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Abstract. This paper considers the problem of how to establish calculi of approximation spaces.
Approximation spaces considered in the context of rough sets were introduced by Zdzisław Pawlak
more than two decades ago. In general, a calculus of approximation spaces is a system for combin-
ing, describing, measuring, reasoning about, and performing operations on approximation spaces.
An approach to achieving a calculus of approximation spaces that provides a basis for approximating
reasoning in distributed systems of cooperating agents is considered in this paper. Examples of basic
concepts are given throughout this paper to illustrate how approximation spaces can be beneficially
used in many settings, in particular for complex concept approximation. The contribution of this
paper is the presentation of a framework for calculi of approximation spaces useful for approximate
reasoning by cooperating agents.

Keywords: rough sets, approximation spaces, concept approximation, learning, approximate reasoning.

Address for correspondence: Jarosław Stepaniuk, Department of Computer Science, Białystok University of Technology,
Wiejska 45a, 15-351 Białystok, Poland
∗The research has been supported by the grant 3 T11C 002 26 from Ministry of Scientific Research and Information Technology
of the Republic of Poland.
†The research has been supported by the grant 4 T11C 014 25 from Ministry of Scientific Research and Information Technology
of the Republic of Poland.
‡This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) grant
185986 and grant T247 from Manitoba Hydro.



1002 A. Skowron et al / Calculi of Approximation Spaces

1. Introduction

This paper considers the problem of how to establish calculi of approximation spaces. Approximation
spaces are fundamental structures for the rough set approach [18, 40, 23] and have been the focus of
a number of recent investigations (see, e.g., [4, 5, 7, 20, 24, 22, 40]). The term calculus has been at-
tributed to G. W. v. Leibniz. Leibniz thought of a calculus as an instrument of discovery inasmuch as it
provides a system for combining, describing, measuring, reasoning about and performing operations on
objects of interest such as terms of a logical formula in a logical calculus or infinitesimally small quan-
tities in a differential calculus(see, e.g., [11]). The calculus of classes described by Alfred Tarski [47]
shares some of the features found in a calculus of approximation spaces. The term class is synony-
mous with set, an assemblage of distinct entities, either individually specified or which satisfy certain
specified conditions (e.g., equivalence class of y consisting of all objects equivalent to y). In a calculus
of classes, the kinds of classes (e.g., the empty class and the universal class), relations between classes
(e.g., inclusion, overlap, identity), and operations on classes (∪,∩,−) are specified. Similarly, the cal-
culus of approximation spaces distinguishes between kinds of spaces (e.g., completely and incompletely
known approximation spaces), relations between approximation spaces (e.g., inclusion), and operations
on approximation spaces.

In this paper we present a generalization of approximation spaces. Using such approximation spaces
we show how the rough set approach can be used for approximation of concepts assuming that only
partial information on approximation spaces is available. Hence, searching for concept approximation,
i.e., the basic task in machine learning and pattern recognition can be formulated as searching for rel-
evant approximation spaces. In the paper, we also characterize approximation space operations called
constrained sums that are used in searching for complex concept approximation. We also discuss an
important role of constrained sums in hierarchical modeling and in approximate reasoning. Constrained
sums are generic operations for approximate reasoning in distributed environments and in multiagent
systems.

Our approach is also related to the perception based computing. Studying cognition and in particular,
perception based computing [1, 2, 10, 9, 14, 15, 16, 49] is becoming now one of the very active research
direction for methods of complex concept approximation [5, 4, 17, 27, 20] and in the consequence for
building intelligent systems.

The paper is organized as follows. In Sect. 2, we recall the definition of approximation spaces. Next,
we describe a constructive approach for computing values of uncertainty and rough inclusion functions.
These functions are the basic components of approximation spaces. Parameters of the uncertainty and
rough inclusion functions are tuned in searching for relevant approximation spaces. Among such para-
meters, we distinguish sensory environments and their extensions. These parameters are used for con-
structive definition of uncertainty and rough inclusion functions. In particular, we show how information
systems can be defined from such approximation spaces. We recall the basic definitions of concept
approximation using the approximation spaces. The presented examples of approximation spaces are
showing that the discussed approach generalizes several known approaches to approximation in rough
set theory. Next, in Sect. 3, we discuss the problem of concept approximation under assumption that only
a partial information about approximation spaces is available. In this case, to decide if a given object
belongs to the upper or lower approximation of a given concept, it is necessary to estimate the exact
value of the rough inclusion function for the neighborhood of this object and the approximated concept
because the exact value may be not available. We present an illustrative example for such estimation fol-



A. Skowron et al / Calculi of Approximation Spaces 1003

lowing a well known heuristic used for rule based classifier construction. In this way, we are showing that
searching for relevant approximation spaces is closely related to the basic task of classifier construction
in machine learning and in pattern recognition. Searching methods for relevant approximation spaces for
complex concept approximation are important in hierarchical learning and in approximate reasoning, in
particular in distributed environments and multiagent systems. The search space is equal to the set gener-
ated from some generic approximation spaces and some special operations on approximation spaces that
we call constrained sums. We discuss applications of such spaces for complex concept approximation
using hierarchical learning, approximation of vague dependencies and ontology approximation. Sect. 4
introduces an approximation space-based framework for doing research in modeling complex dynamical
systems and analysis of their behavior. First, we present some general remarks and next, in Sect. 4.1,
operations on approximation spaces are considered. In Sect. 4.2, we discuss approximation spaces in
the hierarchical learning framework and, in Sect. 4.3, we describe an approach to reinforcement learning
using approximation spaces.

2. Approximation Spaces

In this section we recall the definition of an approximation space from [34, 44].

Definition 2.1. A parameterized approximation space is a system
AS#,$ = (U, I#, ν$), where

• U is a non-empty set of objects,

• I# : U → P (U) is an uncertainty function, where P (U) denotes the power set of U ,

• ν$ : P (U) × P (U) → [0, 1] is a rough inclusion function,

and #, $ denote vectors of parameters (the indexes #, $ will be omitted if it does not lead to misunder-
standing).

Observe, that in the above definition, we specify, in fact, a family of approximation spaces defined
by the ranges in which parameters can be changed. Searching for relevant approximation space for
the target task is an important and computationally hard task in concept approximation. Parameters of
approximation spaces can be of different forms. They can be related to such things as feature (attribute)
selection, tolerance threshold setting, and tuning of inclusion measures (see, e.g., [36]).

2.1. Uncertainty function

The uncertainty function defines for every object x a set of objects described similarly to x. The set I(x)
is called the neighborhood of x (see, e.g., [18, 34]).

We assume that the values of the uncertainty function are defined using a sensory environment, i.e.,
a pair (L, ‖ · ‖U ), where L is a set of formulas, called the sensory formulas, and ‖ · ‖U : L −→ P (U) is
the sensory semantics. We assume that for any sensory formula α and any object x ∈ U , the information
is available if x ∈ ‖α‖U holds. The set {α : x ∈ ‖α‖U} is called the signature of x in AS and is
denoted by InfAS(x). For any x ∈ U , the set NAS(x) of neighborhoods of x in AS is defined by
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{‖α‖U : x ∈ ‖α‖U}, and from this set the neighborhood I(x) is constructed. For example, I(x) is
defined by selecting an element from the set {‖α‖U : x ∈ ‖α‖U} or by I(x) =

⋂NAS(x). Observe
that any sensory environment (L, ‖ · ‖U ) can be treated as a parameter of I from the vector # (see
Definition 2.1).

Let us consider two examples. Any decision table DT = (U,A, d) [18] defines an approximation
space ASDT = (U, IA, νSRI), where, as we will see, IA(x) = {y ∈ U : a(y) = a(x) for all a ∈ A}.
Any sensory formula is a descriptor, i.e., a formula of the form a = v, where a ∈ A and v ∈ Va with the
standard semantics ‖a = v‖U = {x ∈ U : a(x) = v}. Then, for any x ∈ U its signature InfASDT

(x) is
equal to {a = a(x) : a ∈ A} and the neighborhood IA(x) is equal to

⋂NASDT
(x). Another example can

be obtained assuming that for any a ∈ A, there is given a tolerance relation τa ⊆ Va×Va (see, e.g., [34]).
Let τ = {τa}a∈A. Then, one can consider a tolerance decision table DTτ = (U,A, d, τ) with tolerance
descriptors a =τa v and their semantics ‖a =τa v‖U = {x ∈ U : vτaa(x)}. Any such tolerance decision
table DTτ = (U,A, d, τ) defines the approximation space ASDTτ = (U, IA, νSRI) with the signature
InfASDTτ

(x) = {a =τa a(x) : a ∈ A}, and the neighborhood IA(x) =
⋂NASDTτ

(x) for any x ∈ U .
The fusion of NASDTτ

(x) for computing the neighborhood of x can have many different forms; the
intersection is only an example. One can also consider some more general uncertainty functions, e.g.,
with values in P2(U) [40]. For example, to compute the value of I(x), some subfamilies of NAS(x) can
first be selected and the family consisting of intersection of each such a subfamily, is next taken as the
value of I(x).

Notice that any sensory environment (L, ‖ · ‖U ) defines an information system with the universe U
of objects. Any row of such an information system for an object x consists of information if x ∈ ‖α‖U
holds, for any sensory formula α. Let us also observe that in our examples, we have used a simple
sensory language defined by descriptors of the form a = v. One can consider a more general approach
by taking, instead of the simple structure (Va,=), some other relational structures Ra with the carrier Va

for a ∈ A and a signature τ . Then any formula (with one free variable) from a sensory language with the
signature τ that is interpreted in Ra defines a subset V ⊆ Va and induces a neighborhood on the universe
of objects consisting of all objects having values of the attribute a in the set V . Notice that this is the
basic step in hierarchical modelling [39].

2.2. Rough inclusion function

One can consider general constraints which the rough inclusion functions should satisfy. Searching for
such constraints initiated investigations resulting in the discovery and development of rough mereology
(see, e.g., [28]). In this subsection, we present only some examples of rough inclusion functions.

The rough inclusion function ν$ : P (U) × P (U) → [0, 1] defines the degree of inclusion of X in
Y , where X,Y ⊆ U .

In the simplest case, rough inclusion can be defined by (1) (see, e.g., [34, 18]).

νSRI (X,Y ) =

{
card(X∩Y )

card(X) if X �= ∅
1 if X = ∅. (1)

This measure is widely used by the data mining and rough set communities. It is worth mentioning that
Jan Łukasiewicz [13] was the first one who used this idea to estimate the probability of implications.
However, rough inclusion can have a much more general form than inclusion of sets to a degree (see,
e.g., [28, 40]).



A. Skowron et al / Calculi of Approximation Spaces 1005

Another example of a rough inclusion function νt can be defined using standard rough inclusion and
a threshold t ∈ (0, 0.5) as shown in (2).

νt (X,Y ) =

⎧⎪⎨
⎪⎩

1 if νSRI (X,Y ) ≥ 1 − t
νSRI(X,Y )−t

1−2t if t ≤ νSRI (X,Y ) < 1 − t

0 if νSRI (X,Y ) ≤ t.

(2)

The rough inclusion function νt is used in the variable precision rough set approach [52]. Another
example of rough inclusion is used for relation approximation [43, 44] and function approximation [40].
Then the inclusion function ν∗ for subsets X,Y ⊆ R and R is the set of reals, is defined by Eq. 3.

ν∗ (X,Y ) =

{
card(π1(X∩Y ))

card(π1(X)) if π1(X) �= ∅
1 if π1(X) = ∅. (3)

where π1 is the projection operation on the first coordinate. Assume now, that X is a cube and Y is
the graph G(f) of the function f : R −→ R. Then, e.g., X is in the lower approximation of f if the
projection on the first coordinate of the intersection X ∩ G(f) is equal to the projection of X on the
first coordinate. This means that the part of the graph G(f) is “well” included in the box X, i.e., for
all arguments that belong to the box projection on the first coordinate the value of f is included in the
projection of the box X on the second coordinate.

Usually, there are several parameters that are tuned in searching for a relevant rough inclusion func-
tion. Such parameters are listed in the vector #. An example of such a parameter is the threshold
mentioned for the rough inclusion function used in the variable precision rough set model. We would
like to mention some other important parameters. Among them are pairs (L∗, ‖ · ‖∗U ) where L∗ is an
extension of L and ‖ · ‖∗U is an extension of ‖ · ‖U , where (L, ‖ · ‖U ) is a sensory environment. For
example, if L consists of sensory formulas a = v for a ∈ A and v ∈ Va then one can take as L∗ the set
of descriptor conjunctions. For rule based classifiers, we search for relevant patterns for decision classes
in such a set of formulas. We present more details in Sect 2.3.

2.3. Lower and upper approximations

The lower and the upper approximations of subsets of U are defined as follows.

Definition 2.2. For any approximation space AS#,$ = (U, I#, ν$) and any subset X ⊆ U , the lower
and upper approximations are defined by

LOW
(
AS#,$,X

)
= {x ∈ U : ν$ (I# (x) ,X) = 1} ,

UPP
(
AS#,$,X

)
= {x ∈ U : ν$ (I# (x) ,X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space AS#,$ is the set of all objects
which can be classified with certainty as objects of X with respect to AS#,$. The upper approximation
of a set X with respect to the approximation space AS#,$ is the set of all objects which can be possibly
classified as objects of X with respect to AS#,$.

Several known approaches to concept approximations can be covered using the approximation spaces
discussed here, e.g., the approach given in [18], approximations based on the variable precision rough
set model [52] or tolerance (similarity) rough set approximations (see, e.g., [34] and references in [34]).



1006 A. Skowron et al / Calculi of Approximation Spaces

Classification methods for concept approximation developed in machine learning and pattern recog-
nition make it possible to decide for a given object if it belongs to the approximated concept or not
[8]. The classification methods yield the decisions using only partial information about approximated
concepts. This fact is reflected in the rough set approach by assumption that concept approximations
should be defined using only partial information about approximation spaces. To decide if a given object
belongs to the (lower or upper) approximation of a given concept, the rough inclusion function values are
needed. In the next section, we show how such values necessary for classification making, are estimated
on the basis of available partial information about approximation spaces.

3. Concept Approximation by Partial Information about Approximation
Spaces

In machine learning and pattern recognition [8], we often search for approximation of a concept C ⊂ U∗

in an approximation space AS∗ = (U∗, I∗, ν∗) having only a partial information about AS∗ and C , i.e.,
information restricted to a sample U ⊂ U∗. Let us denote the restriction of AS∗ to U by AS = (U, I, ν),
i.e., I(x) = I∗(x) ∩ U , ν(X,Y ) = ν∗(X,Y ) for x ∈ U , and X,Y ⊆ U .

To decide if a given object x belongs to the lower approximation or to the upper approximation
of C ⊂ U∗, it is necessary to know the value ν∗(I∗(x), C). However, in case there is only partial
information about the approximation space AS∗ available, one must make an estimation of such a value
rather than its exact value. In machine learning, pattern recognition or data mining, different heuristics
are used for estimation of the values of ν∗. Using different heuristic strategies, values of another function
ν ′ are computed and they are used for estimation of values of ν∗. Then, the function ν′ is used for
deciding if objects belong to C or not. Hence, we define an approximation of C in the approximation
space AS′ = (U∗, I∗, ν ′) rather than in AS∗. Usually, it is required that the approximations of C ∩ U
in AS and AS′ are close (or the same). If a new portion of objects extending the sample U to U1 is
received, then the closeness of approximations of C in the new approximation space AS1 = (U1, I1, ν1)
(where I1, ν1 are obtained by restriction of I∗, ν∗ to U1) with approximations over AS′ restricted to U1

is verified. If the approximations are not close enough, then the definition of ν′ is modified using new
information about the extended sample. In this way, we gradually improve the quality of approximation
of C on larger parts of the universe U∗. This idea is presented in Figure 1.

Now we would like to explain in more detail a method for estimation of values ν∗(I∗(x), C). Let us
consider an illustrative example. In the example we follow a method often used in rule based classifiers
[40]. The method is based on the following steps. First, a set of patterns that are used as left hand sides
of decision rules, is induced. Each pattern describes a set of objects in U∗ with a satisfactory degree of
inclusion to one of decision classes (C or U∗ − C for the binary decision). Next, for any object the set
of all such patterns that are matched to a satisfactory degree by the given object is extracted. Finally, it
is applied a conflict resolution strategy (e.g., voting) for resolving conflicts between votes for different
decisions by the matched patterns.

We now present an illustrative example to describe this process more formally in the framework of
approximation spaces. First, we assume that among parameters of rough inclusion functions are pairs
(PAT, ‖ · ‖U∗), where PAT is a set of descriptor conjunctions over a set of condition attributes and
‖ · ‖U∗ : PAT −→ P (U∗) is the semantics of patterns in U∗. Using such parameters we estimate the
value ν∗(‖pat‖U∗ , C) by ν(‖pat‖U , C ∩ U), for any pat ∈ PAT , and we obtain, for a given threshold
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AS*=(U*,...,)

...

AS2=(U2,...,)

AS1=(U1,...,)

AS=(U,...,)

Figure 1. Partial information about approximation space AS ∗

deg ∈ [0, 1], the set S1 of all patterns pat such that ν(‖pat‖U , C ∩ U) ≥ deg, i.e., consisting of
patterns “for” the concept C . In an analogous way we obtain the set S2 of all patterns pat satisfying
ν∗(‖pat‖U∗ , U∗ − C) ≥ deg. S2 consists of patterns “for” the complement U∗ − C of the concept C .
Next, we estimate ν∗(I∗(x), ‖pat‖U∗) for pat ∈ Si, for i = 1, 2. To do this we use our assumption on
computing I∗(x) for x ∈ U∗. We assume that the sensory formulas from L are descriptors a = v over
the condition attributes from a given set of condition attributes A with the semantics in U∗ defined by
‖a = v‖U∗ = {x ∈ U∗ : a(x) = v} for a ∈ A and v ∈ Va, where Va is the value set of a. We also have
I∗(x) = {y ∈ U∗ : InfA(x) = InfA(y)}, where InfA(x) = {(a, a(x)) : a ∈ A}.

Often, we estimate ν∗(I∗(x), ‖pat‖U∗) using a matching strategy based on similarity of the syntactic
description of x by InfA(x) and the pattern pat. In this way we obtain for a given x the set S′i of all
patterns pat ∈ Si (for i = 1, 2) such that ν(I∗(x) ∩ U, ‖pat‖U ) ≥ deg1 where deg1 ∈ [0, 1] is a given
threshold. Finally, the estimation ν′(I∗(x), C) of the value ν∗(I∗(x), C) is obtained by application to
the sets S′

1, S
′
2 a conflict resolution strategy for resolving conflicts between patterns “for” and “against”

the membership of x to C .

Usually, the function ν′ is parameterized, e.g., by a threshold to which at least the patterns should be
included into the decision classes. Also the discussed sets of patterns are among parameters of ν′ tuned
in the process of rule based classifier construction. Moreover, matching strategies used for estimation
of matching degrees are usually parameterized and such parameters are also among tuned parameters of
ν ′. In machine learning, pattern recognition and data mining, many different searching techniques have
been developed for inducing concept approximations of the high quality. Among such components are
relevant features, patterns, measures of closeness, model quality measures.

The approximation spaces defined above have been generalized in [40] to approximation spaces
consisting of information granules.
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4. Approximation Spaces and Constrained Sums in Distributed Environ-
ments

In this section, we outline an approach to approximate reasoning in distributed environments using ap-
proximation spaces and operations on approximation spaces, called the constrained sums. The approx-
imation spaces are allocated in different agents [12] and they are used to approximate concepts, and to
discover new concepts as well as dependencies between concepts. The agents or their teams can interact
what helps them to construct new approximation spaces more relevant for understanding of their envi-
ronments (e.g., to better approximate concepts or to discover new concepts) and to select more relevant
actions to achieve agent goals. The interactions are realized by constrained sums. We would like to
emphasize that the dynamics of such a system is based on learning by individual agents and agent teams
new concepts and dependencies that are next used for performing further actions by agents or their teams.

To illustrate the importance of approximation spaces in modelling by multiagent systems of complex
dynamical systems, we briefly discuss some aspects of such a modelling.

1. Assume that in the environment there are distinguished units (agents). Each agent is equipped with
an ontology of vague concepts and approximation spaces used for approximation of concepts and
dependencies from the ontology. Any agent, to achieve his goal, is performing some actions with
pre- and post-conditions specified by concepts from ontology. Concepts are learned hierarchically
starting with some sensory concepts. Observe, that an agent ontology can be dynamically changed
when agents learn more about the environment. It means that the agent ontology is evolving in
time.

2. Agents can identify complex situations by means of their local theories that are represented by sets
of dependencies between concepts. Only approximations of concepts and dependencies between
them are available for agents.

3. The changes recorded by agents in the satisfiability of concepts make it possible for them to reason
about possible changes in the satisfiability of other concepts available in their theories. Here,
approximate reasoning schemes (AR schemes) play an important role [36].

4. To better approximate their concepts or to discover new concepts, agents cooperate. Their interac-
tions are described by means of constrained sums [3, 37, 38].

5. Through cooperation, agents learn new patterns, concepts and dependencies between them consid-
ered within the framework provided by approximations spaces (see, e.g. [20, 19, 21, 24, 22]). This
kind of interaction of agents with their environments can be used to develop tools in reinforcement
learning for selection of relevant actions making it possible to achieve goals by agents and agent
teams. For example, agents can recognize through identification of changes in observed situations
that performing some sequences of actions will be more relevant for them from the point of view
of their goals. Observe, that this is much more general approach to reinforcement learning than
the approach traditionally used (see, e.g. [30, 31, 46, 50]).

6. Agents can negotiate to form coalitions in which they are linked by special constrained sums or
their composition. Each coalition is constructing a space of constrained sums over the approxima-
tion spaces of members of the coalition. In such a construction, negotiations play important role.
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Any coalition will be involved in searching for relevant constrained sums in which can be defined
relevant patterns for approximation of complex concepts important for coalition. To do this the
coalition should specify the search space of constrained sums and the searching strategies over
such a space.

7. The system has a hierarchical structure, e.g., negotiations related to further searching for rele-
vant approximation spaces, concept approximations and dependencies between concepts can be
performed on the coalition level.

8. The important problem to consider is when and how to fuse discovered patterns into a new concept.
This is related to the necessity of information granulation. This can save the required memory for
storing patterns and at the same time still is making it possible to achieve goals.

From different points discussed the above, it follows that our approach to modelling of a dynamical
system by a multiagent system can be understood as a system of evolving local theories of agents be-
longing to the system. These theories, are changing in time as the result of interactions between agents.
The agents learn to select the relevant behaviour for their goals on the basis of properties of changes in
their theories.

Observe that in the described modeling, the very basic notions are approximation spaces and con-
strained sums that can generate new approximation spaces. Constructing relevant constrained sums
requires negotiations and conflict resolution between agents constructing approximation spaces for dif-
ferent concepts relevant to local and global goals. Hence, strategies for coalition formation in cooperative
searching for relevant approximation spaces are needed.

The methodology based on approximation spaces seems to be promising for modelling of complex
dynamical systems, e.g., in which human beings cooperate with robots. In the following sections, we
discuss the basic operations on approximation spaces defined by constrained sums and two examples of
applications of calculi on approximation spaces in hierarchical learning and reinforcement learning.

4.1. Operations on approximation spaces

In this section, we introduce operations on approximation spaces called constrained sums of approxima-
tion spaces. On the basis of such operations we have developed a methodology for discovery of relevant
patterns for complex concept approximations (see [3, 37, 38]), e.g., in hierarchical learning, ontology ap-
proximation, and spatio-temporal reasoning (see, e.g., [5, 6, 17, 39]). This methodology is also relevant
for approximate reasoning in distributed environments.

We assume that for approximation spaces

AS#,$ = (U, I#, ν$)

considered in this section, the following conditions are satisfied (see Sect. 2.1 and Sect. 2.2):

1. The values of the uncertainty function I# are defined using the sensory environment (L, ‖ · ‖U ) of
AS#,$ , where L is a set of formulas, called the sensory formulas, and ‖ · ‖U : L −→ P (U) is the
sensory semantics. The sensory environment is one of the components of the vector #.

2. The values I#(x) are defined by
⋂NAS(x) for any x ∈ U .
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3. ν = νSRI (i.e., ν is the standard rough inclusion, see Sect. 2)

4. Only a partial information about the approximation space AS#,$ is given, i.e., the restriction of
AS#,$ to a subset Uo ⊆ U .

5. The values of the rough inclusion function ν$ are estimated using a pair (L∗, ‖ · ‖∗U ) where L∗ is
an extension of L and ‖ · ‖∗U is an extension of ‖ · ‖U , where (L, ‖ · ‖U ) is the sensory environment
of AS#,$. The pair (L∗, ‖ · ‖∗U ) is one of the components of the vector $. The formulas from L∗

are patterns that are used for estimation of values of ν$ (see Sect. 3).

Now, operations on approximation spaces, by analogy to the constrained sums of information systems
[3, 37, 38], can be defined as follows. To simplify the notation we consider only the case of binary
operations.

For approximation spaces ASi where i = 1, 2 we consider the class CONSTRAINT (AS1, AS2)
of all approximation spaces AS = (U, I, ν) satisfying the following conditions:

1. For estimation of values of ν an extension (L∗, ‖ · ‖∗U ) of (L∗,i, ‖ · ‖∗,iU ), where i = 1, 2 is used.
An extension is satisfying the conditions: L∗,1 ∪ L∗,2 ⊆ L and ‖α‖U = ‖α‖i

U for α ∈ Li, where
i = 1, 2. The formulas from L∗ − (L∗,1 ∪ L∗,2) are called constraints. We also assume that any
constraint α is a boolean combination of formulas from L∗,1 ∪ L∗,2, e.g., conjunction of formulas
α1 ∧ α2 for α1 ∈ L∗,1 and α2 ∈ L∗,2.

2. The sensory environment of AS is defined by (L, ‖ · ‖U ).

Any operation o on approximation spaces such that o(AS1, AS2) ∈ CONSTRAINT (AS1, AS2)
for any approximation spaces AS1, AS2 from a generic set AS of approximation spaces, is called the
constrained sum.

4.2. Hierarchical Learning

In hierarchical learning we consider the space SPACE(AS,F) generated from AS by the set F of con-
strained sums. Searching for relevant approximation spaces from SPACE(AS,F) is making it possible
to discover relevant patterns for concept approximation [5, 6, 17]. Constrained sums of approximation
spaces are tools for modelling patterns that are more relevant for approximation of concepts than patterns
defined by arguments of the constrained sum.

Assume that approximation spaces AS1, AS2 are used for approximation of concepts C1, C2 and
that the dependency if C1 and C2 then C holds. Notice that usually many such dependencies should be
considered for the concept approximation. However, for simplicity of presentation we consider only one.

If the concept C is, in a sense, not too far from C1 and C2 then one can search in SPACE(AS,F)
for a constrained sum o(AS1, AS2) relevant for the approximation of concept C . If AS = o(AS1, AS2),
then patterns defined in AS are more general than the conjunction of sensory formulas defined by
AS1, AS2. This happens because new patterns are defined by joining patterns of AS1, AS2 relative
to constraints. Let us recall that patterns of AS1, AS2 belong to the extension of the set of sensory
formulas of AS1, AS2 (see the definition of CONSTRAINT (AS1, AS2)). Hence, sensory formulas
of AS are conjunction of patterns of AS1, AS2 and constraints. By allowing to use patterns instead of
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sensory formulas in joining AS1, AS2, we define a search space for relevant patterns and from such a
space relevant joins (relative to constraints) of patterns for approximation of concepts are extracted.

If the concept C is far from C1 and C2 then we use a hierarchy of dependencies between concepts
from domain knowledge in searching for a relevant approximation space for C . The approximation of
C is obtained using hierarchical learning [5, 6, 17]. We assume that (1) the generic concepts C1 and
C2 on the lowest level of the hierarchy can be approximated by some generic approximation spaces,
(2) the concepts on a given level that are not generic follow from concepts on the lower level, and
(3) the relevant approximation spaces for concepts on a given level of the hierarchy can be discovered
using relevant constrained sums of approximation spaces from the previous hierarchy level. Then we
proceed as follows. Starting with some generic concepts and approximation spaces relevant for them we
construct approximation spaces for concepts on the first level in hierarchy that follow from these generic
concepts and can be approximated by relevant constrained sums over these approximation spaces. Next,
we perform the same procedure for the recently approximated concepts and the concepts on the next
level of hierarchy. We continue the procedure until the target concept is approximated.

Let us consider one more example of applications of constrained sums of approximation spaces for
approximation of dependency between vague concepts. This problem is important in ontology approxi-
mation [42, 41]. Any concept from the left hand side of a given vague dependency is called its premise
and the dependency conclusion is the concept from the right hand side of the dependency. The approx-
imation of a given vague dependency is defined by a method which makes it possible for any object to
compute the arguments “for” and “against” the membership of an object to the conclusion of the depen-
dency on the basis of analogous arguments relative to the dependency premisses [41]. Any argument
“for” or “against” is a compound information granule (pattern) consisting of a pattern together with a
degree to which (at least) this pattern is included to the concept and a degree to which (at least) the
analyzed object is included to the pattern. Such arguments “for” and “against” that are relevant for the
dependency conclusion are constructed from the arguments “for” and “against” for the dependency pre-
misses by using constrained sums. Such constructions are called the local schemes. Any local scheme
(production rule) (see, e.g., [36]) or rough mereological connective (see, e.g., [29]) yields the fusion
result of arguments for premisses that is next taken as the argument for the dependency conclusion. By
composition of local schemes more advanced fusion schemes are obtained, called approximate reason-
ing schemes (AR schemes) (see, e.g., [5, 36, 29, 39]). They show how the arguments from premisses
of dependencies are fused to arguments for more compound concepts derived in a given ontology from
premisses. AR schemes can correspond to different parts of complex spatio-temporal objects. Hence,
there is a need for composing AR schemes for parts into AR schemes for objects composed from these
parts [39].

4.3. Reinforcement Learning

By way of another illustration of the utility of approximation spaces, a rough set approach to reinforce-
ment learning is briefly considered in this section. The study of reinforcement learning carried out in
the context of approximation spaces is the outgrowth of recent work on approximate reasoning and in-
telligent systems (see, e.g., [28, 27, 32, 33, 21, 23, 25, 26]). An overview of a Monte Carlo approach
to reinforcement learning with approximation spaces is given in [22, 25]. The basic problem that pro-
vides a setting for reinforcement learning is formulated by [31]: a system is required to interact with
its environment to achieve a particular task or goal, and based on the feedback about the current state
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of the environment, what action should the system perform next? Reinforcement learning itself is the
act of learning the correct action to take in a specific situation based on feedback obtained from the
environment [46].

Feedback is in the form of a numerical reward that results from an action performed by an agent.
Specifically, reinforcement learning can be divided into off-line and on-line learning. Off-line learning
is similar to the idea of a student learning by instruction from a teacher. In effect, the agent is taught
what it needs to know before venturing into the environment in which it is to operate. In contrast, on-line
learning resembles an infant learning to walk (see, e.g., [22]). Learning occurs in real-time in which
the agent is exploring its environment and constantly adding to its experience in order to make better
decisions in the future. Learning techniques are typically applied to stationary or non-stationary models
of the environment. In stationary models all the state transition probabilities are fixed, whereas in non-
stationary models they change over time.

Let DT = (U,A, d) be a decision system corresponding to a swarmbot (system of cooperating bots
(see, e.g., [20, 26])), where U is a non-empty set of objects, A is a set of swarmbot features, and d
is a distinguished attribute representing a swarmbot decision d : U −→ {0, 1}. The decision table
DT = (U,A, d) (see Figure 2) provides a record of objects during different episodes in the life of
system. Any object x is a tuple (s, ac, r, t) where s is a swarmbot state, r is the reward for the action
performed by a swarmbot in the previous step, ac is an action proposed in state s, and t is the time in
which the state s has been observed. We assume that in A are attributes State, Action, Reward, T ime
such that State(x) = s, Reward(x) = r, Action(x) = ac, T ime(x) = t. Let ASDT,B = (U , IB ,
νSRI) denote an approximation space defined in the context of a decision system DTB = (U,B, d),
where B ⊆ A and IB(x) is the B-indiscernibility class defined by x. We use the notation st to denote
a pair (s, T ime(s)). Further, let Bac(x) be a block in the partition of U containing x relative to action
ac (i.e., Bac(x) contains objects with a particular action ac that are B-indiscernible with x). The block
Bac(x) where ac ∈ VAction is defined in (4).

Bac(x) =

{
IB∪{Action}(x), if Action(x) = ac,

∅, otherwise.
(4)

By B∗D, we denote the set LOW (ASDT,B,D), where D = {x ∈ U : d(x) = 1}. We assume that
d(x) = 1 specifies that the action ac in x has been accepted by a swarmbot. B∗D represents certain
knowledge expressed by means of attributes from B about the objects in D. For this reason, B∗D
provides a useful standard or norm in gaining knowledge about the proximity of objects to what is
considered normal. The term normal applied to a set of objects denotes objects with actions which
have been accepted by the system. The introduction of some form of standard objects makes it possible
to measure the inclusion of blocks of B-indiscernible action-specific objects in the set of those objects
that create a B-definable part of a standard. The framework provided by an approximation space makes
it possible to derive pattern-based rewards, which are used by swarms that learn to choose actions in
response to perceived states of their environment (see, e.g., Figure 2). The notation r̄ac,t denotes an
average rough inclusion value computed within the context of an approximation space as shown in (5).

r̄ac,t =

∑
{i∈{0,...,nx}:Bac(xt−i)�=∅} νSRI(B∗D,Bac(xt−i))

nx
=

∑
{i∈{0,...,nx}:Bac(xt−i)�=∅} card(Bac(xt−i))

nx · card(B∗D)
.

(5)
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Figure 2. Approximation spaces and reinforcement learning framework

where T ime(x) = t, Action(x) = ac, nx is the length of window dependent on x bounded on the
availability of information 1 on objects in DT , (t−nx, . . . , t) denotes the time window of the length nx,
xt−nx , . . . , xt are objects in this time window (i.e., in an episode of the system) recorded in the decision
table DT . The last equality holds because we have Bac(xt−i) ⊆ B∗D.

The notation Q(ac, t) in Figure 2 denotes the value of an action ac at time t. There are different
strategies for computing Q(ac, t). They make it possible to estimate how successful the performance
of an action ac at time t can be. For example, let Wac,t denote an average of the weights over a time
window (see (6)).

Wac,t =
∑nx

i=1 r̄ac,t−i

nx
. (6)

Let us now assume that Rac,t′ denotes the (discounted) sum of the rewards (returns) during an episode
for the action ac over the time window ending at t where t < t′ < t + 1. Then the value Q(ac, t) can be
defined by (7).

Q(ac, t) =

{ ∑nx
i=1

r̄ac,t−i

Wac,t−i
[Rac,t−i − Q(ac, t − i)] , if nx > 1,

rac,t−1, otherwise.
(7)

where x is such an object from DT that t = T ime(x) and rac,t−1 is the reward for the action ac
performed at time t − 1.

In our example, after computing Q(ac, t) for all actions, we extract the best action using a greedy
policy defined by argmax (see Figure 2). The notation argmax{ac : Q(ac, t)} in Figure 2 corresponds
to a “stimulus”, which is one of the four whys introduced by Niko Tinbergen [48] to explain observed
behaviors (see, e.g., [20, 22]). Another example of an approximation space-based learning strategy has
been successfully used in a new form of off-policy Monte Carlo reinforcement learning (see, e.g., [22,
25]).

1Assuming a fixed length T > 0 of the time window and letting mx denote the number of all predecessors (with respect to time
order) of x in DT , one can assume that nx = min {T, mx}. In (5) and (6), we let nx ≥ 1.
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Conclusions

Steps towards the discovery of a calculus of approximation spaces in distributed systems have been pre-
sented in this paper. This article has included consideration of an approximation of concepts using the
rough set approach. In particular, the role of approximation spaces in modelling of complex dynamical
multiagent systems has been emphasized. As part of the research described in this paper, we are develop-
ing evolutionary strategies searching for local agent behavioral rules in systems based on approximation
spaces. These rules should make it possible not only to achieve local goals of agents but also global goals
of complex dynamical systems, e.g., preserving some global invariants. Observe, that these evolutionary
strategies can evolve in time as the result of adaptive changes of their parameters. It is also the case
that the calculus of approximation spaces considered in this paper, has significant implications for an
approach to unsupervised learning by cooperating agents in non-stationary environments.
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