regular operation [67]. Alternate meth-

ods were examined, including Monte Carlo (MC) methods, and eligibility

traces which allowed TD methods to look further into the future similar to

MC methods. MC methods did not fit as well for the RL problem proposed

here as they were non-bootstrapping methods, implying that they did not

164



revise their view of the environment until after an episode, making it less

appealing for real-time learning in a dynamic environment. Also, gradient

descent methods and a planning algorithm were considered but both of these

cases exhibited heavier computational requirements, disqualifying them as

well. The end result favoured the TD methods, and several algorithms were

selected for comparison, including the actor-critic method, Q-learning and

sarsa.

3.11.3 Rough Coverage Modification

A variant of the RL algorithms was also included in the system architec-

ture. The algorithms were modified to add approximation-space based re-

finement of the RL process. Specifically, the step size parameter which

adjusted the learning rate of the algorithms was adjusted during the learn-

ing process. This was achieved through gathering data from each step in an

episode and storing it in an ethogram-like table [71]. At a given point in

any episode (usually at the end), the stored data was divided up into blocks

based on behaviours. Comparisons between current behaviour and previ-

ously known acceptable behaviour provided the degree of rough coverage

present in each block. Averaging the rough coverage values from all blocks

165



provided a feedback metric for performance, indicating how well the current

set of behaviours were performing compared to previously known accept-

able behaviour. The value of the rough coverage, or ν was then subtracted

from 1 and multiplied by the learning rate, α, providing an adaptive learning

rate that adjusted to any given performance. In the event that the system was

performing well and the rough coverage value was high, then the adjusted

value of α would become small with the intent of avoiding overshooting

the desired behaviour. Should performance have changed for the worse, the

rough coverage metric value would be smaller, resulting in a larger value for

α, increasing the step size in the hopes of moving toward more acceptable

behaviour.

This modification was made to all three algorithms and then compared

to the classical versions. The revised formal algorithms including rough

feedback are shown in Alg. 4, Alg. 5, and Alg. 6 demonstrating the changes

made.

The differences of the modified versions of the RL algorithms began with

initializing the value for the average rough coverage, ν, starting at zero.

Also, the data table (ethogram) was cleared at the beginning of each episode,

to allow for gathering current behaviour. The episode lengths were variable,

166



Algorithm 4: The Q-Learning Method With Rough Feedback
Input : States, s ∈ S, Actions a ∈ A(s), Initialize Q(s,a), ν̄, α, γ, π to an arbitrary

policy (non-greedy);
Output: Optimal action value Q(s,a) for each state-action pair;
while True do

for (i = 0; i ≤ #ofepisodes; i + +) do
Initialize s and data table;
Choose a from s, using policy derived from Q;
for Repeat(for each step of episode): do

Take action a; observe reward, r, and next state, s′;
Record state, action, and associated reward in data table;
Q(s,a)←− Q(s,a) + (1− ν)α[r + γmaxaQ(s′, a′)−Q(s, a)];
s←− s’; a←− a’;
until s is terminal;

end
Generate ν̄ from results recorded in data table for current episode;
Update new value of ν̄;
Clear data table;

end
end

167



Algorithm 5: The Actor-Critic Method With Rough Feedback
Input : States s ∈ S, Actions a ∈ A(s), Initialize α, γ, ν̄.
Output: Policy π(s, a) responsible for selecting action a in state s.
for (all s ∈ S, a ∈ A(s)) do

p(s, a)←− 0;
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

end
while True do

Initialize s, data table;
for Repeat (for each step of episode) do

Choose a from s using π(s, a);
Take action a, observe r, s′;
Record state, action and associated reward in data table;
δ = r + γV (s′)− V (s);
V (s)←− V (s) + (1− ν̄)α(r + γV (s′)− V (s));
p(s, a)←− p(s, a) + βδ;
π(s, a)←− ep(s,a)

�|A(s)|
b=1 ep(s,b)

;

s←− s′;
end
Generate ν̄ from results recorded in data table for current episode;
Update new value of ν̄;
Clear data table;

end

168



Algorithm 6: The Sarsa Method With Rough Feedback
Input : States, s ∈ S, Actions a ∈ A(s), Initialize Q(s,a), α, γ, ν̄, π to an arbitrary

policy (non-greedy)
Output: Optimal action value Q(s,a) for each state-action pair
while True do

for (i = 0; i ≤ #ofepisodes; i + +) do
Initialize s and data table
Choose a from s, using policy derived from Q
Repeat(for each step of episode):
Take action a; observe reward, r, and next state, s′

Record state, action and associated reward in data table
Choose action a′ from state s′ using policy derived from Q
Q(s,a)←− Q(s,a) + (1− ν̄)α[r + γQ(s′, a′)−Q(s, a)]
s←− s’; a←− a’;
until s is terminal

end
Generate ν̄ from results recorded in data table for current episode
Update new value of ν̄
Clear data table

end

169



but averaged around 5000 steps each. In order to reduce the amount of

computation required for generating ν, the amount of steps included in the

data table was restricted to approximately 20% or 1000 steps out of each

episode. For the purpose of the work discussed in this report, the first 1000

steps in each episode were selected for processing.

Besides storing information in an ethogram at each step of an episode for

the first 1000 steps, additional work was required to generate the average

rough coverage value, ν. At the end of every episode, all of the processing

power required for generating the rough coverage values and then averaging

the results took place. As a result, slower performance was anticipated in a

somewhat cyclical fashion due to the nature of the timing for the computa-

tional requirements when compared to the standard RL algorithms.

3.11.4 Classical Target Tracking

The classical target tracking algorithm was employed to provide a basis for

comparison with the RL methods. Unlike the other algorithms, no learning

took place during the tracking process with this algorithm. As a result, there

were no rewards, and the states and actions differed. Instead of having states

relating to subsections of the image, each pixel was treated as a separate

170



state, implying that when the target was located at any given pixel, tracking

the centre of the field of view to that pixel was the goal. Rather than having

a range of actions available for movement, the tracking procedure moved to

the exact location of the target within the field of view. This corresponded

to a deterministic or greedy approach. The formal algorithm is shown as

Alg. 7

Algorithm 7: Classical Target Tracking
Input : States, s ∈ S, one state for each possible set of target coordinates;
Output: Deterministic Policy, π(s);
while True do

get current state; (coordinates of target)
pan←− target’s horizontal distance from centre of camera view;
tilt←− target’s vertical distance from centre of camera view;
move servos by (pan,tilt);

end

The author would like to extend his thanks to M. Borkowski for writing

the classical target tracking method code and its associated verification of

operation.

3.12 Robot Behaviour

The robot behaviour followed the main idea behind Brooks’ subsumption

model [5], having multiple goals within a hierarchy. The primary goal of

the line crawling robot was to acquire images of power line equipment, with

171



secondary goals relating to avoiding obstacles and survival. Although the

main purpose of the line crawler was to gather images of hydro equipment

with the intent of spotting potential faults, the secondary goals were equally

sensitive and on occasion more important. Survival of the robot became

most important in threatening conditions such as high wind or encountering

obstacles and would sub-sume control of the robot to circumvent the threat

before allowing any more pictures to be taken. Diagrams of the two layers

are quite similar to those shown in Sec. 2.6. The differences occur in the

arrangement of the hierarchy as well as some of the sensory devices. The

layer 0 control behaviour for robot survival can be seen in Fig. 3.43. This

Figure 3.43: Layer 0 control behaviour for robot survival

layer consists of low level control for the locomotion drive, the position ser-

vos and all of the low level sensors including the contact switches and the

infrared sensors on the line grip. A second layer, (layer 1) in the hierar-

172



chy introduced the camera and how it was able to sub-sume control of the

robot in situations when it found a target rich environment (see Fig. 3.44).

During occasions when targets were available for capturing images, the con-

Figure 3.44: Layer 1 control behaviour for acquiring images

trol layer allowed the camera to indicate that the motors should stop any

current action to allow images to be gathered. For almost all cases shutting

the locomotion drive off would not cause a threatening situation. Although

layer one is hierarchically above layer zero, all of the same information is

available to the controller. As a result, in the event of a hazardous situation,

all sensory information would be available to allow for the proper behaviour

173



to occur.

This concludes the outline of the basic behaviour for the line crawling

robot. The subsumption architecture was useful during development of the

system since as sensors and equipment was added, extra layers of control

could also be added to operate in conjunction with the new devices. How-

ever, control of the more detailed behaviour associatd with target tracking

and acquiring images was added separately through the use of a learning

agent as discussed in Sec’s. 5.3.1, 5.3.2, 5.3.3, 3.11.3, and 2.3.

174



4 System Verification

This section covers a description of the implementation details of the line

crawling robot software and hardware-related systems. First, class diagrams

outlining the software system will be presented, followed by implementa-

tion discussions for each relative section. Then a discussion of the testing

interface followed by verification and optimization tasks will round out this

section of the report.

4.1 System Overview

For the software systems onboard the TS-5500, the chosen implementation

platform was C++ and the development environment was gcc, version 3.2.2

20030222, provided with Linux [29]. C++ was selected as the development

language due to its speed, portability and familiarity. In addition, code writ-

ten for the PIC was implemented using CC5X, a free C-compiler tailored

specifically for PIC processors with reduced instructions and limited mem-

ory [24]. The resulting object code from CC5X was compatible with the

Microchip MPLAB integrated development environment (IDE) which was

used to generate the machine code and program the PIC devices [38]. Se-

175



lecting C for the development language of the PIC was an easy choice as it

was quick to pick up, offered fast speeds, easy translation from a high level

language (C) to machine code through the use of Microchip’s own custom

development software, MPLAB. In addition to these software development

packages, Matlab was used for data analysis and output plots as it offered

a wide range of analysis tools and quick times from input to generating re-

sults. The main goals of designing the software was to keep the code as

compact and efficient as possible whilst providing a flexible environment

that was easy to use for experimental work.

For convenience, the class diagram was broken up into three separate

images to provide a picture of the software system for the line crawling

robot. Although there is some overlap, the images were each focused on a

specific theme including target tracking, reinforcement learning and the PIC

interface.

First, the class diagram for the target tracking procedure is shown (see

Fig. 4.1). Although the framework is quite extensive, my involvement for

writing code was limited to the methods discussed in the upcoming sec-

tions. The remaining pre-existing framework was written by members of

the CILab [3] and for the case of the camera driver, adapted from a public

176



Figure 4.1: Class diagram for the target tracking task

177



domain source [79]. The same applies for the next class diagram, containing

the structure for the reinforcement learning methods (see Fig. 4.2). Due to

space requirements, only one RL algorithm was shown in the class diagram,

however, the framework was such that alternate algorithms were swapped

in as needed for experimental work. Also, these two diagrams show differ-

ent trackers as well, with Fig. 4.1 employing the average grey level tracking

method, or LTrack, and Fig. 4.2 demonstrates the alternative CTrack which

corresponds to the template matching method. The code written for the

first two class diagrams was contained onboard the TS-5500 whilst the final

diagram represents code for the PIC controller (see Fig. 4.3).

These three class diagrams cover the software framework employed to

operate the line crawling robot, including both the TS-5500 and the PIC

controllers. A more in depth discussion of the software as it relates to the

robot and the hardware systems follows in each of the related sections.

4.2 Target Tracking System

The purpose of the target tracking system was to lock onto a specific type

of target and then to maintain it in the field of view as close to the centre

as possible to capture the best possible images. There were two techniques

178



Figure 4.2: Class diagram including reinforcement learning methods

179



Figure 4.3: Class diagram for the PIC controller

180



implemented for tracking as can be seen in the class diagrams, the LTracker

method as seen in Fig. 4.1 and the Tracker method as seen in Fig. 4.2. The

LTracker and LTImage classes were part of the work developed for this

thesis.

The purpose of the LTracker class was to centre the field of view of the

camera on a desired target based on average grey levels found in its field

of view. For experimental purposes, the lowest average grey level was con-

sidered the target or the centre of the target (more detail can be found in

Sec. 3.4.1 and Sec. 2.5.2). This was achieved through receiving an im-

age from the camera and separating it into subsections dependent upon the

overall dimensions of the image. Pre-processing of the images included con-

verting to greyscale and decimating by some factor to reduce the necessary

work required to track the target. Once an image was received, the LTImage

class provided support functions for processing and locating the target. In

the event that the target was not in the goal state S4, appropriate movement

commands were issued to the servos to relocate the camera toward the goal

state. Before repeating this process and acquiring a new image, the tracker

always waited until the servos completed current movements to ensure that

the previous tracking procedure was completed to avoid compromising the

181



process.

The purpose of the LTImage class was to extend the existing Image class

and provide support for the LTracker method. Specifically, the dimensions

of an input image were discovered and then a corresponding set of sub-

sections were chosen based on the size. The larger the image, the more

subsections were available. In addition to deciding on the number of sub-

sections, the average grey levels were generated and the subsection con-

taining the target was discovered. The value of that subsection was then

converted into an (x,y) coordinate before relating it to a corresponding state

from the RL problem (see Fig. 3.41). A number of diagnostic methods were

also included in the LTImage class as well to provide performance feedback

and visual confirmation of the target location in a text-based format requir-

ing minimal processing and bandwidth during system verification to ensure

proper operation.

Verification of the average grey level target tracking process involved

using a sample dark insulator on a light background (see Fig. 2.11). The

preliminary version of the average grey level tracking method was set up

to move in single steps toward the target cell without using any of the RL

framework. As a result, moving the camera away from the target resulted in

182



tracking the opposite direction back toward the target. All eight directions

were tested to ensure that tracking was possible for both the pan and tilt

servos individually and together in both negative and positive directions.

The average grey level tracking method was able to track a dark target

on a light background, making it reasonable to assume that integrating it

into the existing framework with the RL methods would result in similar

performance. This was acceptable since interaction between the tracking

method and the RL framework consisted of locating the target and pass-

ing its coordinates. Instead of the tracking method moving the servos, that

responsibility passed to the RL methods.

The remaining classes in the tracking diagram consisted of the frame-

work already in place [3]. As a result, the next step in examining code

developed for the line crawling robot in conjunction with target tracking

includes a discussion of the learning methods used to control camera posi-

tioning.

4.3 Learning Methods

The second diagram, Fig. 4.2 shows how the learning algorithms fit into

the big picture. The template matching tracker is shown in this diagram to

183



demonstrate how the modules were interchangeable. The same applied for

the learning algorithms. Although the algorithm shown is Q-learning, other

algorithms were easily substituted in its place during the experimental work.

For the work involved in this thesis, development of the learning algorithms

and their interfacing requirements to the existing code was implemented, the

remaining framework was previously developed by the CILab group [3].

Operation of the learning methods during target tracking interfaced with

several code modules. First, the tracker (either Tracker or LTracker) grabbed

an image and then determined the coordinates of the target either through

template matching or average grey levels. The coordinates were then passed

via the AlgWrapper class to the learning algorithm in the form of a state. At

this point the learning algorithms took over and selected an action, devel-

oped the reward and updated the action values and policies as required. The

action selected by the learning algorithm was then passed back to the tracker

in the form of (x,y) coordinates, resulting in a command issued to the cam-

era servos to reposition to the target coordinates if they differed from the

previous position.

Each of the three RL algorithms included in this work operated in a

similar fashion, however with the addition of the rough feedback variant,

184



a few differences were encountered. First, at each step in any given episode,

the details for the current state, action selected, and corresponding reward

were stored in an ethogram-like data table that was written out to a file in

plain text. Since episodes varied in size, averaging around 5000 entries,

the ethograms were restricted to the first 1000 steps to limit the amount of

processing required. Once an episode was completed, rough coverage val-

ues for the first 1000 steps were generated and then averaged. The resulting

average was used as a performance metric to gauge how well the learning

method was performing. The average rough coverage value was then used

to adjust the correction step size or the learning rate, α. Besides the periodic

revision of the learning rate, the rough coverage variants of each algorithm

operated using the same structure and format for tracking, passing data and

updating their respective models of the environment.

For verification purposes, the server and imageserver classes provided

a means to see the camera’s field of view. Again, both of these methods

were previously written by the CILab group before development began [3],

and they were employed for preliminary testing to monitor how well the

tracking methods compared to one another. During the tracking process,

when the video feed for the imageserver was in use, the images grabbed by

185



the tracker were passed to the server and displayed on a separate terminal.

This proved useful for verifying correct movements toward the target for any

given step and was a helpful troubleshooting tool for the original setup when

developing the average grey level tracker. With the tracking and learning

aspects of the software setup discussed, the next step included the means to

operate the hardware through the PIC controller.

4.4 PIC Control System

The final diagram, Fig. 4.3 outlined control of the motors from the PIC.

The serial link connected to the TS-5500 is bidirectional in nature as both

controllers were required to communicate information back and forth. The

PIC was responsible for controlling the position servos as well as the loco-

motion drive and each motor had its own custom parameters necessitating

individual treatment when designing their respective control methods.

The most prominent constraint that the PIC had to deal with was support-

ing the position servos. Each of the servo motors required a control signal

that needed to be updated periodically or the position would have been lost.

The range for the pulse cycle signal was between 12-26mS for updates.

This implied that all of the operations for the PIC controller required com-

186



pletion within a 26mS interval. Each of the different servo motors exhib-

ited different performance specifications when it came to timing and control

signals. The pulse width or range of the signals were as follows. The Hitec

servo had a range of 1.1 - 1.9mS, the Hobbico servos had a range of 0.7 -

2.06mS and the Futaba servos had a range of 0.363 - 2.06mS. The highest

values for the respective range were used when allotting time in the interval

for each of the four servos actuating the line crawler. The total time required

for the servos was 8.08mS out of a possible 26mS interval.

In addition to controlling the position servos, the locomotion drive was

also operated by the PIC. The dc motor control was achieved through the use

of an h-bridge IC that required two digital inputs to dictate what operation

was required. The values and their corresponding results can be seen in

Table 13. The amount of time to place a 0 or a 1 on two output ports was

negligible, taking only a few clock cycles for the PIC (operating at 4MHz).

The resulting time to control all of the devices was well below the minimum

12mS interval time.

With the addition of a command to report the camera location, an addi-

tional 2.08mS were added to the total time necessary during one interval.

This allowance was for up to two bytes transmitted at 9600 bits per sec-

187



ond to the TS-5500 on the serial data link. The total time required for any

interval using the maximum values was 10.16mS. During the verification

stages, it was discovered that using less than the minimum time for the re-

fresh rate of the control signals for the servos was a bad idea. The servo

motors exhibited erratic behaviour that could have caused potential damage

to the robot or individuals handling it. As a result, delays were introduced

to avoid this problem.

There were two sets of delays used in generating control signals to main-

tain the update interval length. The standard millisecond delay routine was

provided in the CC5X development package. Since there was no support

for finer delay times, a set of micro-second delay routines were developed

for convenience. They included a 5μS, 100μS, and a variable delay based

on an input count passed in to the method. The variable delay was used to

generate the bulk of the length of each control signal providing a resolution

of 8.08μS for each input count. The other two routines were fixed delays,

providing either 5 or 100μS extra time to the main delay generated with the

variable method to shore up the control signals as required. The percentage

of error for the variable delay was +/-0.25%, which was small enough to be

undetectable by servo movements.

188



To keep the servo control signals updated at regular intervals and allow

for any potential problems that could slow down the PIC, an extra delay of

10mS was added to the existing 10.16mS processing time already in use.

This allowed the servos some time to adjust to their new coordinates before

polling for new commands and at the same time did not leave that much time

between intervals that the servos would lose their positions. Also, polling

the UART serial link every 20.16mS proved successful for gathering input

commands from the FIFO buffer. During regular operation for the TS-5500,

commands were never issued in quantities that exceeded the two byte stor-

age capacity before being read and acted on by the PIC controller. The

extra delay time also has the potential for future expansion into additional

commands or devices to control.

One final thing to note about the PIC servo control was the special con-

sideration provided to the line grip servos. Position control servos move as

rapidly as they can toward the target position indicated by their control sig-

nal. As a result, stronger servos operating the line grip tended to move the

upper and lower chassis modules with considerable speed, having the po-

tential to cause damage to either the line crawling robot or anyone nearby.

To prevent this problem, limiting code was implemented to stop the servos

189



from moving to updated positions with a maximum velocity. Instead, one

step was allowed per interval, allowing approximately 50 degrees of move-

ment per second which was more suitable for safety concerns.

Verification of PIC control classes were performed with output devices to

provide visual feedback. First, testing the serial link was done by developing

a simple test program for linking any terminal to the PIC serial port through

a standard communication port. Using a local feedback loop on the PIC,

any data sent to the PIC from a terminal was read in from the buffer and sent

back out to the origin. This was the simplest means to verify that anything

typed at a keyboard was echoed back to the screen indicating that the serial

link to and from the PIC operated correctly.

Another simple test program was developed to verify the PIC control of

the servo motors. Using the + and - keys as positive and negative steps, the

control signal output to a servo from the digital output of port B on the PIC

was successfully controlled. This resulted in movement in both the positive

and negative directions for all servo motors. A more in depth discussion of

how this was used to calibrate the servos and setup control to handle each

type of servomotor follows in Sec. 4.4.1. Successful control of each type

of servo verified the hardware and software connections from the PIC to

190



the motors. The dc motor was included in the same test program with four

possible commands corresponding to the numbers 1 through 4 (forward,

reverse, brake, and stop respectively). The dc motor responded exactly as

expected when powered through the TPIC0108B IC and operated by the

logic levels from the PIC. After verifying proper operation of each device

individually, they were all added together to ensure that the amount of time

between update intervals was sufficient to keep the servo positions without

faltering. Proving proper operation at this stage confirmed that the design

worked as planned.

4.4.1 Calibration of Position Control Servos

This section discusses calibration of the different types of servo motors.

Since each motor exhibited slightly different parameters for the control sig-

nal, the width of the pulses differed from one servo to the next. Each motor

is discussed in turn, providing the number of steps available and the resolu-

tion.

First, the Hitec servo responsible for operating the upper line grip was

calibrated. The control pulse width varied from 1.1mS - 1.9mS. Using the

variable delay routine, delay var(), for generating the control pulse, the min-

191



imum resolution available was 8.08μS per step with an error of +/-0.25%.

Using this resolution, control of the Hitec servo required 99 steps from 0

to 180 degrees. The resolution for each step was approximately 1.82 de-

grees. Since this servo was operating the upper line grip, finer resolution

was not necessary as coarse control was sufficient to provide the required

open and closed positions. The range for the steps started at 136, which

corresponded to 1.102mS (approximately 0 degrees), to 235 steps, corre-

sponding to 1.894mS (approximately 180 degrees). Using these step sizes,

it was possible to specify the complete range of the Hitec servo with one

unsigned 8-bit integer.

Next, the Hobbico servo that was responsible for operating the lower

grip as well as the camera tilt action was calibrated. The control pulse width

varied from 0.7mS - 2.06mS. The variable delay routine was used again for

generating control pulses. With the same resolution of 8.08μS per step, 87

steps corresponded to the zero degree position, at 0.703mS and 255 steps

corresponded to 180 degrees, at 2.0604mS. The range for the Hobbico

servo was 168 steps, resulting in a resolution of 1.07 degrees per step. For

convenience, a single unsigned 8-bit integer was used to specify the position

of the Hobbico servos.

192



Finally, the Futaba servo that was used for operating the camera pan

action was calibrated. The control pulse width ranged from 0.363mS to

2.06mS. Using the variable delay routine to develop the control pulses re-

sulted in a range of 45 steps, corresponding to 0.3636mS at the zero degree

position and 255 steps, corresponding to 2.0604mS at the 180 degree posi-

tion. The range for the Futaba servo contained a total of 210 steps, providing

a resolution of 0.86 degrees per step. Similarly to the previous two servos,

a single unsigned 8-bit integer was used to specify the amount of steps and

hence the position of the Futaba servo as well.

After establishing the range of steps to operate each of the different types

of servos, it was possible to operate all four servos in a predictable manner

resulting in desirable behaviour from the line crawling robot.

4.4.2 Simple Locomotion Tests and Verification of the DC Motor

As an extension to the information provided in Sec. 4.4 with regards to the

dc motor and its verification, there were several tests performed to ensure

proper operation. Three generations of locomotion drives were tested in the

same fashion. First, a very simple functional test was performed, followed

by control experiments using the h-bridge and then implementation into the

193



line grip driving a payload.

The first test was simply to apply power across the motor terminals to

ensure it would turn properly. All three vintages of dc motor passed this

test easily as it verified the drive being tested was not broken. Next, the in-

telligent h-bridge IC control was added and control commands were issued

through the PIC. Each motor passed this test as well since it was mainly to

verify proper circuit operation of the control board. The last test involved

installing the locomotion drive into the power train and hauling a full load.

Only the drive from MicroMo was sufficiently powerful to pass the final test

with the revised, heavier payload. The torque output from the new motor

was verified through creating varied angles of inclination on the skywire test

setup and forcing the robot to navigate up the inclines(see Sec. 5.1).

4.5 Robot Behaviour

The behaviour of the line crawling robot followed the hierarchy setup in the

discussion in Sec. 3.12. From the point of view for the software systems, the

behaviour was kept as simple as possible to reduce the processing demands

on the TS-5500. Once the line crawler was released on the sky wire, a start

command was issued via triggering any of the contact switches. At that

194



point the general behaviour was to move along in the direction of travel

corresponding to the side that the switch was pressed. During its travels, the

sensors were active and being monitored, including the contact switches,

the infrared sensors and the camera.

The software implementation of the behaviour rated the contact switches

as the primary source of input for detecting obstacles. The contact switches

were connected to digital I/O (DIO1) onboard the TS-5500. The voltage

levels registered either 0 or 5 volts for closed and open circuit operation

respectively. When the contact switches were closed, the pin on the DIO

header was driven low and the level 0 behaviour for obstacle avoidance or

evasion took over. At that point, a stop command was issued to the dc motor

to avoid any further contact with the obstacle. The next step was to reverse

away from the obstacle and then use the camera to sweep for targets of

interest.

The infrared sensors were continually monitored using the analog to digi-

tal converter on the TS-5500. The input levels provided enough information

to make the TS-5500 aware of the status of the grip closure whether it was

closed or open and potentially obstructed. In the event that a problem was

encountered, the dc motor was shut down and re-positioning of the line grip

195



servos took place. At this stage of development if a problem still existed,

operator assistance was necessary to resolve the issue.

The final sensor implemented in directing the behaviour of the line crawl-

ing robot was the camera. This was a second layer device, implying that it

had the power to sub-sume control of the robot to obtain its goal. The goal

of the camera was to acquire salient images of targets of interest such as

power line insulators. In its current capacity the camera was used for data

acquisition only but plans were in place to extend its functionality to scan

for targets during regular operation of the line crawler. For the event when

an obstacle was spotted by the camera, commands would be issued to the

locomotion drive to stop so that the target could be centred in the field of

view to acquire an image. At that point, control would resume to the lower

layer and movement would continue.

4.5.1 Sensor Verification and Calibration

This section covers verification and calibration of the contact switches and

the IR sensors for the line grip. A couple of simple tests were performed to

determine suitability and ease of interface with the TS-5500.

First, all four contact switches were wired to DIO1 0 - 3 on the TS-

196



5500. A simple test program was written to monitor the digital I/O pins.

The contacts were considered normally open, as were the contact switches.

This resulted in a logic high voltage on the DIO pins until a switch was

closed, driving the pin to a logic low level. To verify proper operation,

a visual representation was programmed so that each pin was monitored

during operation and a one was displayed if the contact was open, otherwise

a 0 was displayed indicating a switch was closed. All voltage levels were

verified with a voltmeter, confirming that the four switches were operating

properly, both individually and simultaneously.

Next, the IR sensors were calibrated and tested in circuit to verify per-

formance. The first experiment was to test the IR sensors and see how

they responded at varying distances in both straight and lateral directions.

The components used for this experiment were Fairchild Semiconductor,

QRD1114 Infrared Reflective Optosensors [13]. The experiment was split

into two parts, first was a straight distance comparison (transmitters and re-

ceivers pointing directly at each other) with the value of the detectors using

an 8-bit analog port on the controller. The second experiment was done

by moving the sensors laterally away from one another and comparing the

same 8-bit analog value. The results of these experiments were used to ver-

197



Straight Line Distance Analog Value Sensor 1 Analog Value Sensor 2
0.6cm 7 9
1.0cm 7 9
2.0cm 9 11
3.0cm 11 13

Table 17: Straight distance vs. 8-bit analog count for IR sensors

ify the suitability of adding IR sensors to the line grip for monitoring proper

closure.

The first experiment compared the 8-bit analog values versus separation

distance of the two sensors. Two transmitter-receiver pairs powered from

the regulated 5-volt power supply were used. The resulting data shown in

Table 17 demonstrated the trend for straight line distances and their corre-

sponding analog values. The trend shown in Table 17 is very slow to change

with the straight line distance. The reason that readings were stopped after

3cm is that the maximum straight-line distance that is possible with the line

grip was less than 3cm, after that point the upper and lower grip separate

far enough that contact would no longer be possible. The data exhibited an

appealing trend where the values changed very little when a straight line of

view was available from one sensor to the other at short range.

The second experiment involved measuring lateral distances and compar-

ing the resulting 8-bit analog values at each distance of separation for the

198



two IR sensors. A similar setup as the first trial was used with straight line

distances (see Fig. 4.4). The straight line distance between the two sensors

Figure 4.4: Setup for the IR sensor experiments

was kept constant at 2cm, comparable to the actual distance of the sensors

when both upper and lower grips close over the skywire, whilst the lateral

distance was varied. Table 18 shows the results of the lateral distance ver-

sus analog value experiment. The results of the second experiment showed

that when the IR sensors were separated by a short distance in a horizontal

direction (out of line of sight) the analog values ramped up quickly to the

199



Lateral Line Distance Analog Value Sensor 1 Analog Value Sensor 2
0.5cm 91 11
1.0cm 139 12
1.5cm 172 51
2.0cm 193 101
2.5cm 235 253
3.0cm 255 255

Table 18: Lateral distance vs. 8-bit analog count for IR sensors

maximum value at around 3cm distance. This was a very promising result

since the intent of placing IR sensors on the line grip was to monitor for con-

ditions when the line grip had closed properly and the sensors were within

line of sight and then the opposite condition when an obstruction was pre-

venting the grip from closing properly. Since the grip opens in an arc, the

IR sensor values rapidly drop away as the grip opens, signalling a problem

has occurred or that the grip is open.

The results provided in the tables proved that the IR sensors were a suit-

able match for the desired task of monitoring the grip to ensure proper clo-

sure has occurred. The sensors are excellent for monitoring straight-line

distances and since the grip separates rapidly after opening there would be

no mistaking a grip malfunction by accident.

200



4.6 Optimization

There were a couple of areas investigated for optimization during develop-

ment. The timing interval for the servo motors was a concern, so some effort

was put into attempting to reduce the amount of time necessary to send out

control signals and allow for more future expansion or to free up processing

power. Also, the amount of time and processing power used during the re-

inforcement learning methods using rough coverage was another focus for

optimization.

Initially, it was thought that the PIC would poll the serial port as often as

possible to detect when command bytes arrived in the buffer. The intent of

checking the buffer frequently was to avoid a loss of command data in the

event that the bytes were issued too quickly as there was only storage space

for two. At a later stage of development it was decided that issuing com-

mands more frequently than two in the span of one 20mS interval would

be very unlikely and with feedback added from the PIC, corrective actions

could be taken from the TS-5500. However, reducing the amount of time

that the PIC issued control signals was still useful to the line crawler as it

allowed further expansion to more devices and streamlined operation. The

201



means by which the timing interval was reduced pertained to the operational

envelope of each servo motor. Each position servo had a range of approx-

imately 180 degrees, with a neutral position being approximately halfway.

This corresponded to the length of their respective control signals as well.

This meant that if the servo range was considered from -90 to +90 degrees,

the shortest possible control signal would be at -90 degrees. The line grip

servos operated with a 90 degree envelope, positioning the starting point to

the lowest possible value, leaving enough rotation to satisfy the 90 degree

minimum yielded a significant time savings. The upper line grip normally

remained closed during operation, this was positioned to coincide with the -

90 degree set point, allowing a rotation of up to 180 degrees from the closed

position. This didn’t interfere with the work envelope for the upper line grip

as it rotated up and never closed any lower than the driving position on the

sky wire. As a result, the maximum control signal length was reduced to

1.5mS. The same principal was applied to the lower grip and the camera

tilt servos, positioning the motors so that the 90 degree range of motion was

available, starting with 0 degrees at the neutral position when grasping the

sky wire and positioning the camera respectively and then moving to -90

degrees when fully open or tilted straight down. This reduced the maximum

202



control signal length by a similar amount, to 1.52mS each, for a total re-

duction of 1.48mS. Although this was only a small time savings, it was

significant enough to provide room for one more control signal and helped

reduce the amount of time that the control lines were active allowing further

expansion of devices or commands.

The other area for optimization that was investigated related to RL meth-

ods during the target tracking process. Preliminary testing demonstrated

how computationally intensive the learning methods were when the rough

coverage methods were operating. Each time an episode completed and the

new coverage values were generated, the processing requirements were so

expensive that the camera system stopped tracking for a short period of time.

This was problematic as it was important to keep the target in the field of

view at all times to acquire the best images. As a result, a means to limit the

computational requirements of the rough coverage learning methods was

investigated. As previously mentioned, the number of steps considered out

of each episode were reduced. Originally, all steps were gathered together

and included in one large ethogram for generating rough coverage values

for each behaviour. To limit the amount of processing necessary, approxi-

mately 20% of the steps in any given episode were used from the ethogram

203



to generate the coverage values. This provided a large enough sample of

any episode to give a reasonable view of the behaviour performance and at

the same time yielded a significant reduction in computational power, min-

imizing the delay during the tracking procedure.

204



5 Experiment Design

After verification of the system components, the next step was to prove

the original conjectures through experimental work. Test situations were

developed through an iterative design procedure for both the hardware and

software systems to provide a collection of results from which conclusions

could be drawn regarding system performance.

5.1 Hardware Experimental Environment Setup

In order to run some of the experiments, a testing environment was neces-

sary to provide the required situations. The first aspect in setting up a test-

bed for the line crawling robot was to develop a prototype tower structure.

Samples of line clamps, and vibration dampers were provided by Manitoba

Hydro (see Fig. 3.5). In addition, they provided approximately 10 metres of

rolled skywire and drawings outlining the dimensions of actual tower struc-

tures for the lines along Bishop Grandin Boulevard in Winnipeg. With all

of the available parts and knowledge, a prototype testbed setup was built.

The tower setup was constructed with the intent of re-creating similar

constraints that the robot would experience on the skywire but in much safer

205



conditions for experimental purposes. To provide a similar habitat for the

robot, one tower needed to be designed to support both types of obstacles

from Fig. 3.5, including 2 vibration dampers and one line clamp. Two ad-

ditional virtual towers were required to support the skywire and allow for

adjustment to the slope of the line between towers. The line crawler needed

to be able to navigate up and down sloped sections of skywire. The end

towers were used solely for the purpose of anchoring the skywire and ad-

justing the slope of the wire. As a result, simple posts with a secure base

and attachments to hold the skywire were sufficient. The central tower con-

taining all of the obstacles required a more complex design to yield a useful

experimental simulation tool.

To keep the dimensions of the prototype tower within reason, they were

halved. Since a half-scale design was used for the dimensions, only half

of the space that is actually available in the field will be used, thus guar-

anteeing that success in the testing environment would extend to field trials

concerning space constraints. In addition to the dimensions, the other design

consideration observed for the prototype towers was the weight it needed to

support. The towers were expected to manage the weight of two vibration

dampers, one line clamp, the sky-wire and the line crawling robot. A to-

206



tal estimated weight of 15kg implied that the tower structures needed to be

fairly sturdy. Reinforcing the trapezoidal structure of the tower was done

through adding extra 2x4’s along each side of the trapezoid. Grooves were

also cut in the top and bottom of the structure to mate with the support beams

which were cut both top and bottom at 19 degree angles for slotting into the

grooves. This can be seen in the construction drawing (see Fig. 5.1), which

displays the shape, measurements and materials used. Unlike the wooden

Figure 5.1: Construction diagram for prototype tower

structure, the base of the platform was a pre-constructed steel stand with a

wide stance intended for supporting a large Christmas tree. The completed

tower can be seen in Fig. 5.2, including the steel base support structure.

The central tower contained several modifications to improve its strength.

207



Figure 5.2: Completed prototype tower

208



In addition to strengthening the frame, selection of appropriate fastening de-

vices was made with a similar intent. Three inch wood screws and 2.5 inch

spiral nails were used to fasten the pieces of the trapezoid together. Since

the line clamps had custom fittings for attaching to hydro towers, it was nec-

essary to come up with a modified attachment to connect the line clamp to

the prototype tower. The image in Fig. 3.5 shows all of the obstacles but also

the right most line clamp has a foam-covered steel hook threaded through it

that was subsequently screwed into the underside of the top of the trapezoid,

providing a support for the skywire. The end towers consisted of standalone

posts that rested on similar stands compared to the central tower. Instead of

supporting all of the obstacles, they were required for fastening the ends of

the sky wire to maintain some degree of rigidity allowing the line crawler

to travel back and forth and providing control over the slope of the skywire

(see Fig. 5.3).

Completion of the prototype towers provided a safe alternative test envi-

ronment for simulating line crawler operations. This eliminated the need to

use actual power lines to perform basic verification and formal experiments,

resulting in a safer environment for both the robot and people involved.

To facilitate the experimental work with the target tracking system, a

209



Figure 5.3: Construction drawing of complete prototype tower setup

replica of the monocular vision system was built separate from the line

crawling robot. The intent of having a separate system for testing and exper-

imental work was to eliminate the need for battery power, periodic recharg-

ing and to reduce any possible risk of damage to the line crawling robot. The

target tracking experiments required large periods of time to gather useful

data and building a safe testing environment was very desirable to avoid the

need for constant supervision.

The replica of the vision system was built to provide performance as

close to that of the line crawling robot as possible. The same combination

210



of two servo motors, one for the panning action and one for the tilting action

were used. A flat surface comprised of the previous platform material made

from aluminum provided the base to operate from. The camera and its ser-

vos were connected upside down, corresponding to the same orientation and

position of the motors on the line crawler as the experimental platform was

inverted. The resulting experimental monocular vision system can be seen

in Fig. 5.4. As the servos were connected directly to the platform and cam-

Figure 5.4: Replica of the monocular vision system from the line crawling robot

era respectively, the same work envelope was available for movement. The

211



resulting test system was built as close as possible to the existing system on

the line crawler.

5.2 Hardware Controllable Parameters

The experimental test vector parameters included several variables that were

considered. During the target tracking experiments, the two variable para-

meters included were distance from the target to the camera and the height

of the target. An initial target for the line crawling robot was to capture im-

ages of insulator stacks. After examining actual dimensions of towers relat-

ing the location of the skywire in comparison to the insulators, the distance

versus height ratio was approximately 4:1. Maintaining this same ratio,

the distance from the target during tracking experiments was selected to be

17cm, and the height of the target corresponded to 4.25cm. These parame-

ters were monitored and maintained throughout the experimental work. The

other adjustable parameter was for locomotion tests, requiring varied angles

of inclination and declination of the skywire to monitor performance of the

locomotion drive. These three parameters comprised the variable elements

from a hardware perspective during the experimental phase.

212



5.3 Software System Parameters

There were a number of different variable parameters in the software sys-

tems. A discussion related to each RL algorithm and its associated parame-

ters are included for the actor critic, Q-learning and sarsa methods.

5.3.1 The Actor Critic Algorithm

The Actor-Critic algorithm contained several variables (see Sec. 2.3.1). Se-

lection of the initial values for alpha, beta, gamma, the preference values

and the policy π were made as follows. The learning rate, α was chosen to

have a value of 0.1, preventing any large correcting steps during the learning

process. Although this limited the learning process from taking large steps

in a corrective manner, it also prevented large steps in the wrong direction,

preventing overshoot from getting out of hand. The step size parameter, β

for controlling the preference adjustment was also conservatively selected

at a value of 0.1 to avoid giving too much or too little preference to ac-

tions that performed well or poor early on and mistakenly either avoiding

or over selecting them as a result. The discount factor, γ was initialized at

a similar low value of 0.1 to avoid giving too much weight to future states,

making the system somewhat near-sighted. The reason for choosing a value

213



of γ so low was due to prior knowledge of the environment and the minimal

amount of noise expected. As a result, current experiences would not differ

much from longer term behaviour, so weighting future states more heavily

was unnecessary. A parameter, ε which prevented the policy π from always

being greedy was chosen as 0.1 as well, implying that 10% of the time, ex-

ploratory actions were taken and the rest of the time, deterministic actions

were taken. The preference values were all initialized to zero which in turn

setup the starting values for the policy, π. The initial policy values were

unbiased by setting all values to 1, this meant that it was equally likely to

select any state before experience was gathered. Besides the parameters dis-

cussed, the number of states and actions were pre-determined as discussed

in Sec. 3.11.1.

5.3.2 The Q-Learning Algorithm

As opposed to the actor-critic method previously discussed, Q-learning con-

centrated on learning action values to generate a policy rather than having

a separate policy and value function. As a result, there were some different

initial parameters, but to keep their respective performances on a reasonably

level playing field, similar parameter values were chosen when possible.

214



The values of α, ε and γ were once again selected at 0.1. The action values,

Q(s,a) were initialized by setting all values to zero and the initial policy, π

was set to an arbitrary soft or non-greedy policy with at least some chance

to visit all possible state-action pairs. As before, the number of states and

actions were fixed to match the specifications provided in Sec. 3.11.1.

5.3.3 The Sarsa Algorithm

The sarsa algorithm was included to provide a comparison for a value func-

tion learning algorithm that followed the policy it searched with. In essence,

it was the counterpart for Q-learning, providing an on-policy approach for

comparison. The parameters were chosen with the same values for α, ε and

γ at a value of 0.1. The action values, Q(s,a) were again initialized to zero,

and the policy, π was selected as an arbitrary soft policy as well to provide

a similar environment for comparison during experimental work.

5.4 Test Vector Development

Generating a set of test vectors that were designed to exploit the the dif-

ferences between the various learning methods employed was an iterative

process. Careful selection of components including the period of time for

215



each experiment, the distance and height of the target, movement patterns

and the addition of noise were all considered.

The period of time for each of the RL tracking experiments were syn-

chronized for all algorithms. Various amounts of time for the learning

process were provided to allow for slower learning or those methods that

required more experience. Times ranged from 1 minute up to 2 hours, with

intervals in between of 5 minutes, 15 minutes, and 1 hour lengths. The dis-

tance and height of the target tracked was selected and fixed (as discussed

in Sec. 5.2) matching the distance ratio of actual insulators related to their

position and the skywire. The movement patterns of the target exhibited

two patterns, circular motion and random trajectories, both were included

to discover if the learning methods may have incurred an advantage from

a predictable movement pattern. Finally, noise was added to provide some

degree of similarity to environmental stresses that were possible outdoors,

including high winds, uneven lighting, or precipitation to name a few. Noise

was added in the form of distorting the coordinates of the target location. Es-

sentially, fooling the line crawling robot into thinking the target was located

somewhere else in its field of view other than the true location.

The controlled additive noise was limited to the dimensions of the field

216



of view. Implying that the mis-perceived location still remained within the

field of view of the camera, but it was incorrect compared to the location of

the actual target. Generating the additive noise was accomplished through

the use of a pseudo-random number generator to supply uniformly distrib-

uted random numbers ranging from -1 to 1. The random values were scaled

up to integer values and added to the target location to attempt to confuse

the tracking system. The random number generator was considered pseudo-

random as it relied on a seeded value from the system clock to generate a

sequence of random numbers [51]. A uniform deviate was selected to pro-

vide an equally likely chance of any value occurring throughout the range

of -1 to +1.

The last adjustable parameter in the test vectors was the speed of move-

ment for the object being tracked. The preliminary experimental work was

performed with a fixed speed of (6,6) which refers to the amount of pixels

moved in both the x and y-directions in 2 dimensional space that the cam-

era can see. The time between movements was 50mS, resulting in a total

movement rate of (120,120) pixels/second. The velocity of the line crawling

robot was insufficient to warrant testing much higher speeds but additional

test vectors were constructed containing higher rates of travel for the obsta-

217



cle to discover the effects of obstacle speed on performance. The range of

speeds were from (6,6) to (10,10) pixels per 50mS.

5.5 Line Crawling Experiments

At the time of writing this report, only preliminary experimental work had

been done with the line crawling aspect of the robot. There were a number

of areas involved that slowed down the final construction and as a result,

preliminary testing was the only stage completed. Simple locomotion tests

to prove that the line crawler was self sufficient and could wander back and

forth on the sky were performed as well as angle of inclination tests to see

how steep a slope was traversable in the current configuration. As such, the

system parameters consisted mainly of simple behaviours and responses to

sensory input as well as the angle of inclination of the sky wire. The sensory

input parameters consisted of what to do upon contact with an obstacle. For

example, the instant reaction was to stop the locomotion drive and reverse

for a set period of time before scanning for targets of interest to acquire

images of. Afterwards, direction of travel was reversed and the same tactics

were employed travelling along the sky wire in the opposite direction. For

these experiments, the vision system was mounted with the origin facing

218



sideways off the platform to allow examination along both directions instead

of limiting it to either forward or reverse views alone.

219



6 Experimental Results and Discussion

This section contains the results compiled from experiments with the line

crawling robot. They were designed to explore the differences in tracking

techniques under a variety of conditions with the intent of acquiring the best

quality images and to explore the functionality of the line crawling robot to

provide some insight into its capabilities and potential for future expansion.

6.1 Experimental Results

Each aspect of the line crawler that was tested includes a discussion for

what was expected, actual results and the associated implications. The

main focus for experimental work on the target tracking system included

a comparison between the RL methods previously discussed and the classi-

cal tracking algorithms, including both template matching and the average

grey level method. Several experiments were processed to determine the

performance of each algorithm, including varying the time available for the

learning process, altering target speed, noise susceptibility, and variable tar-

get trajectories.

220



6.1.1 Varied Time Target Tracking

The first experiment varied the length of continuous time for the target track-

ing process. As the time allowed increased, the results were expected to

favour the learning methods as they tend to converge toward an improved

policy over time. However, since a relatively static environment was used,

the classical tracking approach was expected to fare reasonably well. The

differences between the average grey level and template matching methods

were also another focus of the time varying trials. Since the number of com-

putations required for the average grey level method were fewer, a greater

number of samples were expected along with higher rates of error compared

to template matching.

Each tracking method and algorithm were implemented and reported us-

ing three different lengths of time, 1 minute, 5 minutes and 15 minutes total.

The algorithms included were the classical tracking, actor-critic, Q-learning,

sarsa and the rough feedback modified versions of each of the RL methods

yielding seven in total for each experiment. This was implemented for both

template matching and the average grey level methods, providing fourteen

comparisons for each test vector. The variables in the test vectors consisted

221



of the algorithm in use, the tracking method and the length of tracking time.

The static components of the test vectors for this experiment included target

speed ((6,6) pixels of movement per 50mS), target distance from the cam-

era (17cm), target height (4.25cm) and target movement pattern (a circular

clockwise direction).

The first set of results included were for one minute in duration. The

template matching algorithms are presented first and the average grey level

methods are presented next in the same format. The first set of 1-minute

experiments seen in Fig. 6.1 are somewhat erratic due to the short dura-

tion of the test. The learning methods often take a little bit of time to set-

tle after preliminary exploration of new state space. The classical tracking

method remains relatively stable throughout as expected since no learning

took place. The actor critic and sarsa methods exhibit the lowest RMS error

when tracking the target, followed closely by the classical tracking method.

The Q-learning method exhibited the most erratic profile and averaged the

highest error rates during the first minute. The rough-feedback methods for

both the actor critic and Q-learning algorithms provided improved results

over time when compared to the classical implementations. The improve-

ments were small, approximately 0.1 to 0.2 pixels more accurate. For such

222



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.1: Template matching, 1-minute tracking experiment average RMS error results

223



a short period of time, this was a promising result indicating that greater

lengths may prove beneficial for rough-feedback tracking methods.

The next diagram, Fig. 6.2 demonstrated the average grey level counter-

part for the 1-minute tests. The general trend found in the average grey level

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.2: Average grey level, 1-minute tracking experiment average RMS error results

method was increased average RMS error and extra samples in some cases.

224



Greater RMS error can be seen easily in the classical tracking algorithm,

averaging 4 pixels compared to the average of 3.8 pixels using template

matching. The learning methods were more resilient and provided nearly

the same performance. With the exception of Q-learning which performed

slightly better, whilst its rough-feedback counterpart did worse. The short

duration of this experiment made for potentially erratic results that could

change depending upon the initialization and location of the target when

tracking began. These problems were faced by both the average grey level

and template matching methods, demonstrating the capabilities of each in

short duration situations where targets needed to be acquire quickly.

The next set of results maintained the same test vector parameters but

with an increased duration of 5 minutes. Both trackers were expected to

perform similarly to the previous results but with potential improvement

in the RL methods due to increased time to experience the tracking prob-

lem and generate an improved policy. The rough-feedback methods were

expected to provide performance equal to or better than the classic RL al-

gorithm implementations as the adaptable learning rate allowed for a more

intelligent policy adjustment, improving the performance at a cost of extra

processing for short durations which would likely result in fewer samples

225



over the same time period. The results seen in Fig. 6.3 show that several of

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.3: Template matching, 5-minute tracking experiment average RMS error results

the performance predictions were accurate. However, the classical tracking

method performed worse than in the 1-minute trials, yielding an error rate

of 4.2 pixels, most likely caused by varied illumination. Unfortunately the

experiments were not all performed at the same time of day and the ambient

226



light was difficult to control. However, this parallels actual conditions more

appropriately as outdoor lighting varies dramatically through the course of

a day and based on location. Both Q-learning and sarsa exhibited improved

performance with the rough-feedback versions, this is likely in part due to

the extra time for learning as well as the adjustable learning rate depen-

dent upon performance. Rough-feedback Q-learning exhibited the least er-

ror during the tracking task, averaging close to 3 pixels, closely followed

by the classical actor critic method, averaging 3.2 pixels of RMS error. The

rough-feedback version of the actor critic algorithm unexpectedly yielded

poorer performance over time. This could have been attributed to a host

of environmental effects, or perhaps poor suitability for the task. Generat-

ing the average rough coverage values associated with the rough-feedback

methods required extra time whilst the target was still mobile, implying that

it may no longer have been centred or worst case completely out of the field

of view. The other results for Q-learning and sarsa suggest that the rough-

feedback algorithms were not demanding too much time of the system and

perhaps an environmental anomaly was responsible for the actor critic re-

sults.

Average grey level tracking experiments of 5 minute duration are in-

227



cluded in Fig. 6.4. As with the previous 1-minute experiments, greater error

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.4: Average grey level, 5-minute tracking experiment average RMS error results

rates were expected from the average grey level method, with the possibil-

ity of an increased number of samples due to the reduced computational

requirements of the algorithm. Aside from that, the remaining performance

trends expected in the template matching version of the 5-minute experi-

228



ment were expected to be re-iterated in Fig. 6.4. The results confirmed the

larger error encountered from the loss of resolution of the average grey level

tracking method. The classical tracking algorithm yielded an error of 4.35

pixels compared to 4.2 pixels using template matching, approximately 4%

worse accuracy. The number of samples were not as different between the

two methods as expected with only 10 extra samples provided from the av-

erage grey level method (721 compared to 711). The actor critic method

demonstrated almost identical performance compared to template match-

ing, with the exception that the rough-feedback version of the algorithm

maintained a steady average instead of degenerating in performance over

time. The overall error rate was near 3.2 pixels for both algorithms, as be-

fore, when using template matching. Both Q-learning and sarsa exhibited

greater rates of error over time compared to the template matching exper-

iments. The Q-learning results showed an average increase of 0.2 pixels

of average RMS error, corresponding to approximately 6% worse accuracy,

whilst the rough-feedback version of the algorithm showed less sensitivity

to the tracking method having only 0.1 pixels of increased error, or 3%. The

sarsa method exhibited an unusual trend, starting out with a lower average

RMS error and increasing over time. The template matching method per-

229



formed the opposite, improving through learning over time to improved ac-

curacy. The cause of this problem can likely be attributed to environmental

factors again as the only difference constituted the tracking method. Since

the rough-feedback version of the algorithm performed reasonably well, av-

eraging just under 3.4 pixels of average RMS error, the problem with the

classical implementation is likely due to environmental conditions. The ac-

curacy of the average grey level version of rough-feedback sarsa is compa-

rable to the best performance of the template matching method, unlike the

classic algorithm, and the Q-learning implementations which demonstrated

worse RMS errors. At this point, the results were a bit of a mixed bag and

lengthier experiments, comprising of 15 minutes were included to find out

if further settling time was required to discover any long term trends.

Next, experimental conditions were kept the same except for the time

duration which was extended to 15 minutes to allow for further settling of

learning methods to discover long term performance trends. The results for

template matching tracking can be seen in Fig. 6.5. The classical tracking

algorithm maintained a relatively constant average of 3.8 pixels of average

RMS error, as no learning took place, this was expected and mainly used

as a base comparison for the remaining algorithm performances. The actor

230



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.5: Template matching, 15-minute tracking experiment average RMS error results

231



critic method exhibited improved performance on average over the longer

duration experiment. The average error rate corresponded to 3.08 pixels for

the classic implementation and 3.07 for the rough-feedback version. The

greatest difference between the two algorithms occurred in the number of

samples, the classical actor critic implementation included 300 additional

samples that corresponded to time spent generating the rough coverage val-

ues for adjusting the learning rate of the modified version of the algorithm.

The Q-learning method yielded an average RMS error of approximately 3.5

pixels, an improvement over the classical tracking algorithm, but perform-

ing worse than the actor critic algorithm. The addition of rough-feedback

Q-learning provided the best accuracy at an average RMS error of approxi-

mately 2.9 pixels. Finally, both classical sarsa and the rough-feedback sarsa

algorithms achieved an RMS error of just over 3.6 pixels making it the worst

performer out of the learning algorithms. In all cases, the rough-feedback

versions of each algorithm generated approximately 300 less samples based

on the extra computational requirements.

The final experiment in the time variable block was average grey level

tracking for 15 minutes. The results can be seen in Fig. 6.6, for each of

the algorithms. The classical tracking algorithm confirmed the expectation

232



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.6: Average grey level, 15-minute tracking experiment average RMS error results

233



of slightly worse accuracy of approximately 3.85 pixels compared to 3.8

from the template matching approach. The number of samples differed only

slightly between the local threshold and classical tracking. The actor critic

algorithm performed similarly to the template matching comparison with an

average RMS error of approximately 3.17 pixels, and a continual trend of

improvement over the course of the 15 minute period. The rough-feedback

actor critic algorithm hovered around the same average RMS error of 3.17

pixels and followed the general trend of improvement exhibited by its classi-

cal counterpart. Both the Q-learning and sarsa algorithms performed better

using the average grey level tracking method as seen comparing their av-

erage RMS errors from Fig. 6.5 and Fig. 6.6. This was not expected as the

error in positioning with the average grey level method was expected to have

been greater than the template matching technique. One possibility related

to the plots is that the initial states were significantly better than those of

the template matching experiment. This can be seen by examining the first

samples and noting how much less error is present at that point already. The

improved starting conditions could have been related to experimental setup

as coordinating the experiments was setup and easily affected by human er-

ror. The rough-feedback Q-learning method behaved as expected, exhibit-

234



ing slightly more average RMS error than the original template matching

experiment did. Similar to the previous experiments, rough-feedback sarsa

maintained a comparable performance with the classical algorithm, main-

taining a slightly higher error of approximately 3.0 pixels compared to 2.8.

The results for the rough-feedback methods each contained approximately

300 less samples due to the extra computational requirements needed for

generating the rough coverage values and adjusting the learning rates.

For most cases presented in this section, the template matching tracking

method provided the same or better accuracy with nearly the same amount

of samples or speed as the average grey level tracking technique. As a result,

template matching appears to be the most favourable approach for target

tracking at this point. Examining the results for each of the tracking algo-

rithms indicated that the trade-off associated with extra computations re-

quired by the RL methods paid off in accuracy. Rough-feedback Q-learning

was the most consistent performer suited to the task of target tracking in

each of the different lengths of time and tracking methods. This was not a

surprising result since Q-learning exhibits a more deterministic approach in

selecting future actions in any given state due to the nature of the algorithm.

Since the environment was relatively static with minimal external noise, a

235



more greedy approach should tend to do better. To provide a more rig-

orous view of algorithm performance, several additional experiments were

included to place more demands on the tracking system to uncover the re-

sponse.

6.1.2 Variable Target Speed

The original time varied experiments maintained a speed of (6,6) pixels of

movement per 50mS. This represented the movement in both the x and y-

directions of the target. This rate of movement was sufficient to make the

tracking tests meaningful but not fast enough to out-hustle the tracking algo-

rithms. Since actual conditions that the line crawling robot may face could

include high winds commonly found on the prairies, faster moving targets

are a real possibility. In order to provide some insight into performance in

these types of conditions, the speed of the target was increased in succes-

sive steps. Results are included for a speed of (10,10) pixels of movement

per 50mS for comparison with the results from the previous section where

movement was restricted to (6,6) pixels/50mS. This consisted of an increase

of movement rate from 120 pixels/second up to 200 pixels/second. The ex-

tra speed may not be enough to force the algorithms to drop the target, but

236



it was expected to expose performance related issues for situations when

faster tracking is required.

Two sets of results are included for this experiment, one for the template

matching technique, and one for the average grey level tracking method.

Besides the tracking methods and the various algorithms, the remaining pa-

rameters for the test vectors remained static, including the distance from

the target (17cm), height of the target (4.25cm), target velocity (10,10) pix-

els/50mS, length of each experiment (set at 5 minutes) and the target move-

ment pattern (used a clockwise circular movement pattern). Additional tests

beyond (10,10) pixels/50mS were investigated, but the distance travelled

by the target in 1 second was enough to move completely out of the field

of view of the camera causing some of the slower tracking methods to fail

completely by losing sight of the target. The results presented in this sec-

tion contain the first speed increment (from (6,6) up to (10,10)). Five minute

lengths were selected as they provided enough time for learning methods to

settle and begin learning how to track the target if possible.

Template matching tracking was the first method tested including all

seven algorithms. The results are presented in Fig. 6.7. As expected, each

of the tracking algorithms exhibited an increased average RMS error. Inter-

237



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.7: Template matching, 5-minute high speed (10,10) tracking experiment average
RMS error results

238



estingly, the actor critic algorithm outperformed the remaining algorithms,

displaying the smallest increase in error up to approximately 3.7 pixels. The

classical Q-learning algorithm was the only learning method that had worse

performance than classical target tracking. The remaining learning methods

either decreased or maintained an average RMS error similar to the initial

value over time, as seen for Q-learning and sarsa. Both Q-learning and sarsa

had significant drops in target accuracy at the increased target speed. The

most likely reason for the drop in performance is based on how the algo-

rithms learn action values. The entire set of possible actions are scanned to

determine which is most suitable in any given situation, requiring time to do

so. At the point when the desired action was detected, the target had since

moved and the error rate increased. A method like the actor critic approach

with a separate policy can help avoid the need for scanning the entire action

space as it will dictate which actions to take using the policy, so once it has

become experienced, the potential for reducing the amount of hunting for

appropriate actions is very likely.

The average grey level tracking method was used to generate a second

set of results. The parameter values were maintained the same to provide

a meaningful comparison of the two methods in addition to either provid-

239



ing further evidence to support or refute the observations from the template

matching technique. The results can be seen in Fig. 6.8. The classical track-

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.8: Average grey level tracking, 5-minute high speed (10,10) tracking experiment
average RMS error results

ing algorithm demonstrated an increased average RMS error of 5.9 pixels

compared to 5.36 using template matching, confirming the presence of in-

240



creased error expected with average grey level tracking. Once again, the

actor critic method was least affected by the increased target velocity, con-

firming the expected results. The average RMS error values for all of the

learning methods were slightly increased, accounted for by the switch to the

more error-prone tracking method. The only exception was rough-feedback

sarsa which exhibited improved performance (by 0.3 pixels) likely attributed

to favourable initial conditions. In each of the RL methods, the rough-

feedback performance was equal to or better than the classical algorithm

interpretation. This was surprising as the extra processing time required

to generate the rough coverage values was expected to incur some extra

position error due to a faster moving target. The adjustable learning rate ap-

peared to more than compensate for the slower rough coverage algorithms

by revising the policy correction action appropriately to help find the best

policy. This flexibility would allow for a quicker and more reliable means

of maximizing the action values of any given state.

Speeding up the target velocity demonstrated how each algorithm and

tracking technique would respond. Not surprisingly, the algorithm with the

least amount of required processing time was the best performer. From

a practical perspective, the actor critic algorithm would be most suited to

241



faster moving platforms or high wind conditions where quick actions were

necessary to acquire the best images. Once again, template matching pro-

vided suitable speed and improved accuracy over the average grey level

tracking method, making it more favourable in its current configuration.

6.1.3 Random Target Trajectories

The experiments up to this point were done using a clockwise, circular tra-

jectory for the target pattern. In the event that the RL methods might have

been gaining some advantage in learning the shape and its movement char-

acteristics, random movements were employed to see how the algorithms

fared when there was no standard movement pattern. This would also help

provide some insight into how short sharp movements with the line crawler,

such as during travel, operations on the line or even in gusting wind condi-

tions or variable illumination might be dealt with.

There were two variable parameters for this experiment, the tracking

method, and the associated algorithm. The rest were fixed, including the

distance to the target (17cm), height of the target (4.25cm), target velocity

(6,6) pixels/50mS, target trajectory pattern (random), and the time dura-

tion for each experiment (5 minutes). The template matching results are

242



shown in Fig. 6.9. The results in Fig. 6.9 showed that the learning methods

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.9: Template matching tracking, 5-minute random trajectory tracking experiment
average RMS error results

were not fooled by random moving targets compared to a standard pattern.

In fact, the average RMS error of each method improved over the circular

clockwise trajectory. The reason why all of the tracking methods are more

243



well suited for random movements is due to the fact that once the outer edge

of the available range was met, the target tended to return toward the centre

for at least a short duration before moving in a different direction and at

this point, the camera did not need to move much to centre the target. The

circular trajectory on the other hand continued moving in a wide enough

pattern that continual tracking was needed to centre the target in the field

of view. Even the classic tracking algorithm without learning exhibited an

improved performance over the original 5 minute test seen in Fig. 6.3 the

original error was 4.2 pixels compared to 3.45 shown in Fig. 6.9.

The average grey level tracking method was included in this test to pro-

vide additional evidence of the performance using targets with random tra-

jectories. The results were expected to provide similar improvements as

template matching but with slightly more error based on the nature of the

technique. After examining Fig. 6.10, the results for each algorithm showed

slightly worse accuracy as expected due to the nature of the tracking method.

The classical tracking algorithm provided the best base comparison as there

was no potential advantage due to learning. The average RMS error for

classical tracking using template matching was approximately 3.45 pixels,

compared to 3.6 pixels for the average grey level approach (an consistent

244



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.10: Average grey level tracking, 5-minute random trajectory tracking experiment
average RMS error results

245



error increase of about 4%).

The target tracking system responded more favourably to targets with

random movement trajectories. The original circular trajectory used for all

other tests continually moved along the widest circumference possible, cov-

ering the most ground and making it more difficult to track. The random

trajectory target movements were often interior to the maximum circum-

ference, making it less difficult to centre in the field of view and simulate

more closely actual target movement as circular motion would be fairly un-

common in field trials. The most accurate algorithms were rough-feedback

Q-learning and the classical actor critic implementations. Both of these

techniques coupled together with template matching tracking provided an

average RMS error rate of approximately 2.4 pixels. The difference be-

tween them was the reduced amount of samples provided by the rough-

feedback Q-learning method, containing 140 less samples than the classical

actor critic implementation.

6.1.4 Noise Susceptibility

Since there are a number of possible sources of noise that could affect the

line crawling robot, such as atmospheric, man-made, galactic, or even in-

246



ternal systems, the goal of this experiment was to examine the performance

for each of the algorithms and tracking methods when subjected to input

noise. As mentioned briefly (see Sec. 5.4), a uniform deviate was used to

add random noise to the target location before presenting the information

to the tracking algorithm. Besides the tracking techniques and algorithms,

all remaining parameters for the test vectors were kept constant during this

experiment, including distance to the target (17cm), height of the target

(4.25cm), target velocity ((6,6) pixels/50mS), target trajectory (clockwise

circular pattern), the length of time (5 minutes), the chance of noise present

at any given iteration (50%), and the possible range of noise magnitude in

camera movement steps (+/- 5).

The results expected for noisy environments favoured the learning meth-

ods, as they were able to make adjustments to the actions in any given

state over time they should offer improved performance over the classical

tracking techniques learning to become more conservative in movements.

Out of the collection of learning algorithms, the actor critic has been most

resilient up to now and its efficiency in dealing with rapid change made

it the favourite for best results prior to running the experiments. The re-

sults are presented in two parts again, first the template matching technique

247



(see Fig. 6.11) followed by the average grey level tracking method (see

Fig. 6.12). After examining the results in Fig. 6.11, the performance predic-

(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.11: Template matching tracking, 5-minute noise susceptibility tracking experi-
ment average RMS error results

tions were not far off. The tracking algorithm least affected by noise was

the actor critic method, exhibiting an average RMS error of approximately

248



3.05 pixels. Surprisingly, rough-feedback Q-learning performed compara-

bly well in the noisy environment, yielding an average RMS error of 3.18

pixels. The greedy nature of both Q-learning algorithms saw them outper-

form their sarsa equivalents. As expected, the classical algorithm performed

the worst, with an average RMS error of 3.95 pixels as it was unable to com-

pensate for input noise.

The average grey level tracking method was included in this test to gather

additional evidence of performance in noisy environments. The results were

expected to register more error than the template matching technique due

to the associated higher rate of error compounded together with the newly

injected noise. From Fig. 6.12, the initial expectations can be confirmed,

the error associated with the average grey level tracking method together

with the additional noise increased the average RMS error of each track-

ing algorithm. However, once again the actor critic method provided the

best performance, with an average RMS error of 3.35 pixels. The RL algo-

rithms based on learning action values showed a significant increase in error,

approaching and in some cases exceeding that of the classical tracking al-

gorithm. Q-learning, sarsa, and rough-feedback sarsa all exhibited worse

performance than the classical tracking algorithm that scored 4.48 pixels of

249



(a) Classical Tracking (b) Actor Critic

(c) Q-Learning (d) Sarsa

Figure 6.12: Average grey level tracking, 5-minute noise susceptibility tracking experiment
average RMS error results

250



average RMS error. Rough-feedback Q-learning was the only action value

learning method that performed better, averaging just under 4.2 pixels of

error. The results show that the extra associated error with the average grey

level tracking method make it less likely to perform well in a noisy environ-

ment.

Figure 6.13: Compiled target tracking results

The target tracking system, specifically using template matching and the

actor critic algorithm, responded well to a noisy environment. The maxi-

mum possible movement allowed in any state was eleven steps, providing

noise with a magnitude of five steps had the potential to easily confuse the

tracking methods, causing more average RMS error. This can be seen read-

251



ily in the classical algorithm results as well as the action value learning

methods. Average grey level tracking compounded its own increased er-

ror with that of the input noise and exhibited greater susceptibility to high

error rates making it a less favourable choice for a noisy environment. Be-

sides selecting template matching, the two algorithms most suited for target

tracking in a noisy environment include the classical implementation of the

actor critic algorithm for its speed and accuracy and the rough-feedback Q-

learning algorithm for its accuracy. The compiled results can be found in

Fig. 6.13.

6.2 Line Crawling Experiments

The last stage of experimental work was to test the functionality of the line

crawling robot. At the time of writing this report, the line crawlers operated

as individual entities when crawling on the skywire. As a result, the func-

tional tests included simple locomotion, climbing up inclines, and acquiring

images of targets. The tests and results were all performed indoors using

the manufactured experimental environment described in Sec. 5.1.

The first functional testing experiment was simple locomotion along the

skywire. The support and drive motors were the components under load

252



during these tests, demanding the support of a 1.6kg robot and locomo-

tion along a section of skywire. The experimental setup can be seen in

Fig. 6.14, showing a rear-view of the line crawling robot in its natural habi-

tat. The line crawling robot was able to navigate back and forth along the

Figure 6.14: Simple locomotion experiment in progress

skywire supporting the entire weight of the robot without any difficulties.

The speed of travel was quite slow due to the high gear ratio in use, result-

ing in 0.00165m/s, covering approximately 10cm of distance in one minute.

Using such a slow motor with strong torque provided a very sturdy drive

253



useful for navigating up and down varying inclines of skywire.

The next functional testing experiment involved varying the angle of in-

clination of the skywire. During the design phase, slopes of 45 degrees were

specified and thus expected to be suitable. Fifteen and thirty degree inclines

were attempted first with good success. The extra traction provided from

the rubber-lined wheels helped the line crawler navigate up the slopes with-

out much difficulty (see Fig. 6.15). The section of line used was 3.6 metres

in length and the slope was set by adjusting the proximity of the support

towers. The angle of inclination was measured at the steepest point near the

tower structures. The 30 degree incline test was successful but introduced a

problem based on the rigidity of the line grip. The weight is pulled straight

down by gravity and with a rigid line grip and a weight distribution with

two-thirds of total in the platform, the drive wheel furthest from the direc-

tion of travel up the incline slowly lost contact, this can be seen in Fig. 3.16.

Even though the trailing drive wheel was losing contact, the robot was still

able to power up the incline with no difficulties. The 45 degree incline ex-

hibited a more exaggerated problem of losing contact, but the traction and

torque were still significant enough to climb the incline. To address this

problem, some degree of movement for the payload would allow the line

254



Figure 6.15: About to climb a 15 degree inclined section of skywire

255



grip to form to the incline of slopes while the platform remained parallel to

the gravitational force.

The last part of functional testing included acquiring images during travel

on the skywire. Through additional work being done on the TS-5500 in the

CILab group, wireless communication was established through the use of an

air card in the PCMCIA slot, which can be seen in Fig. 6.16 which shows

the line crawler positioning to acquire an image of a sample insulator on

the floor. With a communication link established to the line crawling robot,

it was possible to issue commands to establish the behaviours discussed in

Sec. 3.12. The base behaviour was obstacle avoidance and locomotion along

the skywire. The higher level behaviour pertained to image acquisition of

desired targets. For the purposes of this experiment, the target consisted of

the sample insulator seen in Fig. 6.16. Once the target had been spotted,

the line crawling robot moved into position and acquired the image (see

Fig. 6.17). At the time of writing, only the first layer of behaviour was auto-

mated. Acquiring images was achieved through a sensor interface. This was

accomplished through triggering the micro-switches on either side of the

line crawler. The thinking behind this was that when an obstacle is encoun-

tered, usually it is near a tower as that is where the vibration dampers and

256



Figure 6.16: The line crawler positioning to take a picture of a sample insulator

257



Figure 6.17: Line crawler view of the target insulator

line clamps are located (see Fig. 2.1). The towers coincide with the location

of the insulator stacks and the insulators were the primary targets of inter-

est. When one of the micro-switches was triggered, the line crawler would

move in the opposite direction for 5 seconds before halting and scanning

for targets. The location of the sample insulator was placed in a convenient

location in a well lit environment so that the view of the camera would only

see one dark object, allowing the average grey level tracking technique to be

implemented without worrying about templates for tracking. Once a target

was located in the goal state (S4), an image can be acquired such as the one

seen in Fig. 6.17. Since both the line crawler and the target were essentially

stationary, acquiring the image was a relatively stable process.

258



6.3 Summary

After generating all of the results from the various test vectors and func-

tional testing, a strong picture of the performance of the line crawling robot

was formed. Each experiment targeted different aspects of the line crawling

robot with the intent of proving the utility of the sub-system as part of the

entirety. The process was to exercise as many aspects through refining test

vectors and selecting the appropriate values to provide concise experiments

with meaningful results without having redundancy or too much overlap.

The ideas and information discovered during the experimental stages were

drawn upon to form the the conclusions found in the next chapter.

259



7 Conclusions and Recommendations

In this report, the design and development of a line crawling robot were

outlined. This included both the hardware and software perspective of the

line crawler based on its goal of travel along skywire and acquiring use-

ful images of selected targets. Through the process of design, verification

and experimental work, the operation and performance were confirmed and

measured. The three main aspects of this thesis included the design and

development of the line crawling robot, the target tracking problem using a

monocular vision system and functional performance on skywire leading to

autonomous inspection.

7.1 Conclusions

In its current capacity, the line crawling robot is capable of navigating safely

along sections of skywire in search of desired targets. Besides being able to

support its own weight and move around, it has the capacity to interface with

a number of different devices through USB or PCMCIA ports, allowing for

more advanced capabilities including communication and being able to send

live or previously stored images. Although the physical design is currently

260



meant for individual units, preliminary support was added to the design for

future expansion into a cooperative platform capable of performing more

advanced tasks such as circumnavigating obstacles and sharing information

with one another. The adjustable nature of the line grip allowed an opening

and closing action where the open position avoids contact with obstacles,

allowing the line crawler to avoid objects in its path with the support of

other line crawling robots, similar in nature to the first Lego R©prototype

robot. All of the motors were specified to support double the weight of a

single line crawler with the future intent of docking with and helping support

additional robots for a limited amount of time to achieve more complicated

tasks.

The target tracking problem was specified and a solution was developed

with a monocular vision system. Two degrees of freedom allowed for pan-

ning and tilting the camera to centre desired targets in their field of view

before acquiring important images. Two tracking methods were examined

along with seven algorithms. The template matching technique provided

improved accuracy in almost all cases with all algorithms. The operat-

ing cost was expected to be higher, reducing the number of samples over

the experimental period however the results proved negligible making it a

261



more appealing choice over the average grey level tracking method. The

one saving grace for the average grey level method during the experimental

work was that it did not require any previous knowledge of its target ex-

cept that it must be darker than its surroundings. The size of the target, the

orientation and shape were not as important. The algorithms implemented

demonstrated that the RL techniques provided a suitable choice for target

tracking in all conditions. Specifically, the classical implementation of the

actor critic method and the rough-feedback Q-learning methods were the top

performers for reduced error rates when tracking a target. This was tested

in conditions with varied time, speed, target trajectory and susceptibility to

random noise. The actor critic method excelled due to the quick nature of its

ability to select actions as it stores its own policy instead of learning action

values. On the other hand, the rough-feedback Q-learning method excelled

due to its greedy nature and the adaptable learning rate based on the rough

coverage as a performance metric, altering the step size in the update phase

of the learning process based on previous performance.

Functional operation of the line crawling robot consisted of simple lo-

comotion and support of its own weight, navigating up and down inclines

and acquiring images of desired targets. Through verification and experi-

262



menting, basic functionality of the line crawling robot was refined to the

point of being attached anywhere along the skywire and navigating a com-

plete section. During navigation, behaviour of the robot followed a simple

hierarchical plan with survival and obstacle avoidance being the first strat-

egy and target image acquisition being the second strategy. To improve the

chances of acquiring meaningful images, the line crawling robot stopped to

take pictures, reducing the error rate in positioning the centre of focus for

the camera on the centre of the target. For the preliminary tests, targets of

interest were placed alongside the ends of the section of skywire near the

line clamp obstacles. This combined the behaviour of obstacle avoidance

and image acquisition. Although the current design lacked flexibility in ad-

justing to the form of sloped lines, the power and torque necessary to climb

a 45 degree inclined section of line was available with the addition of rubber

lined wheels and a slow speed motor with high torque.

7.2 Recommendations

Each of the areas of the line crawling robot discussed in the conclusions

contained room for expansion due to the broad scope of the project. The

topics are included along with suggestions for future work and recommen-

263



dations.

To extend the functionality of the line crawling robot and achieve a wider

range of goals during operation on the skywire there are several areas that

could be pursued. Returning to the structural design of the robot, providing

some degree of flexibility in motion of the payload would allow the line

grip to form more closely to the shape of the skywire on steeper inclined

sections. Another important step for future work is the addition of a means

to recharge the power supplies. The batteries selected were rechargeable by

nature but the means to restock them with power was not available without

human assistance. Some efforts were already in place to discover if a solar

trickle charger might solve the problem. The idea of flexible, flat-panel solar

cells were entertained but more testing needs to be done to find out how

NiMH batteries respond to trickle charging or if switching to a different

variety would be more well suited. Another area for expansion would be

providing more sensory equipment for proximity detection of obstacles. The

preliminary testing and format of the line crawling robot did not include

this type of device, however moving to a multiple robot platform would

benefit from being able to detect the proximity of an obstacle, either fixed or

mobile without having to physically contact it, preventing potential mishaps

264



or inter-robot damage. This can be achieved with sonar or IR proximity

detectors.

There were a few areas of work underway on the tracking system at the

time of writing. The tracking methods were suitable for operating in con-

trolled environments, however extension to targets of varying size, shape,

orientations and in various locations would cause both methods to perform

worse. Efforts were being put into discovering improved descriptors that are

more robust for locating targets of interest without needing exact templates

or stark background contrasts to locate them. Both the average grey level

tracking method and the action-value learning RL methods were being ex-

amined with the intent of streamlining the processes. The poor performance

of average grey level tracking warranted a review of the implementation to

ensure there were no redundancies in the code and some simple optimization

ideas were discovered, such as removing the need for the division operation

as the total of each cell would still be a multiple of the total number of pixels,

accurately depicting which contained the lowest grey level. The action value

learning methods, specifically the rough-feedback versions were interesting

as they performed well in trials and the goal was to improve the speed of the

tracking method. The improvements currently under investigation included

265



monitoring the action values at each state and only revising the learning rate

when worse results were being registered. This would have an expensive

initial startup cost as the starting performance is usually worse than after a

few revisions take place, but the later improvement could present a potential

benefit.

Basic functionality was achieved providing security on the skywire for

the line crawling robot, however there were several areas of improvement

for future work. Extension to multiple line crawlers would allow a number

of extra tasks and autonomy for a group of robots that a single unit could

not achieve. Docking facilities for one robot to connect to another could po-

tentially allow navigation around awkward obstacles and potentially move

robots to safety when remaining power needs to be conserved. For safety of

the people involved, the experimental work took place on the reduced size

tower structure, without live conductors. The next step in proving the design

would be to move to field trials above live power lines. Testing to discover

the response of the line crawling robot and all of its onboard systems in close

proximity of the high noise environment provided by live conductors may

warrant the use of shielding. Although the line crawler was built with the

intent of operating over three seasons, (excluding winter) weather proofing

266



the design for outdoor operation is another area that needs to be addressed.

Ideas such as a rain shield and coating all exposed circuit boards have been

entertained. Further investigation into lightning storms and being able to

predict what would happen to the line crawler and steps to take in avoid-

ing danger are necessary since the skywire is intended to provide a path to

ground for lightning strikes.

267



Index

Actor Critic, 24
AGL Tracking, 56, 107
Approximation Space, 42

Background, 5
Batteries, 150
Buck Switching Regulator, 12, 147

Classical Target Tracking, 170
Coefficient of Friction, 11
Conclusions, 260

Decimation, 52
Diametral Pitch, 7
Discount Rate, 27

Episode, 32
Ethogram, 65
Ethology, 65
Experiment Design, 205
Experimental Results, 220

Grey-Scale Conversion, 51

Indiscernibility, 39
Information System, 38

Learning Rate, 28
Line Grip, 75
Locomotion Drive, 129
Lower Approximation, 40

Overlap Function, 43

Payload, 93
PIC Control Board, 113
Pitch Circle, 7
Policy, 21
Position Control Motors, 141
Powerset, 43
Pressure Angle, 7

Q-Learning, 29

Reinforcement Learning, 18
reward, 27
Rough Coverage, 44
Rough Inclusion, 44
Rough Reinforcement Learning, 165
Rough Sets, 36

Sarsa, 33
skywire, 5
Softmax Action Selection, 25
State Value, 27
Subsumption, 59, 171
System Actions, 161
System Architecture, 68
System Reward, 162
System States, 160
System Verification, 175

Template Matching, 53

268



Temporal Difference Error, 26
TS-5500, 109

Uncertainty Function, 43
Upper Approximation, 40

Vision System, 100

269



References

[1] J. E. A. Bertram, and Y. Chang, ’Mechanical Energy Oscillations
of Two Brachiation Gaits: Measurement and Simulation’, American
Journal of Physical Anthropology, vol. 115, pp. 819-826, 2001.

[2] M. J. Beynon, B. Curry, and P. Morgan, ’Knowledge discovery in mar-
keting: An approach through Rough Set Theory’, European Journal of
Marketing, vol. 35, no. 7-8, pp. 915-937, 2001.

[3] M. Borkowski and C. Henry, CILab: personal communication, 2006.

[4] R. A. Brooks, ’A Robust Layered Control System for a Mobile Robot’,
IEEE Journal of Robotics and Automation, RA-2, pp. 14-23, April
1986.

[5] R. A. Brooks, ’Planning is Just a Way of Avoiding Figuring Out What
to do Next’, Technical Report, MIT Artificial Intelligence Laboratory,
Working Paper 303, Chapter 6, pp. 103-110, September 1987.

[6] R. A. Brooks and A. M. Flynn, ’Fast, Cheap and out of Control: A
Robot Invasion of the Solar System’, Journal of The British Interplan-
etary Society, Vol. 42, pp. 478-485, 1989.

[7] J. Brown, Brief H-Bridge Theory of Operation, Dallas Personal
Robotics Group, 1998, http://www.dprg.org/tutorials/1998-04a/ Last
checked for content, February 1, 2007.

[8] I. Buchman, The nickel-based battery, its dominance and the future,
Battery University, 2005, http://www.batteryuniversity.com/partone-
4.htm Last checked for content, February 1, 2007.

[9] D. Clark, and M. Owings, Building Robot Drive Trains, New York,
NY: McGraw-Hill Inc, 2003.

[10] J. H. Connell, ’A Behaviour-Based Arm Controller’, MIT Artificial
Intelligence Lab, AI Memo 1025, pp. 1-15, June 1988.

270



[11] V. Degtyaryov, Design of a Line Crawling Robot with an Intelligent
Hybrid Control System, M.Sc. Thesis, Department of Electrical and
Computer Engineering, University of Manitoba, 2003.

[12] Elan SC520 Data Sheet, Advanced Micro Devices, 2001,
http://www.amd.com/ Last checked for content February 1, 2007.

[13] QRD1113/1114 Reflective Object Sensor Datasheet, Fairchild Semi-
conductor, 2006, http://www.fairchildsemi.com/ds/QR/QRD1114.pdf
Last checked for content, February 1, 2007.

[14] C. Gaskett, Q-Learning for Robot Control, Ph.D. Thesis, Department
of Systems Engineering, The Australian National University, 2002.

[15] R. C. Gonzalez and R. E. Woods, Digital Image Processing: Second
Edition, Prentice Hall Inc., Upper Saddle River, New Jersey, 2002.

[16] I. M. Gotlieb, Regulated Power Supplies: Fourth Edition, McGraw-
Hill, Blue Ridge Summit, PA, pp. 327-444, 1992.

[17] J. Hawkins with S. Blakeslee, On Intelligence, New York, NY: Times
Books, Henry Holt and Company, 2004.

[18] C. Henry, Reinforcement Learning in Biologically-Inspired Collective
Robotics: A Rough Set Approach, M.Sc. Thesis, ECE Department,
University of Manitoba, January 2006.

[19] J. Herbert and J. Tao, ’Time-Series Data Analysis with Rough Sets’,
4th International Conference on Computational Intelligence in Eco-
nomics and Finance (CIEF), Salt Lake City, USA, pp. 908-911, July
2005.

[20] B. K. P. Horn, ’Exact Reproduction of Colored Images’, Computer
Vision, Graphics and Image Processing, vol. 26, pp. 135-167, 1984.

[21] T. Jaakkola, M. I. Jordan, and S. P. Singh, ’Convergence of Stochastic
Iterative Dynamic Programming Algorithms’, Neural Computation, 6,
pp. 1185-1201, 1994.

271



[22] B. Jahne, Digital Image Processing: 6th revised and extended edition,
Springer-Verlag, Berlin, Germany, pp. 31-41, 2005.

[23] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ’Reinforcement
Learning: A Survey’, Journal of Artificial Intelligence Research, vol.
4, pp. 237-248, May 1996.

[24] B. Knudsen, CC5X C Compiler, B. Knudsen Data, 2006,
http://www.bknd.com/ Last checked for content February 1, 2007.

[25] J. Komorowski, L. Polkowski, and A. Skowron, ’Rough Sets: A Tutor-
ial’, In S.K. Pal and A. Skowron, editors, Rough-Fuzzy Hybridization:
A New Method for Decision Making, Springer-Verlag, Singapore(in
Print), 1998.

[26] D. Lancaster, ’The Mount Graham Aerial Tramway’, Midnight Engi-
neering, May-June 1995, pp. 25-27.

[27] G. Ledwich, DC-DC Converter Basics,
http://www.powerdesigners.com/InfoWeb/design center/articles/DC-
DC/converter.shtm Last checked for content, February 1, 2007.

[28] Linear Technology: LTC1383 Datasheets, 1994,
http://www.linear.com/ Last checked for content, February 1,
2007.

[29] Linux RedHat 9.0 Manuals, 2003,
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/
Last checked for content, February 1, 2007.

[30] M. M. Mano, Digital Design: Second Edition, Englewood Cliffs, New
Jersey: Prentice-Hall Inc, 1991.

[31] F. Martin, The Handy Board Manuals, 2000,
http://www.handyboard.com/techdocs/index.html
Last checked for content, February 1, 2007.

272



[32] G. McComb, The Robot Builder’s Bonanza, New York, NY: McGraw
Hill Inc, 2001.

[33] C. McManis, H-Bridges: Theory and Practice, Chuck’s Robotics
Notebook, 2006, http://www.mcmanis.com/chuck/robotics/tutorial/h-
bridge/ Last checked for content, February 1, 2007.

[34] Merkle-Korff Industries, 2004 http://www.merkle-korff.com/
Last checked for content, February 1, 2007.

[35] Micro Drives: Motor Supplier, 2005, http://www.micro-drives.com/
Last checked for content, February 1, 2007.

[36] Microchip Technology: Crystal Oscillator Basics and Crystal Se-
lection for rfPIC and PICmicro devices, Microchip Technology,
http://ww1.microchip.com/downloads/en/AppNotes/00826a.pdf
Last checked for content, February 1, 2007.

[37] MicroMo Electronics, 2007, http://www.micromo.com/ Last checked
for content, February 1, 2007.

[38] MPLAB Integrated Development Environment, Microchip Technology
Inc., http://www.microchip.com/ Last checked for content, February 1,
2007.

[39] T. Munakata and Z. Pawlak, ’Rough Control Application of Rough Set
Theory to Control’, Fourth European Congress on Intelligent Tech-
niques and Soft Computing, vol. 1, pp. 209-218, Aachen, Germany,
September 1996.

[40] National Semiconductor: 3A Step-Down Voltage Regulator Datasheet,
2007, http://www.national.com/pf/LM/LM2576.html Last checked for
content, February 1, 2007.

[41] A. Ohrn, ’Discernibility and Rough Sets in Medicine: Tools and Appli-
cations’, Ph.D. Thesis, Department of Computer and Information Sci-
ence, Norwegian University of Science and Technology Trondheim,
2000.

273



[42] Z. Pawlak, ’Rough Sets’, International Journal of Computer and In-
formation Sciences vol. 11, no. 5, pp. 341-356, 1982.

[43] Z. Pawlak, Rough Sets. Theoretical Reasoning about Data, Theory and
Decision Library, Series D: System Theory, Knowledge Engineering
and Problem Solving, vol. 9, Kluwer Academic Pub., Dordrecht, 1991.

[44] Z. Pawlak, ’Why Rough Sets?’, Proceedings of the Fifth IEEE Confer-
ence on Fuzzy Systems, vol. 2, pp. 738-743, September 1996.

[45] Z. Pawlak, ’Rough Set Theory and its applications’, Journal of
Telecommunications and Information Technology, 3, 2002.

[46] J. F. Peters, T. C. Ahn, M. Borkowski, V. Degtyaryov, and S. Ra-
manna, ’Line-crawling robot navigation: a rough neurocomputing
approach’, Autonomous robotic systems: soft computing and hard
computing methodologies and applications, Heidelberg, Germany,
Physica-Verlag GmbH, pp. 141-163, 2003.

[47] J. F. Peters, D. A. Lockery, and S. Ramanna, ’Monte Carlo Off-Policy
Reinforcement Learning: A Rough Set Approach’, Proceedings of The
Fifth International Conference on Hybrid Intelligent Systems, Novem-
ber 2005.

[48] J. F. Peters, M. Borkowski, C. Henry, D. Lockery, and D. S. Gunder-
son, ’Line-Crawling Bots That Inspect Electric Power Transmission
Line Equipment’, The 3rd International Conference on Autonomous
Robots and Agents (ICARA), Palmerston North, New Zealand, Decem-
ber 2006.

[49] PIC16F871 Data Sheets, 2003, http://ww1.microchip.com/
Last checked for content, February 1, 2007.

[50] PIC Design Catalog, Technical Section, pp 13-1 to 13-11, 1997.

[51] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C++: The Art of Scientific Computing: Second

274



Edition, Cambridge University Press, University of Cambridge, UK,
pp. 278-290, 2002.

[52] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Prin-
ciples, Algorithms and Applications, Prentice Hall Inc., Upper Saddle
River, New Jersey, 1996, pp. 784-787.

[53] Reynolds Electronics: Projects with the PIC Microcontroller, 1999,
http://www.rentron.com/pic.htm Last checked for content, February 1,
2007.

[54] B. Rorabaugh, Mechanical Devices for the Electronics Experimenter,
New York, NY: McGraw-Hill Inc, 1995.

[55] J. K. Rosenblatt, DAMN: A Distributed Architecture for Mobile Navi-
gation, Ph.D. Thesis, Robotics Institute, Carnegie Mellon University,
1995.

[56] G. A. Rummery and M. Niranjan, ’On-line Q-learning Using Connec-
tionist Systems’, Technical Report CUED/F-INFENG/TR 166, Engi-
neering Department, Cambridge University, UK, September 1994.

[57] F. Saito, T. Fukuda, and F. Arai, ’Swing and locomotion control for a
two-link brachiation robot.’, IEEE Control Systems, vol. 14, issue 1,
pp. 5-12, February 1994.

[58] D. Schelle and J. Castorena, ’Buck-Converter Design Demystified’,
Power Electronics Technology, June 2006, pp. 46-53.

[59] S. P. Singh and R. S. Sutton, ’Reinforcement Learning with Replacing
Eligibility Traces’, Machine Learning, Kluwer Academic Publishers,
22, pp. 123-158, 1996.

[60] S. P. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, ’Conver-
gence Results for Single-Step On-Policy Reinforcement-Learning Al-
gorithms’, Machine Learning, vol. 38, no. 3, pp. 287-308, 2000.

275



[61] A. Skowron and J. Stepaniuk, ’Tolerance Approximation Spaces’,
Fundamenta Informaticae, vol. 27, no. 2/3, pp. 245-253, 1996.

[62] Sparkfun Electronics: General PIC Tutorials, 2005,
http://www.sparkfun.com/commerce/hdr.php?p=tutorials
Last checked for content, February 1, 2007.

[63] J. Stepaniuk, ’Approximation Spaces, Reducts and Representatives’,
in L. Polkowski and A. Skowron (Eds.), Rough Sets in Knowledge Dis-
covery 2, Studies in Fuzziness and Soft Computing, 19, pp. 109-126,
Heidelberg: Springer Verlag, 1998.

[64] C. E. Strangio, The RS232 Standard, http://www.camiresearch.com/
Last checked for content, February 1, 2007.

[65] R. S. Sutton, A. G. Barto, and C. W. Anderson, ’Neuronlike Adaptive
Elements That Can Solve Difficult Learning Problems’, IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. SMC-13, no. 5, pp
834-847, September/October 1983.

[66] R. S. Sutton, ’Generalization in Reinforcement Learning: Successful
Examples Using Sparse Coarse Coding’, Advances in Neural Informa-
tion Processing Systems, The MIT Press, 8, pp. 1038-1044, 1996.

[67] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion, Cambridge, MA: The MIT Press, 1998.

[68] R. W. Swiniarski and A. Skowron, ’Rough set methods in feature se-
lection and recognition’, Pattern Recognition Letters 24, pp. 833-849,
2002.

[69] Technologic Systems: TS-5500 Users Manual, Technologic Systems
Fountain Hills, AZ, October 2003, pp. 11-12, 19, 33, 38.

[70] Texas Instruments: TPIC0108B Datasheets, 2002,
http://focus.ti.com/docs/prod/folders/print/tpic0108b.html
Last checked for content, February 1, 2007.

276



[71] N. Tinbergen, ’On aims and methods of Ethology’, Zeitschrift fur
Tierpsychologie, 20, pp. 410-433, March 1963.

[72] H. J. Trussell, E. Saber, and M. Vrhel, ’Color Image Processing: Ba-
sics and Special Issue Overview’, IEEE Signal Processing Magazine,
pp 14-22, January 2005.

[73] R. S. Villanucci, A. W. Avtgis, and W. F. Megow, Electronic Tech-
niques, Shop Practices and Construction, 4th edition., Englewood
Cliffs, New Jersey: Prentice-Hall Inc, 1991.

[74] R. H. Warren, J. A. Johnson, and G. H. Huang, ’Application of Rough
Sets to Environmental Engineering Models’, Transactions on Rough
Sets I, Lecture Notes in Computer Science (LNCS), vol. 3100, pp. 356-
374, 2004.

[75] C. J. C. H. Watkins, ’Learning from Delayed Rewards’, Ph.D. Thesis,
King’s College, University of London, UK, pp. 25-36, May 1989.

[76] C. J. C. H. Watkins and P. Dayan, ’Technical Note: Q-Learning’, Ma-
chine Learning, 8, pp. 279-292, 1992.

[77] Wikipedia: The PIC Microcontroller, 2007,
http://en.wikipedia.org/wiki/PIC microcontroller
Last checked for content, February 1, 2007.

[78] Z. M. Wojcik, ’Application of Rough Sets for Edge Enhancing Image
Filters’, International Conference on Image Processing 1994, pp. 525-
529, 1994.

[79] M. Xhaard, SPCA50X USB Camera Linux Driver, 2004,
http://sourceforge.net/ Last checked for content, February 1, 2007.

277


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Introduction
	Motivation
	Goals and Objectives
	Scope
	Organization of Report

	Background
	Line Crawling Environment
	ALiCE II Systems
	Gears and Motor Selection
	Buck Switching Regulator
	Interfacing Processors

	Reinforcement Learning
	The Actor Critic Algorithm
	The Q-Learning Algorithm
	The Sarsa Algorithm

	Rough Set Theory
	Approximation Spaces
	An Example Approximation Space

	Image Processing
	Template Matching
	Average Grey Level Tracking

	Robot Behaviour
	Ethology and the Ethogram

	System Architecture
	The First Prototype
	The Second Prototype
	The Line Grip
	Adding a Payload
	The Work Envelope

	The System Diagram
	The Vision System
	Image Processing

	The TS-5500 Computer
	The PIC Controller
	Communication Protocol Between the TS-5500 and the PIC
	Locomotion and Position Control Motors
	Locomotion Drive
	Position Control Motors

	Power Supply Design
	Battery Selection

	Sensor Configuration
	Reinforcement Learning and the Target Tracking Problem
	The Target Tracking Problem
	Algorithm Selection
	Rough Coverage Modification
	Classical Target Tracking

	Robot Behaviour

	System Verification
	System Overview
	Target Tracking System
	Learning Methods
	PIC Control System
	Calibration of Position Control Servos
	Simple Locomotion Tests and Verification of the DC Motor

	Robot Behaviour
	Sensor Verification and Calibration

	Optimization

	Experiment Design
	Hardware Experimental Environment Setup
	Hardware Controllable Parameters
	Software System Parameters
	The Actor Critic Algorithm
	The Q-Learning Algorithm
	The Sarsa Algorithm

	Test Vector Development
	Line Crawling Experiments

	Experimental Results and Discussion
	Experimental Results
	Varied Time Target Tracking
	Variable Target Speed
	Random Target Trajectories
	Noise Susceptibility

	Line Crawling Experiments
	Summary

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Index
	References

