
Rough Neural Fault Classification

of Power System Signals

Liting Han and James F. Peters

Department of Electrical and Computer Engineering, University of Manitoba
Winnipeg, Manitoba R3T 5V6, Canada

liting@ee.umanitoba.ca

jfpeters@ee.umanitoba.ca

Abstract. This paper proposes an approach to classify faults that com-
monly occur in a High Voltage Direct Current (HVDC) power system.
These faults are distributed throughout the entire HVDC system. The
most recently published techniques for power system fault classification
are the wavelet analysis, two-dimensional time-frequency representation
for feature extraction and conventional artificial neural networks for fault
type identification. The main limitation of these systems is that they are
commonly designed to focus on a group of faults involved in a specific
area of a power system. This paper introduces a framework for fault
classification that covers a wider range of faults. The proposed fault
classification framework has been initiated and developed in the con-
text of the HVDC power system at Manitoba Hydro, which uses what
is known as the TranscanTM system to record and archive fault events
in files. Each fault file includes the most active signals (there are 23 of
them) in the power system. Testing the proposed framework for fault
classification is based on fault files collected and classified manually over
a period of two years. The fault classification framework presented in
this paper introduces the use of the rough membership function in the
design of a neural fault classification system. A rough membership func-
tion makes it possible to distinguish similar feature values and measures
the degree of overlap between a set of experimental values and a set of
values representing a standard (e.g., set of values typically associated
with a known fault). In addition to fault classification using rough neu-
ral networks, the proposed framework includes what is known as a linear
mean and standard deviation classifier. The proposed framework also
includes a classifier fusion technique as a means of increasing the fault
classification accuracy.

Keywords: Power system faults, knowledge-based fault recognition, rough
membership, rough neuron, rough neural network, classification, classify
fusion.

1 Introduction

With the rapid increase of electrical power consumption by utilities and in-
dustries, more stability and efficiency in power delivery is needed. A report by



CEIDS (Consortium for Electric Infrastructure to Support a Digital Society)
shows that the U.S. economy is losing between $104 billion and $164 billion a
year due to power outages [10]. The analysis and classification of power system
disturbances are becoming mandatory in working towards minimizing and even
eliminating power outages. Typically, an effort is made to identify the most sig-
nificant patterns of system faults that provide input to a region-based analysis
system for decision support. Operators or engineers make use of the summary
reports to operate and maintain a power system.

In the power fault classification research area, the existing literature and
methods [8, 11–13, 16, 17, 20, 21, 26, 29, 37, 38, 55, 69–72,76, 77, 82, 83, 85] explained
in section 4 are focused on the wavelet analysis, two-dimensional time-frequency
representation for signal pre-processing, feature extraction and conventional ar-
tificial neural networks for fault type identification. In this research project
for Manitoba Hydro power fault classification system, autocorrelation, cross-
correlation, Wavelets, FFT, IFFT, low pass filter, phase shifting, derivatives
and coding have been used to analyze and extract feature information of the 23
most active signals recently recorded at the Dorsey Station. With the feature
values as input, the conventional artificial neural network has been applied to
determine the fault type in the beginning stage of this research and the results
addressed in section 8 are undesirable due to the complexity and uncertainty of
the feature information. The instinct is to introduce the rough neuron for rough
membership computation to distinguish similar feature values by assigning each
of them with the degree of each type of fault. It greatly improves the quality of
the feature information and consequently the classification performance. How-
ever, the rmNNs successfully classify 10 types of faults with 100% accuracy while
for fault 7 and 10 with only 83% and 75% accuracy respectively. The bringing in
of the second classifier LMD and classifier fusion techniques [1, 6, 22, 30, 34, 35,
67, 74, 75] is to profit from the complementary information that different clas-
sifiers provide and to improve the classification performance for some types of
faults.

This paper is organized as follows: Section 1 (this section) is an introduction
for this paper. Section 2 briefly introduces power system fundamentals and a brief
overview of power system faults. Section 3 reviews the rough set and classifier
fusion theories. Section 4 gives an overview of fault identification techniques com-
monly used in the electrical power industry. The main parts of the research com-
pleted for this Manitoba Hydro power system fault classification are presented
in section 5 to section 9. Appendices A(Correlation Theory), B(Conventional
Fast Fourier Transform), C (Wavelet Transform), and D (Time-Frequency Rep-
resentation Theory) summarize the basic theory used in this article.

2 Power System Fundamentals

This section briefly introduces the power system fundamentals [84, 23] required
for an understanding of power system faults.



2.1 Power Systems

Electric power transmission was originally developed with direct current (DC).
The availability of transformers and the development and improvement of induc-
tion motors at the beginning of the 20th century, led to the use of alternating
current (AC) transmission. Even so, d.c transmission is generally used for the
following reasons:

1. An overhead DC transmission line with its towers can be designed to be less
costly per unit of length than an equivalent AC line designed to transmit
the same level of electric power. However the DC converter stations at each
end are more costly than the terminating stations of an AC line and so there
is a break-even distance above which the total cost of DC transmission is
less than the cost of AC transmission. In addition, DC transmission line can
have a lower visual profile than an equivalent AC line, which contributes to
a lower, perceived environmental impact. An environmental advantage to a
DC transmission line over an AC line is the presence of lower electromagnetic
fields.

2. If transmission is by underground cable, the break-even distance is less than
overhead transmission. It is not practical to consider AC cable systems ex-
ceeding 50 kilometers but hundreds of kilometers of underground DC cable
transmission systems are feasible.

3. Some AC electric power systems are not synchronized with neighboring net-
works even though the physical distance between them is quite small. This
occurs in Japan where half the country has a 60Hz network and the other
has a 50Hz system. It is physically impossible to connect the two by direct
AC methods for the purpose of exchanging electric power between them.
However, if a DC converter station is located in each system with an inter-
connecting DC link, it is possible to transfer power flow from one system to
the other.

The integral part of an HVDC power converter is the valve or valve arm. It
may be non-controllable if constructed from one or more power diodes in series
or controllable if constructed from one or more thyristors in series. Figure 1 de-
picts the International Electrotechnical Commission (IEC) graphical symbols for
valves and bridges (valve groups). The standard bridge or converter connection
is defined as a 2-way connection consisting of six valves or valve arms, which are
shown in Figure 2. Electric power flowing between an HVDC valve group and
an AC system is three phase. When electric power flows into a DC valve group
from an AC system, it flows through a rectifier. If power flows from the DC valve
group into the AC system, it flows through an inverter.

The most common building block for HVDC valves is the thyristor (see Fig-
ure 3 for characteristics of a thyristor). In the ‘off’ state, a thyristor blocks the
flow of current as long as the reverse or forward breakdown voltages (Vbr or Vbo)
are not exceeded. A thyristor can be made to attain an ‘on’ state if it is forward
biased (Vak > 0) and a small positive ‘gate’ voltage is applied between the gate
and the cathode. This ‘firing pulse’ need not be present once the thyristor is



Fig. 1. Standard graphical symbols for valves and bridges [84].

Fig. 2. Electric circuit configuration of the basic 6-pulse valve group with its converter
transformer in star-star connection [84].

ignited, although in practice, a train of pulses in rapid succession is often main-
tained over an entire conduction period. Once turned on, a thyristor follows its
‘on’ characteristic as shown in Figure 3. Note that the forward voltage drop in
the on condition is relatively small and an actual thyristor characteristic closely
follows that of an ideal switch (horizontal line for the ‘off’ state, vertical y axis
for the ‘on’ state). The thyristor can also turn on if the voltage across it exceeds



the forward break-over voltage Vbo. This mechanism is often used to protect a
thyristor against excessive voltage.

Fig. 3. Thyristor characteristic [23].

Fig. 4. State transition diagram for thyristor switching [23].

The normal state transition diagram for a thyristor is shown in Figure 4. The
thyristor attains its ‘off’ state when the current through it attempts to reverse.
One other factor that is necessary for a successful turn-off is that a thyristor
must not be subject to a forward biasing voltage too soon after the current has
extinguished. Otherwise, there is a possibility of re-ignition even in the absence
of a pulse. Re-ignition occurs when the charge carriers in the semi-conductor
have not had sufficient time to be re-absorbed. This critical time is referred to
as the turn-off time toff and often expressed in terms of a so called “extinction
angle” γ = ωtoff , if AC waveforms of angular frequency ω are involved. This
phenomenon in which a thyristor fails to attain its forward blocking state, ‘off’
state, is referred to as commutation failure.



Fig. 5. Three phase (6-pulse) bridge.

6.1:

6.2:

Fig. 6. Analysis of three phase (6-pulse) bridge.

The 6-pulse bridge is the most widely used HVDC converter configuration.
Figure 5 shows a typical 6-pulse thyristor bridge with the AC supply, the con-
verter transformer Xc and the DC-side smoothing reactance. A 6-pulse bridge
consists of an upper and a lower half as seen in Figure 6(a). It is assumed initially
that the converter transformer is ideal so that there is no leakage inductance. It
is also assumed that ideal thyristors behave like diodes, i.e., zero voltage drop
when the device is on and an ideal open circuit when off. The device is in a con-



ducting state as soon as the forward biased voltage (Vak > 0) causes current to
flow in the forward (anode to cathode) direction and no ‘firing pulse’ is required.

The upper bridge half is a standard maximum select circuit that selects the
largest of the three voltages Va, Vb and Vc at the common cathode terminal. This
can be proved by contradiction. To see this , assume Va < Vb but that Vp = Va

because D1 is assumed to be conducting. Then D3 should also conduct since it
is forward biased because Vb > Va, hence, Va = Vb, which is a contradiction. The
only possibility that does not lead to a contradiction is for Vp to be equal to the
largest of the three voltages.

Similarly the lower bridge half causes a voltage Vn = min(Va, Vb, Vc) to
appear at the common anode terminal of devices D2, D4 and D6. Thus the
total DC side voltage as can be seen from Figure 6(2) must be the difference
Vdc = Vp − Vn. The waveforms for the bridges are shown in Figure 7. The
current on the AC side in phase a is Id when D1 conducts and −Id when D4
conducts. The conduction period for D1 can be determined from the waveforms
as the period in which the voltage Va of phase a is the largest of the three phase
voltages. Similarly, D4 is on when Va is at its smallest in magnitude.

Fig. 7. Three phase diode bridge waveforms (no overlap) [23].



The sequence of conduction for the valves in the upper bridges is D1, D3,
D5, D1, D3, D5, and so on, since each successive phase dominates over a 120◦

interval. In the bottom bridge, the sequence is D2, D4, D6, D2, D4, D6, and so
on. Considering the two halves together, each valve enters conduction 60◦ after
its predecessor in the sequence D1, D2, D3, D4, D5, D6, D1, D2, D3, D4, D5,
D6, and so on.

Without any series inductance in the circuit, the current instantaneously
rises to the value ±Id on turn-on and makes an instantaneous transition to zero
on turn-off when the current transfers to the next phase. The valve voltage is
an important parameter in determining the valve rating. The voltage in the
forward direction across valve 1 is determined to be Va −Vp, and while the valve
is conducting this voltage is zero.

In practice, transformer leakage inductance must be considered. With the
inclusion of transformer reactance Xc shown in Figure 8, the current can no
longer make an instantaneous transition from one phase to another because that
would require a discontinuous change in inductor current as is evidenced from
the waveforms shown in Figure 9. In this case, when valve 1 is turned on, there
is an “overlap” between valve 1 and valve 5, i.e., valve 1 is turned on while valve
5 starts to be turned off. The overlap interval is represented by the angle μ.
During this interval, the DC-side voltage Vp (similarly Vn) is the average of the
two conducting phase voltages, i.e., Va and Vc. Also note from Figure 9 that the
valve voltage waveform now has additional commutation “spikes”.

Fig. 8. Three phase (6-pulse) bridge: transformer inductance included.

The thyristors in a controlled bridge are idealized, i.e., a thyristor behaves like
a diode, except that mere forward bias (positive anode-cathode voltage) is not
sufficient to ensure conduction. The additional condition to attain the conducting
state is a required gate, ‘firing pulse’ that must be present in addition to a forward
bias. Hence, the main difference in analyzing the operation of a thyristor bridge
is that the maximum (or minimum) select action only commences on the issue
of a firing pulse. The thyristor valves are fired in the sequence T1, T2, T3, T4,
T5, and T6. The elapsed angle from the earliest instant at which a thyristor



Fig. 9. Three phase diode bridge waveforms [23].

may conduct (i.e., the point at which forward bias first appears) to the instant
at which the firing pulse is issued and the valve commences conduction is called
the “firing” or “delay” angle and is denoted by the Greek letter α.

In the waveforms shown in Figure 10, α = 15◦ has been used. Also note that
in Figure 10, the pulse duration is a full 120◦. This is not strictly necessary,
since a thyristor valve that has been triggered on continues conducting until
the current through it attempts to flow in the reverse direction. However, in
HVDC systems, it is common practice to keep pulsing continuous over a valve’s
nominal conduction interval of 120◦ (in the form of a train of high-frequency
pulses) in case a premature current zero occurs because of waveform distortions.
Note that for this value of the firing angle (α = 15◦), the DC voltage is positive
and the power flows from the AC to the DC side. This is the “rectifier” mode of
operation. Note that if continuous current is maintained in the circuit by some
external device, the firing angle α can be made to have a value in excess of 90◦.
In this situation, the voltage Vp turns out to be negative and Vn is positive,
which causes the DC voltage to be negative. Thus, power transfer is from the
DC side to the AC side, although the direction of the DC current remains the
same. This is the “inverter” mode of operation.



Fig. 10. Controlled thyristor bridge waveforms: α = 15◦ [23].

2.2 Power System Faults

A power system fault is the result of an electrical disturbance. At the Manitoba
Hydro Dorsey Station, the TranscanTM recording system is deployed as a power
system monitoring tool. It archives 31 power signals in a fault file whenever a
power system fault occurs. A typical screen snapshot of 31 signals recorded by
TranscanTM is shown in Figure 11. TranscanTM is capable of recording power
system faults in a real-time manner. However, this system cannot identify the
type and cause of a recorded fault. Engineers at the Dorsey Station must visually
assess all the 31 signals then manually log the cause of the fault into the database
of the TranscanTM system and consolidate this information into an archived fault
file. The graphical user interface (GUI) of the TranscanTM system is shown in
Figure 12. The 23 most active and informative signals referenced in the proposed
fault classification system are listed in Table 1.



Fig. 11. 31 signals in the “Valve Current Commutation Failure” fault.

Fig. 12. The TranscanTM system GUI.

The twelve most common power system faults are listed in Table 2. An
information table for fault classification cannot be established without a good
understanding of the mechanism underlying each fault and the behavior of the
signal associated with each fault.



Table 1. Most active power system signals.

Bus signals AC Phase A, B, C Sinusoidal
Pole voltages and currents Constant
Pole current order Constant

Valve signals 6-pulse Periodic
(total 3 valve groups) Current A phase, B phase, C phase Sinusoidal

Start pulse Periodic

Table 2. Common power system faults.

Fault index Fault name Number of fault files
Fault 1 Minor AC Disturbance 240
Fault 2 Severe AC Disturbance 148
Fault 3 Valve Current Closed/Blocked/Deblocked 114
Fault 4 Line Fault 81
Fault 5 Valve Current Commutation Failure 95
Fault 6 Pole Voltages/Currents Closed/Blocked/Deblocked 64
Fault 7 Phase Current Arc Back 26
Fault 8 Parallel Operation 29
Fault 9 Pole Current Oscillation 31
Fault 10 Normal Affected by Another Pole 18
Fault 11 Asymmetric Protection 25
Fault 12 Disturbance on DC Voltage 25

– AC Voltage Disturbance. This is a bus error that will induce some other
faults such as valve current commutation failure, line fault and valve cur-
rent blocked. Normally, three AC phase voltages are sinusoidal signals that
have a fixed 120◦ phase delay relative to each other. The AC voltage line
will be impacted by different disturbances such as a falling tree hitting a
transmission line, heavy snowfall or severe wind, and sometimes radiation or
magnetic field interference.

– Valve Current Closed/Blocked/Deblocked. This fault happens in one or two
valve groups. There are three valve groups in poles 1 and 2, and two valve
groups in poles 3 and 4. Vg11, Vg12, Vg13 designate pole 1; Vg21, Vg22,
Vg23, pole 2; Vg31, Vg32, pole 3; Vg41, Vg42, pole 4. A failure of a 6-pulse
signal in a valve group will shut down or block the valve currents. An AC
voltage disturbance also has the same effect. The restart of the 6-pulse signal
will unblock the valve currents.

– Line Fault. This fault is due to the AC voltage disturbance, the pole line
short to the ground or the energy of a DC line decreases (line force retard)
causing a pole line voltage flashover or shutdown. The power system will
restart in a short time if the control system responds quickly.

– Valve Current Commutation Failure. This happens when a valve is not
turned off successfully because the valve is subject to a forward biasing volt-
age too soon after the current has been extinguished. This causes a minor
valve current distortion for a very short period of time.

– Pole Voltages/Currents Closed/Blocked/Deblocked. This happens when all
the valve groups in one pole are closed, blocked or deblocked.

– Phase Current Arc Back. This happens only in one valve group. The valve
current increases sharply for a short period of time and then shuts down.



This type of power system fault is caused when valve lines short together or
short to ground.

– Parallel Operation. This is not a fault but an indicator that the line mainte-
nance is in progress. When a pole current line needs to be tested, the current
will be switched to another pole line. Inside the power station, the current
of this pole line goes down to 0; outside the station, the current provided
does not decrease, and the pole voltage remains normal.

– Pole Current Oscillation. This fault is caused by oscillation of the pole cur-
rent order. Usually with this fault, the pole voltage remains relatively con-
stant.

– Normal Affected by Another Pole. This fault happens occasionally. There is
a bi-pole power system at the Dorsey Station. Pole 1 and pole 2 compose
one active station. Pole 3 and pole 4 are usually for a back-up station. If a
fault, especially a line fault, occurs in pole 1, TranscanTM will generate 2
fault files: one for pole 1, and one for pole 2 even in the case where pole 2
is absolutely normal. This occurs because the bus signals, pole voltages and
currents are shared and reordered in both pole 1 and pole 2 fault files.

– Asymmetric Protection. If the pulse to open the valve arrives in an abnormal
sequence, this fault will cause more than two valves to open at the same time.
The circuit control system will then force this valve group to close. The
most noticeable event associated with this fault is that the 6-pulse signal
will have 7 cycles of severe oscillation and will be closed until the control
system restarts the valve group.

– Disturbance on DC Voltage. At the Dorsey Station, the AC voltage is con-
verted from the DC voltage. The long distance transmission of DC voltage is
easier and the interference problem is greatly decreased. However, sometimes
snow on DC transmission lines or windy weather will cause changes in the
DC voltages and a DC voltage disturbance is recorded.

3 Mathematics Underlying Fault Classification and
Recognition Techniques

This section gives an overview of the mathematics underlying fault classification
and fault recognition techniques.

3.1 Rough Set Theory

This section briefly presents the basic rough set approach to the approximation of
sets [57] that provides a foundation for classifying power system fault signals. The
rough set approach introduced by Zdzis�law Pawlak [40, 48–53] and elaborated
by others [32, 43–45, 54, 57, 68, 73, 58, 78, 42, 41, 65, 3, 59–61] provides the grounds
for approximating a set X . Let B denote a set of functions that represent object
features (traditionally, also called attributes in rough set theory [51]) of objects
in a set U . The basic approach in rough set theory is to use an equivalence



relation ∼B [62]

∼B= {(x, x′) ∈ U × U | ∀f ∈ B, f(x) = f(x′)} ,

to define the partition of a set U into non-empty, pairwise disjoint subsets (equiv-
alence classes). An equivalence class in a partition is denoted by [x]B, where

[x]B = {x′ ∈ U | ∀f ∈ B, f(x) = f(x′)} .

The equivalence classes in a partition form a new set, denoted by U/ ∼B,
where

U/ ∼B= {[x]B | x ∈ U} ,

for a given set of objects U . Let X ⊆ U be a set of objects of interest. After the
partition of the set U has been defined, the lower and upper approximations of
the set X are defined relative to the equivalence classes in the partition.

Preliminaries
The notation and terminology in Table 3 is important for an understanding

of basic rough set theory. Let U,F denote a set of sample objects and a set of
functions, respectively. The functions in F represent the features (attributes) of
the objects in U . Assume that B ⊆ F , the notation (U, B) denotes an information
system, which is usually represented in table form.

Table 3. Rough Set Theory Symbols.

Symbol Interpretation

U Set of sample objects,
F Set of functions representing object features,
B B ⊆ F ,
X X ⊆ U ,
x x ∈ X,
∼B ∼B= {(x, x′) ∈ U × U | ∀x ∈ U, f(x) = f(x′)},
[x]B [x]B = {x′ ∈ U |x′ ∼B x},

U/ ∼B U/ ∼B=
{

[x]B | x ∈ U
}

, a partition of U ,
B∗X

⋃
x:[x]B⊆X [x]B , B-lower approximation of X,

B∗X
⋃

x:[x]B∩X �=∅[x]B , B-upper approximation of X,
BndBX BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X}.

In keeping with current notation for equivalence relations, ∼ denotes an
equivalence relation on a set U [19]. The ∼ symbol is used extensively to express
equivalence [9, 18, 19].

The notation U/ ∼ denotes a partition of U . Let [x] denote a class belonging
to U/ ∼, where

[x] = {x′ ∈ U | x ∼ x′}.



The classes of a partition are disjoint, i.e., if [x] , [y] ∈ U/ ∼, then [x] ∩ [y] = ∅.
In addition, every object in U is in only one class in U/ ∼.

The use of ∼B drew attention to the role of the set B in partitioning a set U .
The basic idea here is that the relation ∼B provides a classification of objects
according to knowledge contained in the system (U , B) [33].

The class [x]B is called a B-elementary set [48, 51]. If (x, x′) ∈ ∼B (also
written x ∼B x′), then x and x′ are said to be indiscernible with respect to all
functions in B, or simply, B-indiscernible. In the case where B = {f}, ∼{f}
denotes an equivalence relation defined relative to a set of feature f and [x]{f}
denotes the equivalence class x/ ∼{f} represented by x and defined by ∼f . For
simplicity, write ∼f to denote ∼{f}.

A sample X ⊆ U can be approximated from information contained in B by
constructing a B-lower approximation

B∗X =
⋃

x:[x]B⊆X

[x]B ,

and a B-upper approximation

B∗X =
⋃

x:[x]B∩X �=∅
[x]B .

The B-lower approximation B∗X is a collection of classes of sample elements
that can be classified with full certainty as members of X . By contrast, the
B-upper approximation B∗X is a collection of classes representing both certain
and possibly uncertain knowledge about X because it is possible for B∗X to
have one or more classes that are not subsets of X but still have a non-empty
intersection with X . An approximation boundary BndBX is defined by

BndBX = B∗X \ B∗X = {x | x ∈ B∗X and x /∈ B∗X} .

The set BndBX contains all objects in the upper approximation B∗X that are
not in the lower approximation B∗X . Whenever B∗X � B∗X , the sample X
has been classified imperfectly, and is considered a rough set. In other words, a
set X is a rough set, if and only if, the boundary BndBX is not empty.

Information Tables
For computational reasons, a syntactic representation of information systems

is usually given in the form of tables. Discovering objects in the composition of
a class [x]B ⊆ U/ ∼B, x ∈ U in the partition U/ ∼B in the system (U,F) is
accomplished by gathering together inside the class all of those objects that have
matching function values. Identifying the classes in U/ ∼B is greatly aided by a
table representation of (U,F).

Decision Systems



Table 4. Decision system notation.

Symbol Interpretation

d Decision function,
U Set of sample objects,
F Set of functions representing features,

(U , F , d) Decision system.

Of particular interest is the extension of information systems made possible
by including a function d representing what is known as a decision attribute in
rough set theory. A decision is defined by a function d : X −→ Vd, where Vd

is the range of d. In addition, (U,F , d) denotes a decision system. It is typical
in rough set theory to start with an information system (U,F) and introduce a
decision function d as a means of separating sample objects in U into decision
classes, i.e., sets of objects representing a particular value of d. Decision systems
are also represented by tables.

Rough Membership Function
Because it is important to determine the extent to which a set of sample

signals match a class of signals representing a particular power system fault, the
rough membership function defined by (1) has been used in this research. The
degree of overlap between X and [x]B containing x can be quantified with the
rough membership function (rmf),

μB
X : U → [0, 1] defined by μB

X(x) =
|[x]B ∩ X |

[x]B
. (1)

The rough membership function has proven to be very useful in measuring the
extent that classes of signals for known faults overlap with sets of signals rep-
resenting power system faults to be classified. This is explained in detail in
Section 7, where the rmf is used in the design of a neural network useful in
classifying power system faults.

3.2 Classifier Fusion Theory

Classifier combination has received considerable attention in the past decade and
is now an established pattern recognition offspring. It has been recognized for
some time that the classical approach to designing a pattern recognition system,
which focuses on finding the best classifier has a serious drawback. Any comple-
mentary discriminatory information that other classifiers may encapsulate is not
tapped. Multiple expert fusion aims to make use of many different designs to
improve classification performance. Over the last few years, a myriad of methods
for fusing the output of multiple classifiers have been proposed.

Let D = {D1, D2, ..., DL} be a set of classifiers and 	n be the feature space.
All classifiers produce soft class labels. We assume that dj,i(x) ∈ [0, 1] is an



estimate of the degree of set ci offered by classifier Dj for an input x ∈ 	n, i =
1, 2; j = 1, ..., L. There are two possible classes C = {c1, c2} and L classifiers
D = {D1, D2, ..., DL} [34]. Simple fusion methods are the most obvious choice
when constructing a multiple classifier system [30, 35, 74, 75, 6], i.e., the support
for class ci, di(x), yielded by the set of classifiers is [34]

di(x) = F(d1,i(x), ..., dL,i(x)), i = 1, 2, (2)

where F is the chosen fusion method. Here, it is necessary to study the fusion
methods compared in [1]:

– minimum
– maximum
– average
– median
– majority vote
– oracle

For the majority vote, the first step is to harden the individual decisions by
assigning class labels Dj(x) = c1 if dj,1(x) > 0.5, and Dj(x) = c2 if dj,1(x) ≤ 0.5,
j = 1, ..., L. Next, the class label most represented among the L (label) output
is chosen.

The oracle model is an abstract fusion model. In this model, if at least one
of the classifiers produces the correct class label, then the team produces the
correct class label too. Usually, Oracle is used in comparative experiments.

In order to achieve a high overall performance of the classification function,
the performance of each individual classifier has to be optimized prior to using
it within any fusion schemes. That is, the fusion scheme will be able to improve
the overall classification result relative to the performance of the individual, op-
timized classifiers. If several classifiers with only marginal performance are being
used, the results cannot necessarily be expected to reach the high performance
sought. On the other hand, if several classifiers are used that work exceptionally
well, any further gains will be exceedingly hard to accomplish because the op-
portunity for diversity will be diminished. Individual classifier optimization can
be performed by selecting object features, appropriate parameters, and classifier
structure that governs the performance.

After designing a classifier fusion scheme, a confusion matrix M can be gen-
erated for each classifier using labeled training data [22]. The confusion matrix
lists the true classes c versus the estimated classes ĉ. Because all classes are enu-
merated, it is possible to obtain information not only about correctly classified
states (N00 and N11), but also about false positives (N01) and false negatives
(N10). A typical two-class confusion matrix M is shown in Figure 13.

From the confusion matrix of each classifier, the false positive (FP) error, the
false negative (FN) error, the total error rate (TER), and the total success rate
(TSR) can be calculated for the classifier. These error rates are defined as in (3)
to (6). The total error rate (TER) or the total success rate (TSR) is typically
used as a simple measure for overall performance of a classifier.



Fig. 13. Typical 2-class confusion matrix [22].

FP =
N01

N00 + N01
. (3)

FN =
N10

N10 + N11
. (4)

TER =
N01 + N10

N00 + N11 + N01 + N10
. (5)

TSR = 1 − TER. (6)

Although each individual classifier’s performance is very important to the
performance of a classifier fusion, the dependency between the classifiers to be
fusioned also affects the fusion results. Some studies [67] have shown that the
degree of correlation between the classifiers adversely affects the performance of
the subsequent classifier fusion. If two classifiers agree everywhere, the fusion of
the two classifiers will not achieve any accuracy improvement no matter what
fusion method is used. For classifier fusion design, classifier correlation analysis
is, therefore, equally as important as the classifier performance analysis. Based
on the classifier output on the labeled training data, a 2x2 matrix N as shown
in Figure 14 can be generated for each classifier pair. The off-diagonal numbers
directly indicate the correlation degree of the two classifiers. The smaller the two
off-diagonal numbers are, the higher the correlation between the two classifiers
will be. The proportion of specific agreement, which here is called the correlation,
ρ2, is defined in [67] as

ρ2 =
2 × NFF

NTF + NFT + 2 × NFF
, (7)

where, as further shown in Figure 14, NTT implies that both classifiers classi-
fied correctly; NFF means both classifiers classified incorrectly; NTF represents
the case of the 1st classifier classified correctly and the 2nd classifier classified
incorrectly; and NFT stands for the 2nd classifier classified correctly and the
1st classifier classified incorrectly. In order for classifier fusion to be effective in
performance improvement, the correlation, ρ2, has to be small (low correlation).



Fig. 14. Correlation analysis matrix [22].

Consider the output of two classifiers as enumerated in Table 5. The cal-
culation of ρ2 yields ρ2 = 0.36. Had classifier 2 been completely redundant to
classifier 1, the correlation would have been ρ2 = 1.

Table 5. Results from experiment for 2 classifiers [22].

Answer classifier 1 Answer classifier 2
T T
T F
F T
T F
F F
F F
T F
F T
T T
T T
T T
T T
T F
T T
T T
F T

The 2-class correlation coefficient can be extended to n different classi-
fiers [22]. The notion that redundancy is described by the individual true and
false answers of the classifiers is retained from the 2 class correlation analysis.
The larger the ρ-correlation, the larger the redundancy. In particular, the ρ-
correlation goes to zero if the individual incorrect answers are disjoint for all
answers. That implies that there is always at least one correct answer from
some classifier for any case available. The ρ-correlation coefficient gets larger
as the number of wrong answers are the same for many answers. Let Nf be
the number of experiments where all classifiers give a wrong answer; N c

i be the
number of experiments with combinations of correct and incorrect answers; c is
the combination of correct and incorrect answers (for 2 classifiers: c ∈ {wr, rw};
for 3 classifiers: c ∈ {wwr, wrw, rww, wrr, rwr, rrw} etc.); n is the number of
classifiers. The ρ-correlation coefficient is then [22]



ρn =
nNf∑2n−2

i=1 N c
i + nNf

. (8)

If N is the number of experiments and N t is the number of experiments for
which all classifiers had a right answer, (8) can more conveniently be rewritten
as [22]

ρn =
nNf

N − Nf − N t + nNf
. (9)

Consider a 3-classifier example, which is the same as the previous 2-classifier
example except that a third classifier was added that will get answer wrong in
50% of the cases. The calculation of ρn yields: ρn = 0.21.

Although the newly added classifier has poor performance, its addition re-
duces the overall redundancy of the classifier assembly.

Note that the ρ-correlation does not record redundancy for any particular
classifier (for n > 2) but for a set of classifiers only. For illustrative purposes,
consider two simplistic cases shown in Table 6 and Table 7 [22].

Table 6. Output for 3 classifiers (case 1) [22].

Answer Answer Answer
classifier 1 classifier 2 classifier 3

T F F
F T F
F T T
T T T
F F F

The ρ-correlation is ρn = 0.5.

Table 7. Output for 3 classifiers (case 2) [22].

Answer Answer Answer
classifier 1 classifier 2 classifier 3

T F T
F T T
F T F
T T T
F F F

The ρ-correlation is ρn = 0.5.

Obviously the third classifier is different in the two example cases above.
However, the degree of correlation is the same because it does not matter whether
it is correlated to the first or to the second classifier. Rather, it is only relevant
that it is correlated to the combination of the first two classifiers. Note that the



calculation of the ρ-correlation factor can be performed on multi-class scenarios
as well because the factor is only concerned with the correctness of the outcome.

4 Technology Review of Power System Fault
Classification (PSFC)

4.1 Wavelet Applications in Power Systems

The main difficulty in dealing with power engineering phenomena is the extreme
variability of the signals and the necessity to operate on a case–by–case basis.
Another aspect of power disturbance signals is often localized temporally or spa-
tially (e.g., transients in power systems). This requires the efficient use of analysis
methods, which are versatile enough to handle signals in terms of their time-
frequency localization. Wavelets localize the information in a time-frequency
plane. In particular, wavelets are capable of trading one type of resolution for
another, which makes them especially suitable for the analysis of non-stationary
signals. The fundamentals of wavelets are explained in Appendix C. Consider-
able work has been done in applying the wavelet transform to power systems in
analyzing and processing the voltage-current signals to make a real-time identi-
fication of transients in a fast and accurate way [20].

15.1: Evolution of wavelet publications
in power systems.

15.2: Percentage of wavelet publications in
different power system areas.

Fig. 15. Overview of wavelet applications in power systems [20].

The wavelet transform was first applied to power systems in 1994 by Robert-
son [70] and Rebeiro [69]. Since then, the number of publications in this area has
rapidly increased as Figure 15.1 shows. Figure 15.2 illustrates the most popular
wavelet transform applications in power systems:

– Power system protection
– Power quality
– Power system transients
– Partial discharges



– Load forecasting
– Power system measurement

The field of power system transients is the area in which wavelets were first
applied to power system applications by Robertson [70]. In this paper, the au-
thors presented a methodology for the development of software for classifying
power system disturbances by type from the transient waveform signature. Tran-
sients are signals with a finite life, i.e., a transient reduces to zero in a finite time.
Electromagnetic transients are caused by sudden changes in system topology or
parameters. For instance, short circuit faults are one of the most common causes
of transients in a power system. Power system switching causes transients as well.
Robertson [71] distinguished single-phase faults from capacitor switching using
waveform signatures.

An example of transient analysis using wavelets was given by Ramaswamy [72].
Using the Electromagnetic Transient Package provided in the Power System
Simulation Software, MIPOWER, and the wavelet transform toolbox provided
in MATLAB Ver. 5.3, the authors analyzed a group of simulated transients
namely the phase BC-Ground fault, three phase-Ground fault and phase C-
Ground fault, in a simple power system network (Figure 16) consisting of a
generator, a load, two buses and a transmission line. Figure 17 shows a typical
waveform of a certain type of transient disturbance in power systems.

Fig. 16. A typical power system network [72].

The authors applied different types of wavelets to the transient disturbance
signal to perform Multiple Level Decomposition. The Meyer wavelet (Figure 18)
was found to work better as the fundamental source signal was restored at the
4th approximation. Other wavelets such as a ‘Haar’ wavelet, added noise to the
fundamental wave. The transients were analyzed by the ‘Meyer’ mother wavelet
and Figure 19 shows Multiple Level Decomposition of the transient disturbance,
where s is the source signal, a4 is the 4th level approximation, d4 is the 4th level
detail coefficient, d3 is the 3rd level detail coefficient, d2 is the 2nd level detail
coefficient, and d1 is the 1st level detail coefficient.

The detail coefficients of faults are given in Figure 20 for the phase BC-
Ground fault, three phase-Ground fault and phase C-Ground fault.



Fig. 17. Example of transient disturbance for certain types of faults indistinguishable
by the naked eye [72].

Fig. 18. A typical Meyer wavelet [72].

In power quality applications, several studies have been carried out to detect
and locate disturbances using the wavelet transform to analyze interference, im-
pulses, notches, glitches, interruptions, harmonics, flicker, etc. of non-stationary
signals. Drisen [16] analyzed power system harmonics while Santoso [76] analyzed
power system interference.

In power system protection applications, the potential benefits of applying
the wavelet transform to improve the performance of protection relays and fault
classification have been recognized in recent years. Charri [11] analyzed the tran-
sient information of a resonant grounded distribution system using the wavelet
transform. Imrǐs [26] presented the analysis of ground fault transients in high
voltage networks for earth fault location purposes using the Gaussian mother
wavelet method and discussed the main sources of error affecting the accuracy
of the method. Liang [37] proposed an algorithm for fault classification based on
Wavelet Multiresolution Analysis (MRA) with Daubechies four (D-4) wavelet
measuring and comparing sharp variation in the values of the currents for the
three phases in the first stage MRA detail signals extracted from the original
signal. Cheng [13] used a B-Spline wavelet transform for fault classification pur-



Fig. 19. Multiple level decomposition of a transient disturbance [72].

20.1: Phase BC-ground fault. 20.2: Three phase-ground fault.

20.3: Phase C-ground fault.

Fig. 20. The detail coefficient of faults [72].

poses based on threshold values as in [37]. Zhao [85] proposed an algorithm
with Daubechies eight (D-8) wavelet for fault detection and classification in



an underground cable system using two different levels of MRA detail signals.
Chanda [12] presented an algorithm for classification of faults based on MRA
with Daubechies eight (D-8) wavelet transforms of the three phase currents on
a transmission line fed from both ends.

Imrǐs [26] and Chanda [12] were both using wavelets for data preprocessing
before applying the fault location and classification algorithms to the recorded
transients on transmission lines. Imrǐs analyzed ground fault transients in 110kV
networks using low frequency records for fault location purposes. As shown in
Figure 21, ground fault signals consist of different frequency components, which
result from charging or discharging of the network capacitances. The charge
transient is generated by the voltage rise in sound phases during a single-phase
to ground fault. This means that a charge transient is always a side effect of
the ground fault. Moreover, it is typically of strong amplitude and, therefore, is
reasonable to use for single-phase to ground fault location. The fault transients
are mixed with the other signals as noise and fundamental frequency components.
Sometimes the transient can be short in duration and also small in amplitude.
Moreover, the transient can be very close to the fundamental frequency signal
in the frequency domain. Therefore, the 50Hz component can negatively affect
the fault transient frequency estimation. To enable a more precise analysis of
the fault transient, preprocessing is performed with a wavelet filter [26].

Fig. 21. The recorded single phase to ground fault: Phase currents [26].

The filtering of the signal is performed using a wavelet filter to get the fault
transient precisely out of the measured signal. The wavelet filter is set exactly on
the frequency of the measured (charge) fault transient estimated by the Fourier
transform. The filter’s coefficient and its frequency response with an example
fault current are shown in Figure 22. The filter coefficients are represented by
a Gaussian mother wavelet. After removing the 50Hz component, the charge
transient frequency is detected. In the case of the phase currents shown in Fig-
ure 21, the charge transient frequency is detected at 178.57Hz. These transients
can then be used for fault location if they are detected. Transient fault location
is based on the estimation of the fault path inductance Lf from the detected



22.1: Wavelet coefficients 22.2: Wavelet spectrum

22.3: Fault current and filtered
component

22.4: Spectrum of the filtered cur-
rent

Fig. 22. Pre-processing of the fault signals using wavelet [26].

fault transients. The fault path inductance can be calculated directly from the
filtered signal (the charge transient) [26],

Lf =
1
ωc

Im

[
vc(t, f)
ic(t, f)

]
=

1
3

(L0 + L1 + L2) · lf , (10)

where ωc, vc and ic are the angular frequency, voltage and current of the charge
transient. The fault distance is lf . The constants L0, L1 and L2 are the zero-,
positive- and negative-sequence inductances of the faulty line per km. In (10), t
represents time and f the frequency.

Chanda, on the other hand, simulated the application of Wavelet MRA theory
for the classification of faults on a power transmission line as shown in Figure 23.
The base values of the voltage and power in the system are taken as 230kV and
100MVA. The frequency of the system is taken to be 50Hz. The phase current
signals are recorded at the two ends (P, Q). The generated time domain signals
are sampled every 80μs and then used for the analysis using wavelet transform.
The data considered in the analysis is assumed to be of finite duration and of
length 2N , where N is an integer. If N is chosen to be 9, the total duration of
the analysis comes to 29 (=512) × 80μs = 40.96ms, which is about two cycles
and is sufficient for the fault analysis. With N = 9, there are (N + 1) = 9 + 1 =
10 wavelet levels. If these 10 levels are added together, then the original signal
is faithfully reproduced at each of the sample points.



Fig. 23. 230kV, 200km transmission line system used for simulation studies [12].

Daubechies Eight (D-8) wavelet is used in this work for the analysis, since
it closely matches the signal to be processed (this is of the utmost importance
in wavelet applications). Due to the unique feature of providing multiple resolu-
tion in both time and frequency by wavelets, the sub-band information can be
extracted from the original signal. When applied to faults, this sub-band infor-
mation of a faulted power system is seen to provide useful signatures for faults.
By randomly shifting the point of fault on the transmission line, a number of
simulations can be carried out. The generated time domain signal for each case
is analyzed using the wavelet transform. From the different decomposed levels,
only 3rd level output is considered for the analysis.

The types of faults considered in the analysis are L-G, L-L-G, L-L, L-L-L.
The simulations show that the fault inception angle (αF ) has a considerable ef-
fect on the phase current samples and, therefore, also on the wavelet transform
output of post-fault signals. Through exhaustive experimentation, the authors
have concluded that the parameter identified for classification is the summation
of 3rd level output for the three phase currents. The results are shown in Fig-
ure 24 and Figure 25, where, Sa = Summation of 3rd level values for current in
phase ‘a’, Sb = Summation of 3rd level values for current in phase ‘b’, and Sc =
Summation of 3rd level values for current in phase ‘c’.

If Sa +Sb +Sc
∼= 0, then the fault is classified as an L-L-L fault, in which the

magnitude of all the summation values, Sa, Sb and Sc are comparable to each
other. This can be verified from the simulation results shown in Figure 24.1 (an
L-L-L fault at 5km) and Figure 24.2 (an L-L-L fault at 195km).

If Sa + Sb + Sc
∼= 0 and also if the sum of two of the summations Sa, Sb

and Sc is equal to zero, i.e., the magnitude of one of the summations is very
small and almost negligible in comparison to the equal magnitudes of other two
summations, then the fault is classified as an L-L fault, i.e., if Sa + Sb = 0, it is
a fault involving the a and b phase; Sa + Sc = 0, it is a fault involving the a and
c phase; and Sb + Sc = 0, it is a fault involving the b and c phase. The results
of classifying an L-L fault involving the a and b phase are shown in Figure 24.3
(an L-L fault at 5km) and Figure 24.4 (an L-L fault at 195km).



24.1: Effect of Inception angle (αF )
for L-L-L Fault at 5km.

24.2: Effect of Inception angle (αF )
for L-L-L Fault at 195km.

24.3: Effect of inception angle (αF )
for L-L fault involving phases ‘a’, ‘b’
at 5km.

24.4: Effect of inception angle (αF )
for L-L fault involving phases ‘a’, ‘b’
at 195km.

Fig. 24. Preprocessing of the L-L and L-L-L fault signals using wavelet [12].

If Sa + Sb + Sc �= 0, then it is either an L-G or L-L-G fault. If the absolute
value of any two summations (Sa, Sb, Sc) is equal and is always much smaller than
the absolute value of the 3rd summation, then it is an L-G fault. If |Sb| = |Sc|
& << |Sa|, it is an L-G fault involving phase a; if |Sa| = |Sc| & << |Sb|, it
is an L-G fault involving phase b; and if |Sa| = |Sb| & << |Sc|, it is an L-G
fault involving phase c. The results of classifying an L-G fault involving the a
phase are shown in Figure 25.1 (an L-G fault involving the a phase at 5km) and
Figure 25.2 (an L-G fault involving the a phase at 195km).

If the absolute value of any two summations (Sa, Sb, Sc) is not equal and is
always much higher than the absolute value of the 3rd summation, then it is
an L-L-G fault as shown in Figure 25.3 and 33.4. Furthermore, provided that
Smin = min(|Sa|, |Sb|, |Sc|), if Smin = |Sc| and << |Sa| or |Sb|, then it is an
L-L-G fault involving phases a, b and ground; if Smin = |Sb| and << |Sa| or |Sc|,
then it is an L-L-G fault involving phases a, c and ground; and if Smin = |Sa|
and << |Sb| or |Sc|, then it is an L-L-G fault involving phases b, c and ground.



25.1: Effect of inception angle (αF )
for L-G fault involving phase ‘a’ and
ground at 5km.

25.2: Effect of inception angle (αF )
for L-G fault involving phase ‘a’ and
ground at 195km.

25.3: Effect of inception angle (αF )
for L-L-G fault involving phases ‘a’,
‘b’ and ground at 5km.

25.4: Effect of inception angle (αF )
for L-L-G fault involving phases ‘a’,
‘b’ and ground at 195km.

Fig. 25. Preprocessing of the L-G and L-L-G fault signals using wavelet [12].

4.2 Combination of the Wavelet and Neural Network Techniques
for Fault Detection

Recently, research has been focused more on combining the wavelet and neural
network algorithms for fault identification in power systems. Wavelet analysis is
applied to analyze transient signals, then a neural network algorithm is utilized
for the identification of problems. The basic neural network structures and design
algorithms are given in an Appendix (see [15]).

Ramaswamy [72] and Kashyap [29] proposed a method that incorporates a
Probabilistic Neural Network (PNN) for detecting the type of power system fault.
The PNN has preference over other Artificial Neural Network (ANN) algorithms
in the application of power system fault classification. It combines the merits of
statistical theory with that of ANN. Figure 26 shows the entire procedure for
fault recognition.



Fig. 26. Procedure for fault detection and classification [72].

Three power system faults, i.e., phase A-Ground fault, double phase AB-
Ground fault and 3-phase symmetrical fault are simulated and investigated.
Transients are analyzed by the Meyer mother wavelet, and Multiple Level De-
composition of the transient disturbance was generated. The final level detail
coefficient is considered for the feature detection and used in the Probabilistic
Neural Network.

Figure 27 shows the model of a Probabilistic Neural Network, which classifies
these three power faults [29]. The PNN Architecture consists of four layers,
i.e., the Input Layer: consisting 119 Neurons, number of samples of the detail
coefficient; the Exemplar Layer: consisting of 9 Neurons, 3 faults × 3 sets of
data for each fault; the Summation Layer: consisting of 3 Neurons, equal to
the number of faults; and the Decision Layer: follows the “Winner take all”
mechanism.

Researchers also proposed solutions for digital relays for transmission line
protection. Martin has simulated a system with two generators and three lines
(distributed parameters model) [38]. Simulations include 3 different faults at
different distances from the beginning of each line, several fault resistances, in-
ception angles, and steady states. The process consists of a preprocessing module
based on Discrete Wavelet Transform (DWT) combined with an ANN for de-
tecting and classifying fault events.

Wavelets of length six (N=6) are used for the relay to operate in real time.
These wavelets can be expressed as functions of two parameters α and β [8].
By varying parameters α and β, a family of length-6 wavelets can be generated.
For a certain range of variation of these parameters, the generated wavelets
are classified according to their performance for this particular application. The



Fig. 27. Model of a Probabilistic Neural Network. Detail coefficient is fed to the input
layer and the type of fault is obtained at the output [29].

parameters for the length-6 wavelet with quasi-optimal performance are α =
0.48π and β = −0.35π.

Three independent multilayer (two hidden-layers), feed-forward neural net-
works have been used for detection, classification and location of fault transients.
The ANNs are fed with the six detail signals (three currents and three voltages).
The input data of the ANN is organized in a sliding-window of a quarter of a
cycle, thus a faster response is obtained since only a quarter of a cycle from
the occurrence of the fault is required. The input vector has 24 elements. The
detection ANN has one output neuron, which indicates the existence of a fault.
The location net has one neuron that indicates if the fault has occurred in the
protected zone. The classification ANN output layer has four neurons indicat-
ing which phases (A, B, C) or ground are involved in the fault event. An error
back-propagation algorithm has been used for training the ANN.

4.3 Time-Frequency Representation Technique for Classifying
Power Quality Disturbances

Voltage disturbances are the most frequent cause of a broad range of disruption
in power supply systems. Power quality (PQ) disturbances cover a broad fre-
quency range and significantly different magnitude variations. Typically, there
are five major PQ related waveform events: harmonics, voltage sags, capacitor
high frequency switching, capacitor low frequency switching, and normal voltage
variations. Harmonics distortion is the most common power quality problem [17].

Approaches for automated detection and classification of PQ disturbances
proposed recently are based on wavelet analysis and artificial neural networks [21,
55, 77]. To enhance the sufficiency for supporting a robust PQ monitoring system
is one of the most interesting research areas for scientists.

A wavelet transform on a PQ signal produces a multiresolution decomposi-
tion (MRD) matrix, which contains time domain information for the signal at
different scales. This property has made wavelets a promising tool for detecting
and extracting disturbance features for various types of PQ events [21, 55, 77].



However, there are still some issues to be resolved in wavelet-based methods.
First, while PQ disturbances cover a wide frequency range, a very small subset
of the MRD matrix (e.g., five scales in [77]) may not be a sufficient or opti-
mized selection for capturing features for all different types of PQ events. This
feature selection scheme may filter some important information for classification
and potentially degrade the recognition rates. Second, the wavelet-based meth-
ods relatively require more training examples. They result in greater efforts or
difficulties when adapting the algorithm onto a new system.

Wang and Mamishev had been investigating a feature extraction tool, time-
frequency ambiguity plane with kernel techniques [15, 82, 83], which is new to
the power engineering field. The fundamentals of time-frequency representation
(TFR) is presented in Appendix D. The essence of the feature extraction is to
project a PQ signal onto a low-dimension time-frequency representation (TFR),
which is deliberately designed for maximizing the separability between classes.
A distinct TFR is designed for each class. The classifiers include a Heaviside-
function linear classifier and neural networks with feedforward structures.

A set of 860 real world voltage signals from five event classes were collected
from industrial databases for the training and testing of the algorithm. Each
voltage signal to be identified consists of five cycles of a voltage waveform sam-
pled 128 times per cycle, and has a length of 640 sampling points. In the training
stage, four classification-optimal kernels are designed for separating five classes
sequentially. The kernel design process selects nine locations from the time-
frequency ambiguity plane.

Classification kernels are designed for training according to Fisher’s discrim-
inant function. Fisher’s discriminant function (FDF), which was developed by
R. A. Fisher in the 1930s, is a method that projects high dimensional data onto
low-dimensional space for classification. The projection maximizes the distances
between the means of the different classes while minimizing the variances within
each class.

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is
either 0 or 1). Feature points are ambiguity plane points of locations (η, τ) where
ϕi[η, τ ] = 1. Therefore, the process of feature extraction is to select points that
are optimal for the classification task from the ambiguity plane.

A total number of N − 1 kernels need to be designed for an N-class PQ
classification system. A kernel Ks works as either a single-class separator or a
group-class separator. In the single-class separator case, kernel Ki is dedicated
to discriminate class i from all remaining classes {i+1, ..., N}. In the group-class
separator case, kernel Ki is dedicated to discriminate a class group {i, i+1, ..., i+
m} from all remaining classes {i+m+ 1, i+m+ 2, ..., i+m+N}. In the second
case, additional kernels are needed in order to uniquely identify class i from the
class group {i, i + 1, ..., i + m}, and the total number of kernels required for an
N-class classification is still N-1.

Ambiguity planes for all training signals are calculated before the Fisher’s
discriminant function is applied for the kernel design. Assume there are n classes



and totally Ni training examples for class i. The notation Aij [η, τ ] represents
the ambiguity plane of the jth training example in the ith class.

With the Fisher’s criterion, locations on the ambiguity plane are ranked
according to their importance for classification. A certain amount of training
data from each class is needed for feature ranking in this statistical method. For
example, when designing kernel i, a Fisher’s discriminant score is calculated for
each location (η, τ) on the ambiguity plane,

JFi(η, τ) =
(mi[η, τ ] − mi−remain[η, τ ])2

D2
i [η, τ ] − D2

i−remain[η, τ ]
, (11)

where mi[η, τ ] and mi−remain[η, τ ] represent two means of location (η, τ),

mi[η, τ ] =
1
Ni

Ni∑
j=1

Aij [η, τ ], (12)

mi−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1 Akj [η, τ ]∑5
k=i+1 Nk

, (13)

and D2
i [η, τ ] and D2

i−remain[η, τ ] represent two variances of location (η, τ),

D2
i [η, τ ] =

1
Ni

Ni∑
j=1

(Aij [η, τ ] − mi[η, τ ])2, (14)

D2
i−remain[η, τ ] =

∑5
k=i+1

∑Nk

j=1(Akj [η, τ ] − mi−remain[η, τ ])2∑5
k=i+1 Nk

. (15)

Locations (η, τ) that receive the highest discriminant score JFi(η, τ) are se-
lected as feature locations.

By examining Fisher’s discriminant score JFi(η, τ), the optimal numbers of
feature points for each individual kernel have been found: one for the harmonics
kernel; two for the voltage sag kernel; three for the capacitor switching kernel;
and three for the capacitor high-frequency switching kernel. Therefore, nine fea-
ture locations are selected for these four kernels.

Each classification node consists of a kernel function and a classifier. A
Heaviside-function linear classifier is used for the task of separating harmon-
ics that is a great distance apart from other fault cases and is relatively easy
to discriminate. Neural networks with small numbers of input nodes are used
for all other classification tasks. The structure of the ANN for discriminating
sags is 2-12-2 (input layer node number - hidden layer node number - output
layer node number); the one for capacitor switching is 3-10-2; and the one for
capacitor high-frequency switching is 3-10-2. The transfer and training functions
adopted for the ANN include: the hyperbolic tangent sigmoid transfer function
as the transfer function for the hidden layer, the linear transfer function as the
transfer function for the output layer, backpropagation as the network training
function, the gradient descent learning function as the weight learning function,
and the mean squared error function as the performance evaluation function.



5 Data Preparation for Manitoba Hydro HVDC PSFC

Prior to feature extraction, data preparation and signal preprocessing are re-
quired to define the characteristics of power system signals. The fault data from
the TranscanTM is in binary format and non-editable. Data preparation consists
of two steps. The first step is to convert the data from binary format to ASCII
(American Standard Code for Information Interchange) format. The second step
is to separate the signals into different groups according to their physical nature
(i.e., Pole voltages/currents, 3 AC phase voltages, valve control signals, valve
currents).

5.1 Data Conversion

The data recorded by TranscanTM is in binary format and compressed as *.x01
files [80], which are unreadable by humans. Together with the .x01 files, TranscanTM

provides *.scf files. The *.scf file is a configuration file and contains the infor-
mation for data arrangement. It tells how many channels have been scanned.
At the Manitoba Hydro Dorsey Station, a fault file has 48 analog and 4 digital
channels, with some of them being spares. The *.scf file indicates the scanning
order and the physical name for each channel. The first 52 bytes in a .x01 file are
used for recording the file name and date. Every 16 bits that follow are allocated
for storing one channel data. In each 16-bit data field, the first 12 bits store one
digitalized data for a channel and the last 4 bits indicate the channel number.

For this research, a C++ program has been designed to convert the data to
ASCII format (*.dat) from binary format (.x01). Each .x01 file can be converted
into 48 *.dat files. Among these files, 23 files are selected to represent the most
active and informative signals in the power system for fault classification.

5.2 Signal Grouping

Among the 23 converted signals, some are constant signals and the others are
periodic signals. Bus signals, i.e., the 3 AC phase voltages and the pole voltages
and currents should be grouped separately from the valve signals. Bus signals
will induce more than one fault and usually cause significant problems. Valve
signals will affect only one valve group and cause a certain level of decrease or
increase of either the pole voltage or current. Table 8 lists the signal groups for
a pole 1 file. The number of signal groups will guide the number of the feature
sets to be extracted.

6 Signal Preprocessing and Feature Extraction for PSFC

To set up the information table for fault classification, the normal behavior of
each signal needs to be clarified and the abnormality of each signal related to each
type of fault can then be identified. Signal preprocessing and feature extraction
is presented in this section.



Table 8. Signal groups.

group 1 (3 signals) AC voltage A phase, B phase, C phase
group 2 (5 signals) Pole 1 and 2 voltage, Pole 1 and 2 current, pole current order
group 3 (3 signals) Vg11 current A phase, B phase, C phase ( first valve group in pole 1 )
group 4 (3 signals) Vg12 current A phase, B phase, C phase ( second valve group in pole 1 )
group 5 (3 signals) Vg13 current A phase, B phase, C phase ( third valve group in pole 1 )
group 6 (3 signals) 6-pulse in 3 valve groups
group 7 (3 signals) Start pulse in 3 valve groups

6.1 Signal Characteristics in Normal Condition

Standard value or waveform of each signal in normal condition is described in
the following two tables.

Constant Signals
In the 23 signals converted from .x01 file, the constant signals are pole-

current order, alpha order, pole current, pole voltage. Under normal conditions,
their standard values are given in Table 9:

Table 9. Constant signals in the 23 converted signals.

Pole Current Order Alpha Order Pole Current Pole Line Voltage
±1400 amps 150 degrees ±1400 amps ±450KV, ±300KV, ±150KV

Periodic Signals
The periodic signals are AC Phase Voltages, Phase Currents and 6-pulse

Voltages. Their normal waveform and standard peak values are shown in Ta-
ble 10.

Table 10. Periodic signals in the 23 converted signals.



6.2 Feature Extraction of 12 Types of Faults

Extensive time has been spent in studying 676 fault files provided by the Mani-
toba Hydro Dorsey Station. The 676 .x01 fault files recorded all the events that
happened in two recent years and covered 12 types of faults. Together with .x01
files, 676 .trt files are also provided. A .trt file contains the fault information, i.e.,
the fault cause and type. This fault information is created manually by power
system engineers and provides a reliable basis for the target for PSFC training
and testing. Various signal processing techniques are applied to analyze the fault
signals. They are auto-correlation, cross-correlation, the FFT and inverse FFT,
low pass filter, Wavelet MRD, phase shifting, derivatives and coding techniques.
The mathematics underlying these techniques can be found in appendices A-D.
A total of 17 features or attributes in Table 11 are generated for power system
fault classification. The 17 functions that represent these 17 features (attributes)
are further described.

A portion of the information table for power system fault classification train-
ing is shown in Table 12. This information table is derived from 508 fault files
and consists of 508 lines in total, with each line containing 17 features. This
table is further processed to prepare for the training sets to calibrate the rough
membership Neural Network (rmNN) for fault classification. Also, a portion of
the information table for testing is illustrated in Table 13. The testing table
consists of 168 rows generated from an additional 168 fault files. The complete
training and testing information tables are attached in an appendix available
at [15].

Table 11. 17 features/attributes for power system fault classification.

A1 Pole voltage sharp dropping
A2 AC voltage disturbance severity
A3 Pole index
A4 Pole 1 or 3 voltage trend
A5 Pole 2 or 4 voltage trend
A6 Pole 1 or 3 current trend
A7 Pole 2 or 4 current trend
A8 Valve current trend - valve group 1, vg*1
A9 Valve current trend - valve group 2, vg *2
A10 Valve current trend - valve group 3, vg *3
A11 Valve current minor disturbance
A12 Pole current closed with normal pole voltage
A13 3 valve groups all closed (True = 1, False = 0)
A14 Same current trend in 3 valve groups (True = 1, False = 0)
A15 Voltage flashover in 6-pulse signal
A16 Valve currents flashover
A17 Valve currents flashover happens only in one valve group (True = 1, False = 0)
Notation: * represents the pole index, i.e. for pole 1, the valve groups are Vg11, Vg12, Vg13

The following sections cover the details of signal processing for feature ex-
traction and the 17 functions that represent these features (attributes).

Feature 1 – Pole Voltage Sharp Dropping



Table 12. Partial information table for power system fault classification training.

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
1 Fault 1 F08101FE.x01 0 1 1 4 43 23 23 2 2 2 0 0 0 1 0 0 0
31 Fault 1 F224045A.x01 0 1 4 414 4 313 3 2 2 2 0 0 0 1 0 0 0
69 Fault 1, 3 F2913FDD.x01 0 1 1 3 4 2 2 2 2 1 0 0 0 0 0 0 0
70 Fault 1, 3, 5 F04102CE.x01 0 1 1 43 4 3 3 21 2 2 11 0 0 0 1 0 0
91 Fault 1, 3, 5, 7 F082016A.x01 0 1 2 4 43 2 2 2 21 212 100 0 0 0 2 1 1
93 Fault 1, 3, 5, 11 F0822697.x01 0 1 2 4 43 3 34 2121 2 2 10 0 0 0 10 0 0
99 Fault 1, 3, 11 F0822405.x01 0 1 2 3 43 34 3234 2 2 21 0 0 0 0 7 0 0
103 Fault 1, 3, 11 F0922884.x01 0 1 2 4 42 34 34 2 2 2121 0 0 0 0 28 0 0
104 Fault 1, 3, 11 F0810140.x01 0 1 1 4 43 34 34 2 2 2121 0 0 0 0 7 0 0
128 Fault 1, 4 F1112E8D.x01 0 1 1 414 4 313 3 212 212 212 0 0 0 1 1 0 0
131 Fault 1, 4 F2212CD7.x01 1 1 1 431 4 31 34 21 21 21 0 0 1 1 1 0 0
150 Fault 1, 4 F2213569.x01 1 1 1 414 4 3123 3 212 212 212 0 0 0 1 1 0 0
202 Fault 1, 5 F08101CA.x01 0 1 1 4 4 3 3 2 2 2 101 0 0 1 1 0 0
209 Fault 1, 5 F0820165.x01 0 1 2 4 434 3 3 2 2 2 10 0 0 1 2 0 0
219 Fault 1, 6 F112267F.x01 0 1 2 4 41 23 21 21 21 21 0 0 1 1 0 0 0
222 Fault 1, 6 F22225C4.x01 0 1 2 41 1 41 31 1 1 1 0 0 1 1 0 0 0
229 Fault 1, 6, 7 F08226DB.x01 0 1 2 4 1 3 1 1 1 1 0 0 1 1 1 1 1
239 Fault 1, 6, 8 F11226A5.x01 1 1 2 4 14 32 1 12 12 12 0 1 0 1 1 0 0
252 Fault 2 F20404C1.x01 0 2 4 41 4 341 34 2 2 2 0 0 0 1 0 0 0
265 Fault 2 F2713113.x01 0 2 1 4 3 2 2 2 2 2 111 0 0 1 1 0 0
267 Fault 2 F2713116.x01 0 2 1 434 323 343 3 2 2 2 111 0 0 1 1 0 0
305 Fault 2, 3 F041075C.x01 0 2 1 3 32 3213 3 1 2 2 0 0 0 0 0 0 0
349 Fault 2, 3, 7 F0820715.x01 0 2 2 3 313 2 2 212 121 2 0 0 0 0 2 6 1
374 Fault 2, 6 F08226BF.x01 0 2 2 4 421 3 1 21 21 21 0 0 1 1 1 32 0
392 Fault 3 F0121F8B.x01 0 0 2 3 23 21 21 12 1 2 0 0 0 0 0 0 0
403 Fault 3 F0121F8D.x01 0 0 2 3 212 2 212 21 1 12 0 0 0 0 1 0 0
415 Fault 3, 5 F1140866.x01 0 0 4 4 3 3 313 2 1 1 100 0 0 0 0 0 0
420 Fault 4 F2410189.x01 1 0 1 41 41 31 31 21 21 21 0 0 1 1 5 0 0
421 Fault 5 F1122499.x01 0 0 2 4 434 2 2 2 2 2 110 0 0 1 1 0 0
422 Fault 5 F27200E4.x01 0 0 2 4 4 3 3 2 2 2 10 0 0 1 0 0 0
440 Fault 8 F2212F95.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
441 Fault 8 F222260C.x01 0 0 2 4 4 1 2 2 2 2 0 1 0 1 0 0 0
448 Fault 9 F1121E5D.x01 0 0 2 13 4 12 32 2 2 2 0 0 0 1 0 0 0
465 Fault 9 F2410185.x01 0 0 1 4 14 32 12 2 2 2 0 0 0 1 3 0 0
466 Fault 10 F0813030.x01 0 0 1 4 1 3 1 2 2 2 0 0 0 1 0 0 0
475 Fault 10 F272015F.x01 0 0 2 41 4 21 2 2 2 2 0 0 0 1 0 0 0
490 Fault 12 F224070E.x01 1 0 4 3 3 2 2 2 2 2 0 0 0 1 0 0 0
504 Fault 12 F2510DC5.x01 1 0 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
508 Fault 12 F2522498.x01 1 0 2 4 4 3 3 2 2 2 0 0 0 1 0 0 0

Table 13. Partial information table for power system fault classification testing.

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
1 Fault 1 F0812D94.x01 0 1 1 4 43 3 3 2 2 2 0 0 0 1 0 0 0
30 Fault 1 F2240598.x01 0 1 4 414 4 313 3 2 2 2 0 0 0 1 0 0 0
46 Fault 1, 3 F2513620.x01 0 1 1 3 4 3 3 2 2 1 0 0 0 0 0 0 0
53 Fault 1, 3, 5, 7 F2720944.x01 0 1 2 3 34 2 2 2 2 1212 10 0 0 0 2 1 1
54 Fault 1, 3, 5 F08136DC.x01 0 1 1 3 4 3 3 2 2 1 110 0 0 0 1 0 0
56 Fault 1, 3, 8 F08228BE.x01 0 1 2 4 434 3 1 2 2 212 0 1 0 0 2 0 0
57 Fault 1, 3, 11 F08224D9.x01 0 1 2 4 43 3 3 21 2 2 0 0 0 0 7 0 0
82 Fault 1, 4 F2512DE2.x01 0 1 1 414 4 2312 2 212 212 212 0 0 0 1 1 0 0
86 Fault 1, 5 F2710116.x01 0 1 1 4 4 3 3 2 2 2 1 0 0 1 1 0 0
87 Fault 1, 5 F27101E6.x01 0 1 1 4 4 3 3 2 2 2 1 0 0 1 1 0 0
90 Fault 1, 6 F2420314.x01 0 1 2 41 41 431 431 21 21 21 0 0 1 1 7 0 0
93 Fault 1, 6, 8 F1122405.x01 0 1 2 4 41 1 21 21 21 21 0 1 1 1 1 0 0
94 Fault 1, 8 F1213907.x01 0 1 1 4 43 1 343 2 2 2 0 1 0 1 0 0 0
111 Fault 2 F22124E5.x01 1 2 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
116 Fault 2, 3 F22135CA.x01 0 2 1 3 4 3 3 2 2 1 0 0 0 0 0 0 0
121 Fault 2, 3, 5 F08163D5.x01 0 2 1 3 4 3 3 2 2 1 110 0 0 0 1 0 0
128 Fault 2, 3, 5, 7 F27208F3.x01 0 2 2 3 3 2 2 12 21 2 1 0 0 0 3 1 1
129 Fault 2, 4 F22124FD.x01 1 2 1 41 1 321 31 21 21 21 0 0 1 1 1 0 0
130 Fault 2, 5 F0814371.x01 0 2 1 4 1 343 1 2 2 2 1 0 0 1 1 0 0
132 Fault 2, 6 F113044A.x01 0 2 3 431 431 31 321 21 21 21 0 0 1 1 8 0 0
134 Fault 2, 6 F242042B.x01 0 2 2 4 41 34 321 21 21 21 0 0 1 1 1 0 0
135 Fault 2, 6, 7 F0827040.x01 0 2 2 3 1 3 1 1 1 1 0 0 1 1 0 2 1
136 Fault 2, 4, 7 F2923565.x01 0 2 2 3 1 23 1 1 1 1 0 0 1 1 2 4 1
137 Fault 2, 8 F1213908.x01 0 2 1 4 31 1 31 2 2 2 0 0 0 1 0 0 0
138 Fault 2, 9 F1123FF6.x01 0 2 2 3 4 3 34 2 2 2 0 0 0 1 0 0 0
139 Fault 3 F0121F8B.x01 0 0 2 3 23 21 21 12 1 2 0 0 0 0 0 0 0
144 Fault 3, 5 F0121F8E.x01 0 0 2 3 3 2 2 12 1 2 1 0 0 0 1 0 0
145 Fault 3, 5, 9 F1112BAE.x01 0 0 1 4 3 3 323 2 1 1 100 0 0 0 0 0 0
146 Fault 4 F2410819.x01 1 0 1 41 41 31 31 21 21 21 0 0 1 1 5 0 0
147 Fault 6 F1130FA4.x01 0 0 3 1 1 1 1 1 1 1 0 0 1 1 0 0 0
148 Fault 6, 8 F082B62B.x01 1 0 2 4 14 32 1 12 12 12 0 1 0 1 2 0 0
151 Fault 8 F22129F5.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
152 Fault 8 F2210A1C.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0
153 Fault 9 F1122E5D.x01 0 0 2 13 4 12 32 2 2 2 0 0 0 1 0 0 0
156 Fault 9 F2410810.x01 0 0 1 4 4 32 32 2 2 2 0 0 0 1 0 0 0
158 Fault 10 F1121E95.x01 0 0 2 31 4 21 2 2 2 2 0 0 0 1 0 0 0
167 Fault 12 F2510CD5.x01 1 0 1 4 4 3 3 2 2 2 0 0 0 1 0 0 0
168 Fault 12 F2522894.x01 1 0 2 4 4 3 3 2 2 2 0 0 0 1 0 0 0



The pole line voltage is a constant signal and the standard values are ±450KV,
±300KV, ±150KV. In fault 12 i.e., “Disturbance on DC Line”, the pole volt-
age is affected by high frequency interference and causes a sharp drop at the
tripping edge. The pole voltage sharp dropping sometimes happens in fault 4 as
well. As described in Section 2.2, there are two cases in fault 4, “Pole Line Fault”
and “Force Retard”. The pole voltage in “Force Retard” decreases slowly while
the pole voltage in “Pole Line Fault” drops as sharp and quick as in fault 12.
Figure 28 shows the pole voltages in fault 4 and 12. F1121E8D.x01 is a “Force
Retard Fault”, and F2213569.x01 is a “Pole Line Fault”.

Fig. 28. Pole line voltages with sharp dropping.

The derivative of pole line voltages is an efficient method to detect the sharp
dropping of the pole line voltage. A 4-point averaging for noise compression is
applied before the derivative. The derivative result is shown in Figure 29. It is
noticeable that the derivative of P1 in F2213569.x01 and F224070E.x01 both
have sharp peaks, while the P1 in F1121E8D.x01 has fairly small output. The
threshold to determine a sharp pole voltage drop is 100. The value of feature 1
is 1 for F2213569.x01 and F224070E.x01, and 0 for F1121E8D.x01.

The function f1 representing this feature is defined by (16)

f1(x) =
{

1 if max(derivitive(average(x))) > 100,
0 otherwise,

(16)

where x is the discrete pole voltage signal in a fault file.
Figure 28 shows that the pole voltage oscillates at the tripping edge in

both “Pole Line Fault” (F2213569.x01) and “Disturbance on DC Line” fault
(F224070E.x01). The FFT analysis in Figure 30 shows that “DC Disturbance
on DC Line” contains higher frequency components. It has a FFT peak at 60Hz,
which indicates that the interference is possibly from the AC line. The FFT peaks



Fig. 29. Derivative of pole line voltages.

for both cases of fault 4 are located lower than 6Hz. This feature is very useful
and will be added to improve the accuracy of the fault classification system.

Fig. 30. FFT analysis of pole line voltages.

Feature 2 – AC Disturbance
The three AC phase voltages, namely the A-phase, B-phase and C-phase,

have a fixed 120◦ phase difference from each other. It is found by studying the
data file that one period of AC phase voltage is represented by 96 data points.
So if B-phase is shifted 32 points and C-phase is shifted 64 points, the shifted B-
phase and C-phase will be exactly the same as the A-phase in normal condition.
If the AC voltages have distortion, it can be detected by an error signal, which
is calculated by



err =
|(A−phase) − (shifted B−phase)|

3
+

|(shifted B−phase) − (shifted C−phase)|
3

+

|(shifted C−phase) − (A−phase)|
3

. (17)

Taking file F2713113.x01 as an example, the AC phase analysis results are
shown in Figure 31. The first graph shows the original three AC phase voltages;
the second graph shows the shifted AC phase voltages; and the last one displays
the error output of AC voltage signals.

The AC disturbance error can be discretized by granule algorithm. The gran-
ule functions are designed based on the Gaussian function and can be written
as

φj(x) = exp

(
−|x − μj |2

2σ2
j

)
, j = 1, 2, 3. (18)

Fig. 31. Analysis of AC phase voltages by phase shift method.



Three granule functions need to be designed to discretize the AC disturbance
error into three intervals: low, medium and high. The center μj and σj is esti-
mated based on the 676 files provided by the Manitoba Hydro Dorsey Station.
Among those 676 fault files, 240 files are indicated as Minor AC disturbance
and 148 files as AC disturbance. The averaged AC phase voltage error calcu-
lated from the first 240 files is close to 700 while the averaged AC phase voltage
error from the other 148 files is approximately 2100. This leads to a supervised
procedure for optimizing the granule function parameters. The Gaussian gran-
ule functions for the AC disturbance error discretization are defined as (19) and
plotted in Figure 32.

φ1(x) = exp

(
−|x − 200|2

2 × 2002

)
,

φ2(x) = exp

(
−|x − 700|2

2 × 5002

)
,

φ3(x) = exp

(
−|x − 2100|2

2 × 9002

)
. (19)

Fig. 32. The granule formula.

For an input x, the peak value of the AC voltage error, three granule output
φ1(x), φ2(x) and φ3(x) are calculated respectively. If φ1(x) is the biggest, the
AC error is small enough to be considered as normal and 0 will be assigned. If
φ2(x) is the biggest, the AC error is moderate implying a minor disturbance and
1 will be assigned. If φ3(x) is the biggest, it is a severe AC disturbance and 2
will be assigned.



The function f2 representing feature 2 can be defined as

f2(x) =

⎧⎨⎩
2 if max(φ1(x), φ2(x), φ3(x)) = φ3(x),
1 if max(φ1(x), φ2(x), φ3(x)) = φ2(x),
0 if max(φ1(x), φ2(x), φ3(x)) = φ1(x),

(20)

where x = max(err(Va , Vb, Vc)), Va, Vb and Vc are discrete A-phase, B-phase
and C-phase voltages in a fault file.

Feature 3 – Pole Index
The information about the pole index is very easy to retrieve but helpful to

identify the fault, “Normal Affected by Another Pole”. According to the *.scf
file, it is known that the 4th character of the file name indicates the pole index,
i.e., F272015F.x01 file is a pole 2 file. Seventeen features of this fault file are
listed in Table 14. It is observed that attributes 4 and 6 notify the pole 1 voltage
and the current was blocked. All the other features are for pole 2, and they are
normal. The fault file of pole 2 was created due to the effect from pole 1. It is
reasonable to classify this file as the fault, “Normal Affected by Another Pole”.

Table 14. Features for F272015F.x01.

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
475 Fault 10 F272015F.x01 0 0 2 41 4 21 2 2 2 2 0 0 0 1 0 0 0

The function f3 representing this feature (pole index) is defined as

f3(x) = pole index, (21)

where x is the file name of a fault file.

Features 4, 5, 6 and 7 – Pole Voltage and Current Trend
To derive the trend of the pole line voltages and currents, it is necessary to

smooth the waveform by applying a low pass filter. A high order FFT followed
by a low order inverse FFT is an alternative to a digital low pass filter. The
sampling rate of the TranscanTM system is 6000 points per second. TranscanTM

itself is a low pass filter with a cutoff frequency of 3 kHz. An FFT of 8192 points
followed by a 32 point inverse FFT is a low pass filter with cutoff frequency
around 11.7 Hz. Most interference on the pole line voltage has a frequency of 16
– 90 Hz and is removed by the low pass filter. An example of pole line voltages
and currents and their simplified waveforms are shown in Figures 33 and 34,
respectively.

The simplified waveforms are represented by a sequence of numbers (codes)
based on (22) and (23).

CodeV =

⎧⎪⎪⎨⎪⎪⎩
1 if |Pole voltage| ≤ 100,
2 if 100 < |Pole voltage| ≤ 150,
3 if 150 < |Pole voltage| ≤ 300,
4 if 300 < |Pole voltage|.

(22)



Fig. 33. Pole voltages and currents in fault 1 and 4.

CodeI =

⎧⎨⎩
1 if |Pole current| ≤ 400,
2 if 400 < |Pole current| ≤ 1000,
3 if 1000 < |Pole current| ≤ 2000.

(23)

The codes for pole voltages and currents in fault F2213569.x01 are listed in
Table 15. The original codes contain 32 numbers; the simplified codes remove all
the duplicated numbers and for some special cases, i.e., “43134”, “42124” and
“32123”, they are further condensed to “414”, “414” and “313”, respectively.

Table 15. Codes for pole voltage and current trend.

Signal names Original codes Simplified codes
Pole 1 volt. 44444443134444444444444444444444 414
Pole 2 volt. 44444444444444444444444444444444 4
Pole 1 current 3333333123333333333333333333333 3123
Pole 2 current 33333333333333333333333333333333 3

Functions f4, f5, f6 and f7 represent features 4, 5, 6 and 7 respectively and
are defined as follows:

f4(x) = CodeV (LF (x)), (24)



Fig. 34. Simplified waveform of pole voltages and currents in faults 1 and 4.

where x is the discrete pole 1 voltage in a fault file;

f5(x) = CodeV (LF (x)), (25)

where x is the discrete pole 2 voltage in a fault file;

f6(x) = CodeI(LF (x)), (26)

where x is the discrete pole 1 current in a fault file; and

f7(x) = CodeI(LF (x)), (27)

where x is the discrete pole 2 current in a fault file.
In (24) to (27) CodeV (·) and CodeI(·) represent the coding processes and

LF (·) represents a lowpass filter.

Features 8, 9 and 10 – Valve Current Trend Vg*1, Vg*2, Vg*3
A normal valve current is a periodic signal with 96 samples per cycle. Refer-

ence to A-phase, B-phase and C-phase are 32 and 64 points delayed respectively.
The amplitude of the phase current should match the current order in normal
condition. A normalized phase current is calculated by (28) and illustrated in
Figure 35



Normalized phase current =
phase current

phase current order
. (28)

Fig. 35. Normalized valve current reference signal.

When a “Valve Current Closed/Blocked/Deblocked” happens, A, B and C
phase currents in this group are all closed and/or blocked and/or deblocked. An
example of this fault, F0121F8D.x01 is illustrated in Figure 36. In this file, valve
group 1 is blocked and valve group 3 is deblocked at a different time. To describe
the trend of a valve current, the correlation algorithm plus a coding method is
applied. The correlation theory was described in Appendix A.

The autocorrelation of the normalized valve reference signal r(j) at origin
point, denoted ρ0 is first evaluated by (29).

ρ0 =
95∑

j=0

r(j)r(j). (29)

The Maximum of the cross-correlation of the normalized valve current ref-
erence signal and every 96-point segment of the normalized input valve current
signal x(j), denoted ρ′0 is calculated by (30).

ρ′0 = Max(ρ′0(i)) = Max(
95∑

j=0

r(j) · x(j + i)). (30)

If ρ′0/ρ0 is less than 30%, valve current is considered to be closed and a code
1 will be assigned to this input segment. The valve is considered to be normal
or deblocked back to normal if the ratio is bigger than 80% and a code 2 will
be assigned. Ratio ρ′0/ρ0 for valve group 1 and 3 in fault file F0121F8D.x01
is illustrated in Figure 37. Usually during the interim from normal to valve
closed status and vice versa, various ratio of ρ′0/ρ0 will be observed. No code
will be assigned to the ratio between 30% and 80%. It is because only the closing
and normal stages need to be extracted to describe the trend of valve current.



Fig. 36. Valve Current Closed/Blocked/Deblocked error.

After all the input segments are processed, codes, “2222111111111” for valve
group 1 and “11111111111111111111111122222” for valve group 3 are derived.
To simplify the codes, only the turn points are maintained. The simplified codes
for valve group 1 and 3 are “21” and “12” respectively (see attributes 8 and 10
of fault file 403 in Table 12).

Functions f8, f9 and f10 representing features 8, 9 and 10 are defined as
follows:

f8(x) = Code(max(r 
 r)/max(r 
 x)), (31)

where x is the discrete normalized A, B and C phase valve currents in valve
group 1 in a fault file;

f9(x) = Code(max(r 
 r)/max(r 
 x)), (32)

where x is the discrete normalized A, B and C phase valve currents in valve
group 2 in a fault file; and

f10(x) = Code(max(r 
 r)/max(r 
 x)), (33)

where x is the discrete normalized A, B and C phase valve currents in valve
group 3 in a fault file.



Fig. 37. Ratio ρ′
0/ρ0 for attribute Valve Current Trend.

In (31) to (33), r denotes the discrete normalized valve current reference
signals, 
 is the correlation operator, and Code(·) represents the coding processes.

The feature “Valve Current Trend” is very useful for classification of par-
ticular faults, e.g., fault 4 (“Line Fault”) and fault 6 (“Pole Voltages/Currents
Closed/Blocked/Deblocked”). With the occurrence of “Line Fault”, all 3 valve
groups will have the same trend (the most common pattern is “212”). With
this type of fault, pattern “12” or “21” also happens occasionally. With the oc-
currence “Pole Voltages/Currents Closed/Blocked/Deblocked”, all three valve
groups behave in the same way. The most commonly observed pattern for this
type of fault is “1” (sometimes “12” or “21” can also occur).

Feature 11 – Valve Currents Minor Disturbance
“Valve Currents Minor Disturbance” happens very frequently and usually

associated with a fault of “AC Disturbance” or “Valve Current Commutation
Failure”. The typical waveforms of valve currents minor disturbance is shown
in Figure 38, which includes A, B, C, three phases of valve group Vg11 in fault
F08101CA.x01. A few cycles present distortions and happen in all three phases.
It is considered a valve minor disturbance as long as any one of three phases
shows a disturbance.

To detect “Valve Current Minor Disturbance”, the method applied in the
feature extraction for “Valve Current Trend” is adopted here. The ratio ρ′0/ρ0 is
estimated and displayed in Figure 39. The same threshold is used to assign the
code. If the ratio > 80%, code “2” is assigned; ratio < 30%, code “0” is assigned;



Fig. 38. Valve currents in fault 5.

in addition, between 30% and 80%, code “1” is assigned. The feature patterns
indicating a valve current minor distortion are listed in Table 16 and the codes
derived for phase A, B and C currents of Vg11 in F08101CA.x01 are listed in
Table 17. A minor disturbance is detected in all three phases of Vg11 and a final
code “1” is assigned. Only when all three phases are normal, should a final code
“0” be assigned. For each fault file, the same procedure is applied to all three
valve groups, i.e., Vg11, Vg12 and Vg13 for pole 1. Three final codes are simply
combed together as the value for feature 11. The value of attribute 11 for fault
F08101CA.x01 is 101.

Function f11 representing feature 11 is similar to the functions for features
8, 9 and 10, except that there is a different coding process.

f11(x) = Code(max(r 
 r)/max(r 
 x)), (34)

where x accepts discrete normalized A, B and C phase valve currents from all
valve groups.



Fig. 39. Ratio ρ′
0/ρ0 for attribute Valve Currents Minor Disturbance.

Table 16. Feature (attribute) codes.

Feature code 1 2,2,2,1,2,2,2
Feature code 2 2,2,2,0,2,2,2
Feature code 3 2,2,2,1,1,2,2,2
Feature code 4 2,2,2,0,0,2,2,2
Feature code 5 2,2,2,1,0,2,2,2
Feature code 6 2,2,2,0,1,2,2,2
Feature code 7 2,2,2,1,0,1,2,2,2

Feature 12 – Pole Current Closed with Normal Pole Voltage
(True = 1, False = 0)

Section 6.2 explains how to extract the pole voltage and current trend. In one
specific case, the pole current recorded in TranscanTM gives an output of zero
while the pole voltage is perfectly normal. This event happens during a parallel
operation. For instance, a “pole 1 to pole 3 parallel operation” is to switch the
pole 1 current to pole 3 to unload the pole 1 current line for maintenance. In
Table 12, the information table for training, file F2212F95.x01 is an example of
“pole 1 to pole 3 parallel operation”. The 17 attributes of this file are listed in
Table 18. Attribute 4 indicates the pole 1 voltage is normal, while attribute 6
shows the pole 1 current is closed, therefore the value of attribute 12 is 1.

Function f12 representing feature 12 is defined by (35).

f12(x, y) =

⎧⎨⎩
1 if ((f4(x) == 4)or(f4(x) == 3))AND(f6(y) == 1),
1 if ((f5(x) == 4)or(f5(x) == 3))AND(f7(y) == 1),
0 otherwise,

(35)

where x is the discrete pole voltage and y is the discrete pole current.

Table 17. Codes for valve currents minor disturbance in Vg11 in F08101CA.x01.

Signal names Original codes
A phase valve current 2222222222201222
B phase valve current 2222222222112222
C phase valve current 2222222222101222



Table 18. Features for F2212F95.x01.

File index Fault types Fault file names A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17
440 Fault 8 F2212F95.x01 0 0 1 4 4 1 2 2 2 2 0 1 0 1 0 0 0

Feature 13 – 3 Valve Groups All Closed (True = 1, False = 0)
Features 8, 9 and 10 of valve current trends have been discussed in Section 6.2.

Based on features 8, 9, 10, feature 13 can be derived. If the codes of valve current
trends for three valve groups all end in 1, meaning the three valve groups are all
closed in the end, feature 13 yields an output of 1. This usually implies that the
whole pole line is closed.

Function f13 representing feature 13 is defined as

f13(x, y, z) =
{

1 if codes f8(x), f9(y) and f10(z) are all ended in 1,
0 otherwise,

(36)

where x, y and z are the discrete normalized A, B and C phase currents in valve
groups 1, 2 and 3, respectively.

Feature 14 – Same Current Trend in 3 Valve Groups
(True = 1, False = 0)

Based on features 8, 9 and 10, feature 14 can also be derived. If the valve
current trends of three valve groups are all the same, feature 14 gives an output
of 1, which produces a high possibility of the following three faults, fault 4,
“Pole Line Fault”; fault 10, “Normal Affected by Another Pole”; and fault 12,
“Disturbance on DC Voltage”.

Function f14 representing feature 14 is defined by (37).

f14(x, y, z) =
{

1 if f8(x) == f9(y) == f10(z),
0 otherwise,

(37)

where x, y and z are the discrete normalized A, B and C phase currents in valve
groups 1, 2 and 3, respectively.

Feature 15 – Voltage Flashover in 6-Pulse
Feature 15 records the number of cycles of voltage flashover that happened in

a 6-pulse signal. A normal 6-pulse signal shown in Figure 40 is a periodic signal.
When fault 11, “Asymmetric Protection”, happens, the 6-pulse does 7 cycles of
voltage flashover and closes the valves for protection. The typical waveform of a
6-pulse signal in fault 11, F0822405.x01, is illustrated in Figure 41.

To detect those 7 cycles of flashover, the Wavelet Multi-resolution Decom-
position (MRD) method has been applied to extract different levels of details
for the recorded signals. A number of experiments have been done to evaluate
the performances of different wavelet functions such as Daubechies wavelets and
the Meyer wavelet. The decomposition can be carried out in MatlabTM using
functions wavedec and wrcoef. The MRD with the Daubechies 2 wavelet (DB2)



Fig. 40. 6-pulse reference signal (2 cycles).

Fig. 41. 6-pulse signal in Asymmetric Protection fault.

function extracts the 7 cycles of flashover at the 6th level detail coefficient output.
Figure 42 shows the transient signal and 7-level ‘DB2’ MRD details. The exper-
iments with the ‘DB3’, ‘DB4’ and ‘Meyer’ wavelets extract 8 cycles of flashover,
which does not agree with the 6-pulse transient signal. The 6th level detail co-
efficient output from ‘DB2’ MRD is further processed by 32-point averaging. In
addition, 7 positive peaks with values greater than 18 are detected and shown in
Figure 43. Occasionally, the first 7 cycles of voltage flashover failed to close the
valves and the control system continues with another 7 cycles until the valves
are closed. An example of this phenomenon is F0922884.x01.

Function f15 representing feature 15 is given by (38).

f15(x, y, z) = max(g15(average(MRD(x))), g15(average(MRD(y))),
g15(average(MRD(z)))), (38)

where g15(·) picks up the points with values of average(MRD(·)) greater than
18. The discrete 6-pulse signals in valve groups 1, 2 and 3 are x, y and z respec-
tively.



Fig. 42. The multi-level details of ‘DB2’ MRD applied to a 6-pulse signal in Asym-
metric Protection fault.

Fig. 43. Seven peaks detected in a 6-pulse signal in Asymmetric Protection fault.

Feature 16 – Valve Currents Flashover
Feature 11, the valve current minor disturbance, has been discussed in Sec-

tion 6.2. In this section, a severe fault is addressed that is involved with valve
current flashover. A standard peak value for a valve current is 1400 Amps. Occa-
sionally with a severe AC bus error or the valve line shorted together or shorted
to ground, valve currents increase dramatically to an excess of 4000 Amps. Usu-
ally this happens within a pair of valves in a valve group. Two valve currents
increase in opposite directions to prevent the pole current from overshooting.
Examples are illustrated in Figures 44 and 45. The first example is fault 7,
“Current Arc Back”, valve current flashover happens only in one valve group.



The second one is fault 2, “AC Disturbance”, valve current flashover happens in
two valve groups.

Fig. 44. B and C phase currents in F082016A.x01, phase currents flashover in Vg22
valve group.



Fig. 45. B and C phase currents in F08226BF.x01, phase currents flashover in Vg21
and Vg23 valve group.

To detect the valve current flashover, 96-point averaging is applied to derive
a mean value for each cycle. The mean value of a normal cycle is 0 and a
flashover cycle is over 1800, which is the threshold used to detect the event
of current flashover. The averaged waveforms of B and C phase currents for 3
valve groups in F082016A.x01 and F08226BF.x01 are displayed in Figures 46
and 47, respectively. For F082016A.x01, there is only one point over 1800 in
Vg22; for F08226BF.x01, there are three points over 1800 in Vg21 and two
points over 1800 in Vg23. The value for feature 16 is 1 for F082016A.x01 and 32
for F08226BF.x01.



Function f16 representing feature 16 is defined as

f16(x, y, z) = Code(g16(average(x)), g16(average(y)), g16(average(z))), (39)

where g16(·) picks up the points with values of average(·) greater than 1800.
Code(·) is the coding process used to concatenate the number of points from
3 valve groups and x, y and z are the discrete normalized A, B and C phase
currents in valve groups 1, 2 and 3, respectively.

Fig. 46. Averaged waveforms for B and C phase currents in F082016A.x01.

Feature 17 – Valve Current Flashover Happens Only in One Valve
Group (True = 1, False = 0)



Fig. 47. Averaged waveforms for B and C phase currents in F08226BF.x01.

As seen in the discussion of feature 16, valve current flashover happens in
both faults 2 and 7. “Current Arc Back” usually comes with an “AC Distur-
bance”. However, the current flashover in “Current Arc Back” is only due to the
electronic faults in the valve group itself. A severe AC disturbance is a bus error
and affects all the valve groups. If the severe AC disturbance induces current
flashover, it will affect almost all valve groups. To further separate these two
faults, feature 17 is added.

It is simple to obtain feature 17 based on the results of feature 16. Feature
17 will yield an output of 1 if only one valve group gives an output of a non-zero
number in feature 16.



Function f17 representing feature 17 is defined as

f17(x, y, z) =

⎧⎪⎪⎨⎪⎪⎩
1 if only g16(average(x)) �= 0,
1 if only g16(average(y)) �= 0,
1 if only g16(average(z)) �= 0,
0 otherwise.

(40)

7 Rough Membership Neural Network (rmNN) for PSFC

A form of rough neural computing based on rough sets and rough membership
functions [46, 63, 64, 66] is introduced in this section. A rough membership func-
tion neural network (rmNN) has been designed and applied to classify power
system faults [24, 25, 56].

7.1 Sample Information System For PSFC

The fault files recorded by TranscanTM form the universe of events U . Table 12
and Table 13 in Section 6.2 represent the information system and have 17 fea-
tures, which form the knowledge domain for the PSFC system. Further research
will be addressed to examine the possibility of reducing the feature dimension by
applying the discernibility-based reduction algorithm [50, 4, 5]. The 17 features in
the information table are sub-grouped into 11 feature sets, B = {B1, B2, ..., B11}
(Table 19). B3 contains 5 features, feature 3, 4, 5, 6 and 7. B4 has 3 features,
feature 8, 9 and 10. A feature set is a collection of the attributes which represent
the signals of same nature. Features 3, 4, 5, 6 and 7 represent pole signals, which
are constant signals in the normal condition. Features 8, 9 and 10 characterize
the valve currents, the periodic signals in 3 valve groups. By grouping 17 fea-
tures into 11 feature sets, the dimension of the knowledge domain is reduced,
whereas the classification generalization is decreased. The information system is
then represented by (U, B).

Table 19. 11 Feature Sets.

B1 Feature/attribute 1
B2 Feature/attribute 2
B3 Feature/attribute 3, 4, 5, 6, 7
B4 Feature/attribute 8, 9, 10
B5 Feature/attribute 11
B6 Feature/attribute 12
B7 Feature/attribute 13
B8 Feature/attribute 14
B9 Feature/attribute 15
B10 Feature/attribute 16
B11 Feature/attribute 17

A simple information system containing sample fault events and feature set
B4 (Table 20) is discussed in this section to illustrate the rough set basic theory



Table 20. Sample information system.

Events B4
Fault file names f8 f9 f10
F08101FE.x01 2 2 2
F1113009.x01 2 2 2
F0420695.x01 2 2 21
F2913FDD.x01 2 2 1
F1112E8D.x01 212 212 212
F2212CD7.x01 21 21 21
F223079B.x01 212 212 212
F0820165.x01 2 2 2
F112267F.x01 21 21 21
F22225C4.x01 1 1 1
F20406CC.x01 2 2 2
F2713113.x01 2 2 2
F2713116.x01 2 2 2
F041075C.x01 1 2 2
F0820715.x01 1 1 1
F08226BF.x01 21 21 21
F0112939.x01 2 2 1
F1140866.x01 2 1 1
F1112BAE.x01 2 1 1
F2410189.x01 21 21 21
F1122499.x01 2 2 2
F2212F95.x01 2 2 2
F1121E5D.x01 2 2 2
F272015F.x01 2 2 2
F111302A.x01 2 2 2

in the application of the power system. In this example, assume that U is a set
of sample fault events. By way of approximation of a set of objects, consider
X ⊆ U defined as

X = {x|x is a fault event in the power system}
= {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01, F1112E8D.x01,

F2212CD7.x01, F223079B.x01, F0820165.x01, F112267F.x01, ...},
F = {f8, f9, f10}, defined in Section 6.2, is a set of functions representing the

feature set B4 = {A8, A9, A10).
The fault events and their associated fault types are listed in Table 21.
Notice that each of the events in class
[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01},

has exactly the same B4 output, namely, {2, 2, 2} (Table 20).
The partition of U defined by the relation ∼B4 is as follows:
[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01},

[F0420695.x01]B4 = {F0420695.x01},
[F2913FDD.x01]B4 = {F2913FDD.x01, F0112939.x01},
[F1112E8D.x01]B4 = {F1112E8D.x01, F223079B.x01},
[F2212CD7.x01]B4 = {F2212CD7.x01, F112267F.x01, F08226BF.x01, F2410189.x01},
[F22225C4.x01]B4 = {F22225C4.x01, F0820715.x01},
[F041075C.x01]B4 = {F041075C.x01},



[F1140866.x01]B4 = {F1140866.x01, F1112BAE.x01}.

Table 21. Fault events and associated fault types.

Events Decision
F08101FE.x01 Fault 1
F1113009.x01 Fault 1
F0420695.x01 Fault 1 and 3
F2913FDD.x01 Fault 1 and 3
F1112E8D.x01 Fault 1 and 4
F2212CD7.x01 Fault 1 and 4
F223079B.x01 Fault 1 and 4
F0820165.x01 Fault 1 and 5
F112267F.x01 Fault 1 and 6
F22225C4.x01 Fault 1 and 6
F20406CC.x01 Fault 2
F2713113.x01 Fault 2
F2713116.x01 Fault 2
F041075C.x01 Fault 2 and 3
F0820715.x01 Fault 1 and 6 and 7
F08226BF.x01 Fault 2 and 6
F0112939.x01 Fault 3
F1140866.x01 Fault 3 and 5
F1112BAE.x01 Fault 3 and 5 and 9
F2410189.x01 Fault 4
F1122499.x01 Fault 5
F2212F95.x01 Fault 8
F1121E5D.x01 Fault 9
F272015F.x01 Fault 10
F111302A.x01 Fault 12

Now select a particular set X , which contains all the events of fault 1: (Ta-
ble 21), i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,
F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,
F112267F.x01, F22225C4.x01, F0820715.x01}.

This choice leads to the following lower and upper approximations of the set X .
B4∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,
F0820715.x01},

B4
∗X = [F0420695.x01]B4 ∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4

∪ [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4

= {F0420695.x01, F1112E8D.x01, F223079B.x01, F22225C4.x01,
F0820715.x01, F08101FE.x01, F1113009.x01, F0820165.x01,
F20406CC.x01, F2713113.x01, F2713116.x01, F1122499.x01,
F2212F95.x01, F1121E5D.x01, F272015F.x01, F111302A.x01,
F2913FDD.x01, F0112939.x01, F2212CD7.x01, F112267F.x01,
F08226BF.x01, F2410189.x01},

BndB4X = B4
∗X - B4∗X

= [F08101FE.x01]B4 ∪ [F2913FDD.x01]B4 ∪ [F2212CD7.x01]B4

= {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,
F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01, F2913FDD.x01,



F0112939.x01, F2212CD7.x01, F112267F.x01, F08226BF.x01,
F2410189.x01}.

In effect, the lower approximation B4∗X indicates that the events in [F0420695.x01]B4

∪ [F1112E8D.x01]B4 ∪ [F22225C4.x01]B4 certainly are the members of set X .
B4∗X is called the “Yes” set in Section 7.2. Meanwhile, the non-empty boundary
BndB4X indicates that set X is a rough set and the events in BndB4X might
belong to set X . BndB4X is called the “YesOrNo” set in Section 7.2.

Next, consider the degree of overlap of class [F08101FE.x01]B4 with the set
X , i.e.,

X = {F08101FE.x01, F1113009.x01, F0420695.x01, F2913FDD.x01,
F1112E8D.x01, F2212CD7.x01, F223079B.x01, F0820165.x01,
F112267F.x01, F22225C4.x01, F0820715.x01},

and
[F08101FE.x01]B4 = {F08101FE.x01, F1113009.x01, F0820165.x01, F20406CC.x01,

F2713113.x01, F2713116.x01, F1122499.x01, F2212F95.x01,
F1121E5D.x01, F272015F.x01, F111302A.x01},

where the degree of overlap is calculated using (41)

μB4
X (x) =

|[F08101FE.x01]B4 ∩ X |
|[F08101FE.x01]B4|

=
3
11

= 0.273. (41)

This demonstrates that the degree to which the events in class [F08101FE.x01]B4

belong to X is 27.3%. This shows that fault events in class [F08101FE.x01]B4

and the faults in the set X are partially related.

7.2 Rough Membership Functions

A rough membership function (rm function) makes it possible to measure the
degree to which any specified object belongs to a given set X . In the power
fault classification system, there are 11 feature sets and 12 types of faults; the
universe is divided into 132 Rough Sets. A mapping of these 132 Rough Sets and
the information table is illustrated in Table 22.

Table 22. The mapping of 132 Rough Sets and information table.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11
Fault1 RS 11 RS 12 RS 13 RS 14 RS 15 RS 16 RS 17 RS 18 RS 19 RS 110 RS 111
Fault2 RS 21 RS 22 RS 23 RS 24 RS 25 RS 26 RS 27 RS 28 RS 29 RS 210 RS 211
Fault3 RS 31 RS 32 RS 33 RS 34 RS 35 RS 36 RS 37 RS 38 RS 39 RS 310 RS 311
Fault4 RS 41 RS 42 RS 43 RS 44 RS 45 RS 46 RS 47 RS 48 RS 49 RS 410 RS 411
Fault5 RS 51 RS 52 RS 53 RS 54 RS 55 RS 56 RS 57 RS 58 RS 59 RS 510 RS 511
Fault6 RS 61 RS 62 RS 63 RS 64 RS 65 RS 66 RS 67 RS 68 RS 69 RS 610 RS 611
Fault7 RS 71 RS 72 RS 73 RS 74 RS 75 RS 76 RS 77 RS 78 RS 79 RS 710 RS 711
Fault8 RS 81 RS 82 RS 83 RS 84 RS 85 RS 86 RS 87 RS 88 RS 89 RS 810 RS 811
Fault9 RS 91 RS 92 RS 93 RS 94 RS 95 RS 96 RS 97 RS 98 RS 99 RS 910 RS 911
Fault10 RS 101 RS 102 RS 103 RS 104 RS 105 RS 106 RS 107 RS 108 RS 109 RS 1010 RS 1011
Fault11 RS 111 RS 112 RS 113 RS 114 RS 115 RS 116 RS 117 RS 118 RS 119 RS 1110 RS 1111
Fault12 RS 121 RS 122 RS 123 RS 124 RS 125 RS 126 RS 127 RS 128 RS 129 RS 1210 RS 1211



RSij is a set of the ith (1 ≤ i ≤ 12) faults represented by function values
for functions in Bj (1 ≤ j ≤ 11). Eleven sets, RSi1, RSi2, RSi3, RSi4, RSi5,
RSi6, RSi7, RSi8, RSi9, RSi10, RSi11, are derived to represent the 11 features
for the faults of type i. For simplicity, fault file names will be replaced by sets of
values of functions, e.g., the equivalence class [F08101FE.x01]B4

is represented
by 11of {2, 2, 2} as discussed in Section 7.1. 11 fault files have same output,
which is {2, 2, 2}, from B4.

Consider two sets, RSij and RSkj , (1 ≤ k ≤ 12, k �= i), the intersection
RSij ∩ RSkj belongs to the “YesOrNo” set of RSij in the case where RSij and
RSkj have feature values in common. The elements that exist only in set RSij

constitute what is known as the “Yes” set. In other words, each RSij set is
divided into two sets, the “YesOrNo” set and the “Yes” set. The RSij set is a
rough set if its “YesOrNo” set is non-empty. Examples of “YesOrNo” sets of B4
to B11 in faults 1, 2, 3 and 4 are listed in Table 23. The complete tables of the
“YesOrNo” set of all feature sets in all 12 faults are attached in an Appendix
available at [15]. The “Yes” sets of all feature sets in all 12 faults are listed in
Table 24. The equivalence classes of all feature sets are listed in Tables 25 and 26.

Table 23. “YesOrNo” set of feature sets from B4 to B11 in faults 1, 2, 3 and 4.

YesOrNo SET

B4 B5 B6 B7 B8 B9 B10 B11

Fault 1 72 of {2 2 2 }; 10 of {2 2 21 }; 12 of {2 2 1 }; 199 of 0; 232 of 0; 206 of 0; 170 of 1; 75 of 0; 227 of 0; 227 of 0;
1 of {212 2 2 }; 1 of {21 1 2 }; 7 of {1 2 2 }; 3 of 111; 8 of 1; 34 of 1; 70 of 0; 79 of 1; 9 of 1; 13 of 1;
3 of {12 2 2 }; 6 of {21 2 2 }; 2 of {2 21 21 }; 5 of 11; 27 of 2; 3 of 2;
4 of {2 21 1 }; 2 of {2 2 212 }; 7 of 110; 10 of 4; 1 of 6;
1 of {212 21 2 }; 1 of {2 21 212 }; 9 of 10; 1 of 10;
1 of {2 2 1212 }; 1 of {2121 2 2 }; 8 of 100; 22 of 3;
1 of {2 212 12 }; 1 of {2 1 1 }; 7 of 1; 8 of 7;
5 of {2 2 2121 }; 4 of {2 21212 2 }; 2 of 101; 3 of 6;
4 of {2 21 2 }; 63 of {212 212 212 }; 6 of 8;
21 of {21 21 21 }; 1 of {21 21 1 }; 4 of 28;
3 of {21212 21212 21212 }; 9 of {1 1 1 }; 4 of 29;
1 of {21 21 2121 }; 1 of {1 21 21 }; 1 of 5;
1 of 21 1 21 ; 1 of 12 12 12 ;

Fault 2 77 of {2 2 2 }; 6 of {1 1 1 }; 10 of {1 2 2 }; 51 of 111; 148 of 0; 128 of 0; 97 of 1; 80 of 1; 126 of 0; 127 of 0;
29 of {2 2 1 }; 1 of {21212 21212 1 }; 57 of 0; 20 of 1; 51 of 0; 35 of 0; 5 of 11; 21 of 1;
1 of {21212 1 1 }; 1 of {212 212 1 }; 22 of 110; 7 of 3; 2 of 32;
1 of {21 1 2 }; 1 of {12 21 2 }; 4 of 10; 14 of 2; 2 of 22;
1 of {212 121 2 }; 1 of {2 1 2 }; 4 of 1; 3 of 6; 4 of 2;
1 of {2 21 2 }; 10 of {21 21 21 }; 7 of 11; 4 of 4; 3 of 1;
4 of {21212 21212 21212 }; 2 of 100; 2 of 8; 1 of 6;
1 of {1 21 21 }; 1 of {21 1 1 }; 1 of 101; 1 of 10; 1 of 7;
2 of {21 21 1 }; 1 of 5; 1 of 3;

1 of 7; 2 of 5;
1 of 4;

Fault 3 10 of {2 2 21 }; 49 of {2 2 1 }; 1 of {212 2 2 }; 75 of 0; 143 of 0; 145 of 0; 145 of 0; 41 of 0; 134 of 0; 134 of 0;
2 of {21 1 2 }; 20 of {1 2 2 }; 3 of {12 2 2 }; 8 of 11; 2 of 1; 17 of 2; 6 of 1; 11 of 1;
6 of {21 2 2 }; 3 of {2 21 21 }; 4 of {2 21 1 }; 27 of 110; 53 of 1; 3 of 2;
2 of {2 2 212 }; 1 of {212 21 2 }; 7 of {2 1 1 }; 6 of 10; 1 of 4; 1 of 6;
1 of {2 21 212 }; 1 of {2 2 1212 }; 22 of 100; 1 of 10; 1 of 7;
1 of {2121 2 2 }; 1 of {2 212 12 }; 7 of 1; 6 of 3;
5 of {2 2 2121 }; 4 of {2 21212 2 }; 7 of 7;
5 of {2 21 2 }; 1 of {21212 21212 1 }; 4 of 6;
1 of {21212 1 1 }; 1 of {212 212 1 }; 7 of 8;
1 of {12 21 2}; 1 of {212 121 2 }; 4 of 28;
5 of {2 1 2 }; 2 of {12 1 2 }; 4 of 29;
2 of {212 1 2 }; 1 of {2 1 21 };

Fault 4 3 of {2 2 2 }; 63 of {212 212 212 }; 81 of 0; 81 of 0; 69 of 0; 81 of 1; 3 of 0; 81 of 0; 81 of 0;
12 of {21 21 21 }; 3 of {21212 21212 21212 }; 12 of 1; 31 of 1;

21 of 3;
16 of 2;
9 of 4;
1 of 5;



Table 24. “Yes” set of 11 feature sets in 12 faults.

Yes SET

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Fault 1 {1 4 43 23 23 } {1 4 41 3 3241 }
{1 4 434 3 343 } {1 4 41 23 21 }
{1 4 41 23 21 } {4 43 4 3 3 }
{4 41 4 321 34 } {1 4 4134 3 313 }
{2 41 4 31 34 } {2 4 4 3 23 }
{2 4314 4 3123 3 } {2 414 4 323 3 }
{2 323 4 3 3 } {2 3 4 2 2 }
{3 4 414 3 313 } {3 4 414 232 }

Fault 2 {2 3 434 3 3 } {2 323 434 2 2 }
{1 434 43 23 23 } {1 434 4 2 2 }
{4 4241 434 3141 34 } {4 41 4 341 34 }
{4 3 4 34 34 } {2 434 434 3 343 }
{2 434 4 32 32 } {3 4 4 3 3 }
{1 414 434 232 12 } {1 4 434 323 3 }
{1 4 3 2 2 } {1 4234 323 3 3 }
{1 434 323 343 3 }

Fault 3 {1 34 23 21 21 } {1 3 312 2 2 } {12 12 1 }
{1 3 2 2 212 } {2 3 23 21 21 } {1 1 12 }
{1 3 4 3 32 } {2 2 3 3 3 } {1 13 4 12 2 } {21 1 12 }
{1 3 12 2 12 } {2 3 12 2 12 } {1 212 212}
{2 3 212 2 212 } {4 4 313 3 3213 }

Fault 4 {1 41 41 31 31 }
Fault 5

Fault 6 {3 1 1 1 1 } {4 1 1 1 1 }
{1 1 1 1 1 } {2 1 1 1 1 }

Fault 7

Fault 8 {1 4 4 1 2 } {2 4 4 1 2 } {2 4 4 1 2 }
{1 4 4 1 2 } {1 4 4 1 2 } {4 431 4 321 34 }

Fault 9 {3 4 13 43 13 } {1 4 14 32 12 } {2 13 4 12 32 }
{2 143 4 12 32 } {1 4 434 23 23 }
{1 4 4 321 321 } {1 4 4 23 23 } {2 4 4 32 32 }
{2 3 4 3 43 } {1 123 4 12 32 } {1 4 4 321 321 }
{1 13 4 12 32 } {1 4 4 23 23 } {1 3 4 3 34 }
{1 3 4 3 43 }

Fault 10 {2 31 4 21 2 } {2 143 4 12 2 }
{4 3 4 3 3 } {2 41 4 21 2 }
{1 4 143 2 12 } {1 4 31 2 21 }
{1 4 3 3 3 } {1 4 123 2 12 }
{1 4 4 3 2 } {1 4 42 2 32 } {1 4 31 2 21 }

Fault 11

Fault 12 {4 3 3 2 2 } {1 3 4 2 3 } {4 3 3 2 2 }
{2 4 3 3 2 } {1 3 4 2 3 } {4 3 3 2 2 }
{2 4 3 3 2 } {4 3 3 2 2 } {4 3 3 2 2 }
{1 3 4 2 3 } {2 4 3 3 2 } {4 3 3 2 2 }



Table 25. The equivalence classes of feature sets B1, B2 and B3.

Equivalence classes

B1 B2 B3

700 of 0; 495 of 1; 10 of {1 4 43 3 3 }; 7 of {1 4 1 3 1 }; 8 of {2 3 4 3 3 }; 6 of {4 4 4 3 3 }; 16 of {1 4 4 3 3 };
227 of 1; 279 of 2; 3 of {1 4 41 3 31 }; 20 of {2 4 4 3 3 }; 3 of {4 41 4 31 34 }; 7 of {1 4 4 2 2 };

153 of 0; 9 of {1 434 4 3 3 }; 2 of {2 3 43 34 34 }; 2 of {1 3 43 3 3143 }; 14 of {1 3 43 3 3 };
2 of {2 3 434 3 343 }; 60 of {1 3 4 3 3 }; 2 of {2 3 312 23 23 }; 8 of {1 3 4 2 2 };
2 of {1 3 34 3 3 }; 8 of {1 3 3 2 2 }; 2 of {1 3 413 2 2 }; 2 of {2 3 34 3 3 };
2 of {3 43 43 3 3 }; 2 of {4 43 43 3 3 }; 3 of {1 43 4 3 3 }; 27 of {1 323 4 3 3 };
6 of {1 34 4 3 3 }; 3 of {3 43 4 3 3 }; 7 of {3 3 4 3 3 }; 4 of {2 4 434 2 2 };
3 of {1 43 4 3 23 }; 3 of {4 4 43 3 3 }; 3 of {1 312 43 23 23 }; 3 of {2 3 413 2 2 };
4 of {2 4 43 2 2 }; 4 of {2 3 34 2 2 }; 4 of {2 4 43 3 34 }; 3 of {2 4 4 1 1 }; 3 of {2 4 2 3 1};
3 of {2 4 434 3 1 }; 3 of {2 4 43 1 343 }; 3 of {2 3 43 34 3134 }; 3 of {2 3 43 34 3234 };
3 of {2 4 43 3 3 }; 3 of {2 4 42 3 3 }; 3 of {2 4 43 34 34 }; 3 of {2 4 42 34 34 };
6 of {1 3 42 3 3 }; 6 of {1 4 424 3 3 }; 9 of {1 4 434 3 3 }; 3 of {1 3 43 34 3134 };
3 of {1 3 43 34 3234 }; 3 of {1 4 42 3 3 }; 3 of {1 4 43 34 34 }; 3 of {1 4 42 34 34 };
4 of {2 431 4 321 34 }; 2 of {2 414 4 313 3 }; 20 of {1 414 4 313 3 }; 8 of {1 414 4 3123 3};
2 of {1 414 4 2 2 }; 2 of {1 431 4 31 3 }; 2 of {1 41 4 31 3 }; 2 of {1 431 4 31 34 };
4 of {1 4134 4 3123 3 }; 4 of {1 4134 4 323 3 }; 2 of {1 414 4 232 2 }; 2 of {1 414 4 212 2};
2 of {1 414 4 2132 2}; 2 of {1 414 4 3213 3}; 2 of {1 4314 4 3213 3}; 2 of {2 4 414 2 212};
2 of {2 4 4134 3 3143 }; 2 of {2 4 41 34 31 }; 2 of {3 431 4 321 34 }; 36 of {3 414 4 313 3};
16 of {3 414 4 3123 3 }; 2 of {3 414 4 3143 3 }; 2 of {3 41 4 31 243 }; 4 of {3 41 4 31 34};
2 of {3 41 4 31 3 }; 2 of {3 431 4 31 34 }; 2 of {3 424 4 3134 34 }; 2 of {3 424 4 313 3};
2 of {3 414 4 212 2342 }; 2 of {3 414 4 212 232 }; 2 of {3 414 4 212 242 };
2 of {3 414 4 212 2432}; 2 of {3 414 3 313 3}; 4 of {4 4 414 3 313}; 4 of {4 4 414 232 212};
2 of {1 4314 4 313 3 }; 2 of {1 414 4 2312 2 }; 2 of {1 4 2 3 2 }; 9 of {2 4 4 2 2 };
3 of {2 4 434 3 3 }; 2 of {1 31 4 231 2 }; 2 of {2 3 41 34 31 }; 2 of {2 4 431 3 1 };
2 of {2 4 431 23 1 }; 4 of {2 4 41 23 21 };2 of {1 41 4 21 23 }; 2 of {2 41 1 41 31 };
2 of {1 31 31 31 31 }; 2 of {2 41 41 431 431 }; 2 of {2 321 31 31 321 }; 25 of {2 4 1 3 1};
3 of {4 4 41 343 31 }; 3 of {2 4 1 343 1 }; 4 of {2 4 41 1 1 }; 3 of {2 4 41 1 21 };
3 of {2 4 41 1 31 }; 3 of {2 4 431 1 341 }; 9 of {2 4 14 32 1 }; 2 of {1 4 43 1 343 };
3 of {2 434 4 3 3 }; 2 of {1 3 32 3213 3 }; 2 of {3 323 4 34 34 }; 2 of {2 313 313 323 323};
18 of {2 3 3 2 2 }; 2 of {1 3 41 3 341 }; 2 of {3 313 414 3413 3413 }; 3 of {1 313 434 2 2};
3 of {1 3 434 2 2 }; 3 of {1 3 434 1 1 }; 6 of {1 3 323 2 2 }; 3 of {1 313 3123 323 323 };
6 of {1 3 434 3 3 }; 3 of {2 4 323 3 3 }; 3 of {1 323 4 32 32 }; 3 of {1 323 434 32 32 };
3 of {1 3 31 3 31 }; 3 of {1 3 21 23 2341 }; 8 of {2 3 323 2 2 }; 4 of {2 323 32 23 23 };
5 of {2 3 313 2 2 }; 3 of {2 4 43 23 23 }; 2 of {1 41 1 321 31 }; 2 of {1 434 434 3 3 };
2 of {2 434 434 343 3 }; 2 of {1 434 1 343 1 }; 2 of {1 4 1 343 1 }; 5 of {1 4 4 32 32 };
8 of {4 313 414 3413 3413 }; 2 of {2 3 41 34 341 }; 2 of {3 431 431 31 321 };
2 of {4 431 431 321 321 }; 2 of {3 41 4 431 4 }; 2 of {3 41 4 341 34 }; 4 of {2 4 41 34 321};
2 of {2 4 421 3 1 }; 6 of {2 3 1 3 1 }; 3 of {3 41 4 321 34 }; 3 of {2 3 31 4 431 };
3 of {2 3 1 23 1 }; 3 of {2 4 21 3 321 }; 3 of {2 4 31 1 31 }; 7 of {1 4 31 1 31 };
4 of {4 4 4 32 32 }; 3 of {2 3 4 3 34 }; 6 of {2 3 3 3 3 }; 3 of {4 4 3 3 3413 };
3 of {4 4 3 3 313 }; 6 of {1 4 3 3 323 }; 3 of {1 4 3 3 3413 }; 3 of {1 4 3 3 3423 };
6 of {2 4 1 1 1 }; 4 of {1 14 4 1 32 }; 4 of {1 4 1 1 1 }; 4 of {1 4 14 32 1 };

Table 26. The equivalence classes of feature sets B4 to B11.

Equivalence classes

B4 B5 B6 B7 B8 B9 B10 B11

253 of {2 2 2 }; 29 of {2 2 21 }; 122 of {2 2 1 }; 614 of 0; 874 of 0; 783 of 0; 536 of 1; 268 of 0; 830 of 0; 832 of 0;
2 of {212 2 2 }; 6 of {21 1 2 }; 47 of {1 2 2 }; 56 of 111; 53 of 1; 144 of 1; 391 of 0; 356 of 1; 41 of 1; 95 of 1;
8 of {12 2 2 }; 17 of {21 2 2 }; 6 of {2 21 21 }; 32 of 11; 110 of 2; 23 of 2;
12 of {2 21 1 }; 6 of {2 2 212 }; 3 of {212 21 2 }; 88 of 110; 27 of 4; 6 of 6;
4 of {2 21 212 }; 4 of {2 2 1212 }; 4 of {2121 2 2 }; 36 of 10; 6 of 10; 6 of 11;
3 of {2 212 12 }; 21 of {2 1 1 }; 15 of {2 2 2121 }; 62 of 100; 68 of 3; 3 of 32;
12 of {2 21212 2 }; 15 of {2 21 2 }; 32 of 1; 25 of 7; 3 of 22;
126 of {212 212 212 }; 70 of {21 21 21 }; 7 of 101; 15 of 6; 3 of 7;
14 of {21212 21212 21212 };8 of {21 21 1 }; 22 of 8; 3 of 3;
2 of {21 21 2121 }; 54 of {1 1 1 }; 5 of {1 21 21 }; 12 of 28; 6 of 5;
2 of {21 1 21 }; 17 of {12 12 12 }; 12 of 29; 3 of 4;
2 of {21212 21212 1 }; 2 of {21212 1 1 }; 6 of 5;
3 of {212 212 1 }; 4 of {12 21 2 };
3 of {212 121 2 }; 11 of {2 1 2 }; 3 of {21 1 1 };
3 of {12 1 2 }; 3 of {212 1 2 }; 2 of {2 1 21 };



For a fault file, if its output of Bj falls in the “YesOrNo” set of RSij , it
indicates that the file could represent an ith fault; and the degree of ith fault
will be estimated based on the rough membership function in (42).

μB
X(x) =

|[x]B ∩ X |
|[x]B | . (42)

As an example, the rough membership calculation for the fault file F0822405.x01
is explained in (43). For fault file F0822405.x01, the feature set B4 gives an out-
put of {2, 2, 21}. Since set {2, 2, 21} is identified in the “YesorNo” set of RS34

10 times, the fault is possibly a fault 3. In (42), the equivalence class [x]B is sub-
stituted by [F0822405.x01]B4, where x is represented by fault file F0822405.x01
and B is replaced with B4. Meanwhile, X is replaced by RS34. [x]B4 has 29 ele-
ments. Then the degree of overlap between [x]B4

= [F0822405.x01]B4
and RS34

can be estimated by (43).

μB4
RS34

(x) =
|[F0822405.x01]B4 ∩ RS34|

|[F0822405.x01]B4|
=

10
29

= 34.4%. (43)

It demonstrates that the degree to which class [F0822405.x01]B4 belongs to
fault 3 is 34.4%.

7.3 Rough Membership Tables for rmNN Training and Verification

By simply repeating the rough membership computation procedure described
in Section 7.2, 11 degrees to which the file F0822405.x01 belongs to fault 3 are
obtained based on RS3j (1 ≤ j ≤ 11) and [F0822405.x01]Bj

(1 ≤ j ≤ 11). The
11 degrees of membership are represented as a vector, e.g., (0.19, 0.14, 0.33,
0.34, 0.12, 0.16, 0.19, 0.37, 0.28, 0.16, 0.16). In addition, for a fault file *.x01,
the membership for each type of fault based on each feature set is derived to
transform the training information table (Table 12) and testing information table
(Table 13) into 12 rough membership training tables and 12 rough membership
testing tables, respectively. One of these rough membership tables is shown in
Table 27. The first column indicates the file index. The following 11 columns
contain 11 rough memberships for fault 3. The last column is the target that
indicates whether it is a fault 3 or not. The value of 1 is for “Yes” and 0.01 is
for “No”. Each row in Table 27 is employed as a training set to calibrate the
rmNN for fault 3. Table 28 is the rough membership table for fault 3 rmNN
verification. It is necessary to point out that both Table 27 and 28 are partial
rough membership tables. Twelve complete rough membership training tables
as well as 12 testing tables are listed in an Appendix available at [15].



Table 27. Partial rough membership table for fault 3 rmNN training.

File Index B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 Target
11 1 508 1

1 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
4 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
7 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
31 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
55 0.19 0.14 0.5 0.34 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
69 0.19 0.14 0.5 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
70 0.19 0.14 0.33 0.35 0.25 0.16 0.19 0.37 0.15 0.16 0.16 1
91 0.19 0.14 0.25 0.25 0.35 0.16 0.19 0.37 0.15 0.15 0.12 1
92 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.15 0.15 0.12 1
93 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.17 0.16 0.16 1
99 0.19 0.14 0.33 0.34 0.12 0.16 0.19 0.37 0.28 0.16 0.16 1
103 0.19 0.14 0.33 0.33 0.12 0.16 0.19 0.37 0.27 0.16 0.16 1
104 0.19 0.14 0.36 0.34 0.12 0.16 0.19 0.37 0.32 0.16 0.16 1
128 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
131 0.05 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
141 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
150 0.05 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
162 0.05 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
202 0.19 0.14 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
209 0.19 0.14 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
219 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
222 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
229 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.15 0.12 0.01
236 0.19 0.14 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
239 0.05 0.14 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
252 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
253 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0 0.12 0.01
254 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
265 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
267 0.19 0.17 0 0 0 0.16 0.19 0 0.15 0.16 0.16 0.01
305 0.19 0.17 0.5 0.43 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
349 0.19 0.17 0.4 0.33 0.12 0.16 0.19 0.37 0.15 0.17 0.12 1
374 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0 0.12 0.01
391 0.19 0.2 1 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
392 0.19 0.2 1 0.67 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
403 0.19 0.2 1 1 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
415 0.19 0.2 0.33 0.33 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
420 0.05 0.2 0 0 0.12 0.16 0 0 0 0.16 0.16 0.01
421 0.19 0.2 0.25 0 0.31 0.16 0.19 0 0.15 0.16 0.16 0.01
422 0.19 0.2 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
440 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
441 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
447 0.19 0.2 0 0 0.12 0.16 0.19 0 0.09 0.16 0.16 0.01
448 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
465 0.19 0.2 0 0 0.12 0.16 0.19 0 0.09 0.16 0.16 0.01
466 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
472 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
475 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
484 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
490 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
504 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
507 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
508 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01



Table 28. Partial rough membership table for fault 3 rmNN testing.

File Index B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 Target
11 1 168 1

1 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
19 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
30 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
46 0.19 0.14 0.4 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
53 0.19 0.14 0.25 0.25 0.17 0.16 0.19 0.37 0.15 0.15 0.12 1
54 0.19 0.14 0.4 0.4 0.31 0.16 0.19 0.37 0.15 0.16 0.16 1
56 0.19 0.14 0.33 0.33 0.12 0.04 0.19 0.37 0.15 0.16 0.16 1
57 0.19 0.14 0.33 0.35 0.12 0.16 0.19 0.37 0.28 0.16 0.16 1
63 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
82 0.19 0.14 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
86 0.19 0.14 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
87 0.19 0.14 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
90 0.19 0.14 0 0 0.12 0.16 0 0 0.28 0.16 0.16 0.01
91 0.19 0.14 0 0 0.12 0.16 0 0 0.15 0.15 0.12 0.01
93 0.19 0.14 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
94 0.19 0.14 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
111 0.05 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
112 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
116 0.19 0.17 0.4 0.4 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
120 0.19 0.17 0.39 0.43 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
121 0.19 0.17 0.4 0.4 0.31 0.16 0.19 0.37 0.15 0.16 0.16 1
127 0.19 0.17 0.4 0.4 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
128 0.19 0.17 0.39 0.25 0.22 0.16 0.19 0.37 0.09 0.15 0.12 1
129 0.05 0.17 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
130 0.19 0.17 0 0 0.22 0.16 0.19 0 0.15 0.16 0.16 0.01
131 0.19 0.17 0 0 0.17 0.16 0.19 0 0.15 0.16 0.16 0.01
132 0.19 0.17 0 0 0.12 0.16 0 0 0.32 0.16 0.16 0.01
134 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
135 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0.13 0.12 0.01
136 0.19 0.17 0 0 0.12 0.16 0 0 0.15 0 0.12 0.01
137 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
138 0.19 0.17 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
139 0.19 0.2 1 0.67 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
141 0.19 0.2 1 1 0.12 0.16 0.19 0.37 0.15 0.16 0.16 1
144 0.19 0.2 0.39 0.67 0.22 0.16 0.19 0.37 0.15 0.16 0.16 1
145 0.19 0.2 0.33 0.33 0.35 0.16 0.19 0.37 0.15 0.16 0.16 1
146 0.05 0.2 0 0 0.12 0.16 0 0 0 0.16 0.16 0.01
147 0.19 0.2 0 0 0.12 0.16 0 0 0.15 0.16 0.16 0.01
148 0.05 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
150 0.19 0.2 0 0 0.12 0.04 0 0 0.15 0.16 0.16 0.01
151 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
152 0.19 0.2 0 0 0.12 0.04 0.19 0 0.15 0.16 0.16 0.01
153 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
156 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
158 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
161 0.19 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
167 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01
168 0.05 0.2 0 0 0.12 0.16 0.19 0 0.15 0.16 0.16 0.01



7.4 Design of rmNNs for PSFC

Neural networks are collections of massively parallel computation units called
neurons. A neuron is a processing element in a neural network. To design a rough
membership neural network, the rough neurons should first be defined.

Architecture of the Rough Membership Neural Network (rmNN) for
PSFC

The architecture of an rmNN for fault classification is dependent on the
number of types of available faults. Each fault will have its own rmNN. In the
research reported in this paper, 12 separate rmNNs are employed to classify 12
types of faults. Each rmNN will output an estimation of the degree of one type
of fault for a given object. For instance, the output neuron of the kth rmNN will
aggregate all contributions from the rough neurons in the first layer, process in
the hidden layer and finally output an estimation of the degree of kth fault. The
output from 12 rmNNs will be forwarded to a fault type decider neuron. The de-
cider neuron simply picks up all the faults with degree values above 80%. Almost
50% of the power system fault events are multiple faults jointed. Compared to
the k-Nearest Neighbor (k-NN) method, the neural network method was proved
superior when the input deviated in shape from the pattern used in training [39].
Since k-NN classifiers are sensitive to outliers and noise contained in the train-
ing data [27]. The k-NN classifier may have advantageous in applications where
there is less deviation in the sampled pattern.

Concepts of Rough Neurons
Typically, a neuron y maps its weighted input from Rn to [0, 1]. A selection of

different types of neurons is given in Table 29: common neurons, rough neurons,
fuzzy neurons.

In the design of the rough membership function neural network (rmNN),
the hidden layer consists of fuzzy neurons defined using the t-norm, s-norm
and → (imply operators) from fuzzy set theory. The formal definition for a
hidden neuron in an rmNN is given in (44) using the t-norm, s-norm and →
operators. The reason that this form of hidden neuron is applied is because it
provides a numerical representation of set intersection (t-norm), set union (s-
norm) and implication (→) that works well as a means of aggregating the input
from the rough membership functions in the input layer. Let B, X, [x]B denote
a set of features, a set of files with matching fault type based on knowledge,
and an equivalence class derived from known objects, respectively. The basic
computation steps performed by a rough membership neuron are reflected in
the flow chart in Figure 48.

In Figure 48 x is a newObj, an unclassified fault file. A rough neuron mea-
sures the degree of overlap of sets [x]B and X , and represents certain as well as
uncertain classification of the input newObj, x.



Table 29. Different types of neurons.

Fig. 48. Flow chart for basic Rough Neuron computation.

Architecture of the Rough Membership Neural Network (rmNN) for
PSFC

The architecture of a rmNN for fault classification is dependent on the num-
ber of types of available faults. Each fault will have its own rmNN. In the research
reported in this paper, 12 separate rmNNs are employed to classify 12 types of
faults. Each rmNN will output an estimation of the degree of one type of fault for
a given object. For instance, the output neuron of the kth rmNN will aggregate
all contributions from the rough neurons in the first layer, process in the hidden
layer and finally output an estimation of the degree of kth fault. The output
from 12 rmNNs will be forwarded to a fault type decider neuron. The decider
neuron simply picks up all the faults with degree values above 80%. Almost 50%
of the power system fault events are multiple faults jointed.

The whole computational framework that contains 12 rmNNs is shown in Fig-
ure 49. An example of the kth rmNN is shown in Figure 50, where rmfk(Bi(objn))
is the rough membership for fault k based on the output of attribute set Bi for
a given object n. The interconnections, i.e., rij , wij and uj inside the rmNN are
shown in Figure 51. There are 11 rough neurons in the first layer and 11 fuzzy
neurons in the hidden layer. Each neuron in the first layer is fully connected to
the neuron in the hidden layer and each neuron in the hidden layer is fully con-
nected to the output neuron. rmfk(Bi(objn)) is simplified as rmfk

i in Figure 51
as well as in the weights updating formulas.



Fig. 49. Diagram of connection of 12 rmNNs.

The formula for the activation function of the hidden neuron and the output
neuron is described in (44) and (47) respectively. The formulas here are with
respect to the kth rmNN. The t-norm is defined in (44). The imply operator →
is defined in (45). The s-norm, namely probability sum, is defined in (46).

hk
j = t11i=1[rij → rmfk

i s wij ]

= [(r1j → rmfk
1 ) s w1j ][(r2j → rmfk

2 ) s w2j ]...
...[(r11j → rmfk

11) s w11j ], (44)

where

(rij → rmfk
i ) ≡ min

(
1,

rmfk
i

rij

)

=

{
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.
(45)

(rij → rmfk
i ) s wij = (rij → rmfk

i ) + wij − (rij → rmfk
i )wij . (46)

Ok = s11
j=1[hk

j uj ]. (47)



Fig. 50. Diagram of rmNN for kth fault classification.

Fig. 51. Interconnection of the rmNN for fault k.

Weights Adjustment with a Fixed Step Size Gradient Algorithm
In the process of tuning weights in the kth rmNN, rij , wij and uj will be

updated by the partial derivative of the error. The error is the square of the
difference between the target and the output of the kth rmNN.

Error =
(
targetk − Ok

)2
=
(
targetk − s11

j=1

((
t11i=1

((
rij → rmfk

i

)
s wij

))
uj

))2
= F (rij , wij , uj) , (48)

and

u
(new)
j = u

(old)
j − α

∂Error

∂uj
,



w
(new)
ij = w

(old)
ij − α

∂Error

∂wij
,

r
(new)
ij = r

(old)
ij − α

∂Error

∂rij
, (49)

where α is the learning rate. The effects of the learning rate are discussed in
Section 7.6. u

(new)
j will be updated by the partial derivative of the error function

with respect of u
(old)
j in (49).

∂Error

∂ui
= − (targetk − Ok

) ∂Ok

∂ui

= − (targetk − Ok
) ∂

∂ui

[
s11

j=1[hk
j uj ]

]
, (50)

where i = 1, 2, ... 11. The overall expression can be rewritten by separating the
ith component in the overall s-norm composition,

∂Ok

∂ui
=

∂

∂ui

[
A + uih

k
i − Auih

k
i

]
= hk

i (1 − A), (51)

where factor A summarizes the remaining components of the s-norm composi-
tion, i.e.,

A = s11
j=1,j �=i

[
hk

j uj

]
. (52)

The computation of the connections between the input layer and the hidden
layer, i.e., wij given by the second formula in (49) requires the use of the chaining
rule of differentiation. This implies the following,

∂Error

∂wij
= − (targetk − Ok

) ∂Ok

∂hk
j

∂hk
j

∂wij
, (53)

where wij refers to the connection from the ith node in the first layer to the jth

node in the hidden layer. The ∂Ok

∂hk
j

factor is expressed as,

∂Ok

∂hk
j

= uj(1 − A). (54)

For factor
∂hk

j

∂wij
, the activation function will be applied governing the hidden

neuron,

∂hk
j

∂wij
=

∂

∂wij

(
t11l=1

[(
rlj → rmfk

l

)
s wlj

])
=

∂

∂wij

[(
rij → rmfk

i

)
s wij

] (
t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

])
. (55)



By introducing the notation

B = t11l=1,l �=i

[(
rlj → rmfk

l

)
s wlj

]
, (56)

(55) can be rewritten as

∂hk
j

∂wij
=

∂

∂wij

(
B
[(

rij → rmfk
i

)
s wij

])
= B

∂

∂wij

[(
rij → rmfk

i

)
s wij

]
= B

∂

∂wij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)
= B

(
1 − (rij → rmfk

i

))
. (57)

The same procedure applies to update the rij parameter by computing

∂Error

∂rij
= − (targetk − Ok

) ∂Ok

∂hk
j

∂hk
j

∂rij
, (58)

where rij refers to the connection from the ith node in the first layer to the jth

node in the hidden layer. The ∂Ok

∂hk
j

factor is expressed in (54), which is the same
thing when updating wij .

∂hk
j

∂rij
=

∂

∂rij

(
B
[(

rij → rmfk
i

)
s wij

])
= B

∂

∂rij

[(
rij → rmfk

i

)
s wij

]
= B

∂

∂rij

((
rij → rmfk

i

)
+ wij −

(
rij → rmfk

i

)
wij

)
= B (1 − wij)

∂
(
rij → rmfk

i

)
∂rij

, (59)

and

∂
(
rij → rmfk

i

)
∂rij

=
∂

∂rij

{
rmfk

i

rij
, if rij ≥ rmfk

i ,

1, otherwise.

=

{
− rmfk

i

r2
ij

, if rij ≥ rmfk
i ,

0, otherwise.
(60)

The program flowchart for the rmNN calibration is illustrated in Figure 52.



Fig. 52. Flowchart of weights updating for rmNN calibration.

Calibration Results of Selected rmNNs for PSFC
By way of illustration, only the calibration and verification results for fault

3 and 5 rmNNs are illustrated here. The results of all 12 rmNNs are attached in
an Appendix available at [15].

The error output during the training of the fault 3 and fault 5 rmNNs is
shown in Figures 53 and 54 respectively. After 200 learning cycles, the error
between the target and the output of fault 3 rmNN is less than 0.8 and of fault
5 rmNN is less than 0.2.

The output for fault 3 and 5 rmNNs compared to their targets after the first
learning cycle is shown in Figures 55 and 56 respectively. Figures 57 and 58
illustrate that after 200 learning cycles, the output for fault 3 and 5 rmNNs
matches their targets well.

It is observed, from Figures 57 and 58, that approximately 70 fault files,
which are files from file #73 to file #96, from file #318 to file #348 and from
file #405 to file #419, are indicating combinations of fault 3 and 5.



Fig. 53. Learning performance of fault 3 rmNN.

Fig. 54. Learning performance of fault 5 rmNN.



Fig. 55. The output for fault 3 rmNN after one learning cycle.

Fig. 56. The output for fault 5 rmNN after one learning cycle.



Fig. 57. The output for fault 3 rmNN after 200 learning cycles.

Fig. 58. The output for fault 5 rmNN after 200 learning cycles.

The trained r, w and u parameters for fault 3 and 5 rmNNs are shown in
Tables 30 and 31 respectively.



Table 30. r,w and u parameters trained for fault 3 rmNN.

r
0.000 0.060 0.974 0.330 0.120 0.058 0.190 0.999 0.039 0.072 0.120
0.037 0.003 0.255 0.995 0.068 0.040 0.190 0.370 0.043 0.130 0.119
0.198 0.140 0.996 0.517 0.120 0.040 0.190 0.390 0.040 0.130 0.003
0.198 0.140 0.996 0.512 0.120 0.041 0.190 0.390 0.050 0.130 0.047
0.185 0.170 0.827 0.462 0.250 0.317 0.113 0.399 0.340 0.133 0.399
0.048 0.342 0.455 0.708 0.053 0.320 0.169 0.519 0.327 0.044 0.367
0.050 0.133 0.348 0.406 0.214 0.040 0.194 0.996 0.108 0.153 0.120
0.050 0.009 0.253 0.995 0.120 0.040 0.190 0.370 0.040 0.105 0.044
0.363 0.273 0.667 0.607 0.361 0.081 0.292 0.539 0.345 0.150 0.120
0.049 0.137 0.255 0.995 0.120 0.040 0.190 0.370 0.040 0.067 0.030
0.413 0.383 0.361 0.543 0.284 0.146 0.262 0.557 0.289 0.266 0.058
w
0.176 0.253 0.003 0.000 0.218 0.268 0.116 0.001 0.114 0.050 0.158
0.002 0.118 0.000 0.004 0.206 0.114 0.156 0.000 0.095 0.233 0.307
0.000 0.074 0.003 0.000 0.302 0.106 0.000 0.000 0.023 0.003 0.287
0.000 0.216 0.003 0.000 0.123 0.302 0.000 0.000 0.195 0.111 0.070
0.243 0.308 0.000 0.055 0.011 0.145 0.289 0.162 0.074 0.022 0.192
0.274 0.168 0.000 0.000 0.157 0.113 0.165 0.037 0.131 0.115 0.000
0.207 0.033 0.000 0.000 0.082 0.110 0.000 0.003 0.184 0.148 0.133
0.279 0.311 0.000 0.004 0.200 0.067 0.000 0.000 0.295 0.103 0.229
0.192 0.227 0.000 0.000 0.238 0.036 0.000 0.000 0.191 0.022 0.063
0.088 0.073 0.000 0.004 0.298 0.297 0.000 0.000 0.312 0.193 0.137
0.000 0.071 0.154 0.000 0.177 0.145 0.181 0.041 0.213 0.111 0.231
u
1.000 1.000 0.990 0.990 0.000 0.000 1.000 1.000 0.000 1.000 0.000

Table 31. r,w and u parameters trained for fault 5 rmNN.

r
0.000 0.060 0.122 0.100 0.998 0.110 0.120 0.050 0.040 0.103 0.100
0.037 0.003 0.512 0.397 0.476 0.238 0.144 0.342 0.293 0.368 0.384
0.050 0.080 0.187 0.100 0.998 0.110 0.120 0.050 0.040 0.100 0.003
0.048 0.080 0.123 0.100 0.998 0.110 0.120 0.050 0.040 0.101 0.047
0.050 0.080 0.126 0.100 0.998 0.110 0.120 0.044 0.040 0.103 0.101
0.048 0.329 0.419 0.420 0.421 0.309 0.172 0.286 0.324 0.071 0.357
0.209 0.191 0.457 0.353 0.493 0.332 0.212 0.389 0.305 0.087 0.325
0.039 0.009 0.123 0.100 0.998 0.110 0.120 0.034 0.040 0.101 0.044
0.050 0.080 0.217 0.100 0.998 0.110 0.120 0.036 0.040 0.100 0.093
0.050 0.079 0.170 0.100 0.998 0.110 0.120 0.050 0.040 0.101 0.030
0.376 0.358 0.306 0.334 0.482 0.206 0.259 0.335 0.270 0.247 0.058
w
0.176 0.253 0.000 0.107 0.002 0.256 0.080 0.009 0.092 0.009 0.143
0.002 0.118 0.000 0.078 0.034 0.095 0.176 0.211 0.046 0.196 0.257
0.049 0.074 0.067 0.139 0.002 0.118 0.060 0.021 0.007 0.000 0.287
0.086 0.222 0.000 0.000 0.002 0.282 0.000 0.103 0.152 0.068 0.070
0.255 0.314 0.042 0.120 0.002 0.157 0.264 0.283 0.057 0.000 0.231
0.274 0.166 0.000 0.045 0.040 0.107 0.159 0.210 0.104 0.113 0.000
0.204 0.029 0.157 0.036 0.000 0.080 0.065 0.058 0.140 0.236 0.108
0.284 0.311 0.000 0.000 0.002 0.044 0.000 0.232 0.246 0.050 0.229
0.240 0.239 0.018 0.006 0.002 0.030 0.010 0.142 0.182 0.014 0.059
0.101 0.072 0.063 0.018 0.002 0.287 0.065 0.311 0.270 0.175 0.137
0.000 0.072 0.181 0.003 0.037 0.137 0.173 0.231 0.193 0.105 0.231
u
1.000 0.050 1.000 1.000 1.000 0.010 0.030 1.000 1.000 1.000 0.000



Verification Results of Selected rmNNs for PSFC
In this section, 168 additional fault files have been used in a test set to verify

the performance of the rmNN power fault classification system. The test results
for fault 3 and 5 rmNNs are shown in Figures 59 and 60. With the fault detection
threshold set to 80%, both rmNNs have 100% classification accuracy.

Table 32 summarizes the accuracy of the rmNN power fault classification
system. It has been found that for each type of fault, the more fault files used
in training, the more accurate the test results will be. For instance, a greater
number of fault files were used to calibrate the rmNNs for faults “Minor AC
disturbance”, “AC Disturbance”, “Valve Current Closed/Blocked/Deblocked”,
“Line Fault”, and “Commutation Failure”. The test results for these types of
faults showed 100% accuracy. By contrast, for faults “Current Arc Back” and
“Normal affected by another pole”, 26 and 18 fault files are employed for cal-
ibration respectively; and the corresponding accuracy of the test results were
comparatively low (Table 32).

Table 32. Accuracy of the rmNN power fault classification system.

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 0 1.00
AC Disturbance 44 0 1.00
Valve Current Closed/Blocked/Deblocked 44 0 1.00
Line Fault 22 0 1.00
Commutation Failure 25 0 1.00
Pole Voltages/Current Closed/Blocked/Deblocked 15 0 1.00
Current Arc Back 6 1 0.83
Parallel Operation 9 0 1.00
Pole Current Oscillation 7 0 1.00
Normal Affected by Another Pole 4 1 0.75
Asymmetric Protection 6 0 1.00
Disturbance on DC Voltage 7 0 1.00

7.5 Effects of the Number of Neurons in the Hidden Layer

For verifying the rmNN performance, the rmNN sensitivity with respect to dif-
ferent numbers of neurons in the hidden layer was analyzed. The rmNNs with
11, 9, 7 or 3 hidden neurons are tested for the learning and verification set. The
numerical results provide a very good performance index.

To decide on the number of hidden neurons, the square root of the product of
the input and output is a good number with which to begin, in this case,

√
11 × 1

is 3.3. The test results of the learning and verification performance with 3, 7, 9
and 11 neurons for 12 rmNNs are shown in an Appendix available at [15]. The
test results indicate that the performance with 3 hidden neurons is always the
worst case and unacceptable. The performance with 7 and 9 hidden neurons is
very close. The case with 11 neurons has the best performance for fault 7 and
fault 8 rmNNs.



Fig. 59. Testing results for fault 3 rmNN.

Fig. 60. Testing results for fault 5 rmNN.

The learning output comparison for fault 7 rmNN with 3, 7 and 11 hidden
neurons is shown in Figure 61(a). The learning output for fault 7 rmNN with
9 hidden neurons is omitted since its performance is close to the rmNN with
7 hidden neurons (see Appendix available at [15]). Figures 61(b), 61(c), 61(d)
and 61(e) show the details of the A, B, C and D parts in Figure 61(a) respec-
tively. They clearly indicate that, for all the true cases, the rmNN with 11 hidden
neurons present the highest output, and the rmNN with 3 hidden neurons give
the lowest output. The verification output comparison for fault 7 rmNN with



3, 7 and 11 hidden neurons is shown in Figure 62(a). The verification output
for fault 7 rmNN with 9 hidden neurons is omitted for the same reason. Fig-
ures 62(b), 62(c), 62(d) and 62(e) show the details of the A, B, C and D parts of
Figure 62(a) and clearly confirm the results from learning for all the true cases.
The rmNN with 11 hidden neurons gives the highest verification score, and the
verification output from the one with 3 hidden neurons yields the lowest.

As another example, the learning and verification output comparison for
fault 8 rmNN with 3, 7 and 11 hidden neurons is shown in Figures 63 and 64
respectively. It agrees with the learning and verification results for fault 7 rmNN,
i.e., different numbers of neurons in the hidden layer considerably affect the
performance of the rmNN. The goal is to have not too many but enough hidden
neurons to be able to learn correctly. There are no analytically shown facts about
the necessary number of hidden neurons, instead more tests are required to find
an appropriate number. In addition, some research shows that the redundancy on
hidden-layer neurons is useful in the fault tolerance of neural networks, especially
for the feedforward networks.



61.1: A broad view of the performance comparison for 508 rmNN training
files.

61.2: A zoom-in detail of part A. 61.3: A zoom-in detail of part B.

61.4: A zoom-in detail of part C. 61.5: A zoom-in detail of part D.

Fig. 61. The learning output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons.



62.1: A broad view of the performance comparison for 168 rmNN testing
files.

62.2: A zoom-in detail of part A. 62.3: A zoom-in detail of part B.

62.4: A zoom-in detail of part C. 62.5: A zoom-in detail of part D.

Fig. 62. The verification output comparison for fault 7 rmNNs with 3, 7 and 11 hidden
neurons.



63.1: A broad view of the performance comparison for 508 rmNN training
files.

63.2: A zoom-in detail of part A. 63.3: A zoom-in detail of part B.

63.4: A zoom-in detail of part C. 63.5: A zoom-in detail of part D.

Fig. 63. The learning output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons.



64.1: A broad view of the performance comparison for 168 rmNN testing
files.

64.2: A zoom-in detail of part A. 64.3: A zoom-in detail of part B.

64.4: A zoom-in detail of part C. 64.5: A zoom-in detail of part D.

Fig. 64. The verification output comparison for fault 8 rmNNs with 3, 7 and 11 hidden
neurons.



7.6 Effects of Learning Cycles, Learning Rate and Least Square
Error

To obtain satisfactory performance for an rmNN, the selection of appropriate
learning rates (α) for the rmNN is critical and challenging. Applying an improper
learning rate to the rmNN may cause the learning curve of the rmNN to oscillate.
For example, suppose a network produces an error of -0.5 and the error was
adjusted at an improper learning rate by the network. The new error is +0.5,
and the next error is -0.5 again..., so on and so forth. Apparently the learning
period this system takes will be endless. On the other hand, if the learning rate is
too small, the network parameters will improve toward the best solution, but at
a very low speed. It might take hours, even days, to optimize such a network. To
gain a good learning rate requires interactive processing to achieve an acceptable
overall direction for the search.

It is sometimes seen that the learning error decreases for the learning set of
data with more and more learning cycles (LCs), but still does not lead to better
classification performance. This suggests that the network is “overfitting” due
to some local minimum.

An example of an “overfitting” rmNN is observed when the rmNN is trained
for classifying fault 10. Figure 65.1 shows the learning least square error (LSE)
comparison for fault 10 rmNN with different LCs and α. The details of A and B
parts in Figure 65.1 are illustrated in Figure 65.2 and Figure 65.3, respectively.
Learning case 1 has LCs = 100, α = 0.22 and LSE = 0.233; learning case 2
has LCs = 800, α = 0.22 and LSE = 0.21; and learning case 3 has LCs = 800,
α = 0.3 and LSE = 0.19. The learning cycles are increasing and the LSEs are
decreasing.

Figure 66.1 illustrates the learning output comparison for fault 10 rmNN in
the three cases shown in Figure 65. Figures 66.2 and 66.3 show the learning
output at points A and B. Points A and B represent file 422 and file 471, which
belong to false case and true case respectively. From Figures 66.2 and 66.3, it is
found that for case 1, points A and B are 0.09 apart from each other; for case 2,
A and B are closer with a distance of 0.07; and for case 3, A and B locate almost
at the same line with a distance of 0.01, and could barely be distinguished.
It has been found that the smaller LSE does not lead to better classification
performance. The conjecture is that the rmNN is “overfitting”, which causes the
vagueness (slight difference) between the true and false cases.

Another example shows the lower output for both learning and verification
output for true case files with a smaller LSE. Figure 67 shows the learning least
square error (LSE) comparison for fault 7 rmNN with different LCs and α. In
learning case 1, LSE = 1.3; learning case 2, LSE = 0.54; and learning case 3,
LSE = 0.41. From case 1 to case 3, the LSE decreases.

Figure 68 shows the learning output for the 3 cases. Figures 68.2, 68.3, 68.4
and 68.5 show the details of the A, B, C and D parts in Figure 68.1.

Figure 69 shows the verification output for the 3 cases. Figures 69.2, 69.3, 69.4
and 69.5 show the details of the A, B, C and D parts in Figure 69.1.



65.1: Learning LSE comparison for fault 10 rmNN

65.2: A zoom in detail of part A

65.3: A zoom in detail of part B

Fig. 65. Learning LSE comparison for fault 10 rmNN with different LCs and α.



66.1: A broad view of the performance comparison for 508 rmNN training
files.

66.2: A zoom-in detail of point A.

66.3: A zoom-in detail of point B.

Fig. 66. The learning output comparison for fault 10 rmNN with different LCs and α.



67.1: Learning LSE comparison for fault 7 rmNN

67.2: A zoom-in detail of part A

Fig. 67. Learning LSE comparison for fault 7 rmNN with different LCs and α.



68.1: A broad view of the performance comparison for 508 rmNN training
files.

68.2: A zoom-in detail of part A 68.3: A zoom-in detail of part B

68.4: A zoom-in detail of part C 68.5: A zoom-in detail of part D

Fig. 68. The learning output comparison for fault 7 rmNN with different LCs and α.



69.1: A broad view of the performance comparison for 168 rmNN testing
files.

69.2: A zoom-in detail of part A 69.3: A zoom-in detail of part B

69.4: A zoom-in detail of part C 69.5: A zoom-in detail of part D

Fig. 69. The verification output comparison for fault 7 rmNN with different LCs and
α.



It has been shown that, for all the true case files with a target value of 1,
case 1 with the higher LSE has the highest output and case 3 with the lowest
LSE has the lowest output.

The learning cycles, learning rates applied and the learning errors received
for 12 rmNNs are listed in Table 33.

Table 33. The learning cycles, learning rate and learning error for 12 rmNNs.

Training parameters
Learning cycles Learning rate Least square error

(LC) (α) (LSE)
Fault 1 rmNN 200 0.01 0.2658
Fault 2 rmNN 200 0.01 0.8579
Fault 3 rmNN 200 0.1 0.6608
Fault 4 rmNN 800 0.1 0.1653
Fault 5 rmNN 200 0.1 0.2295
Fault 6 rmNN 1000 0.2 0.4061
Fault 7 rmNN 1000 0.6 1.3
Fault 8 rmNN 800 0.02 0.1439
Fault 9 rmNN 800 0.1 0.0892
Fault 10 rmNN 100 0.22 0.233
Fault 11 rmNN 800 0.1 0.86
Fault 12 rmNN 100 0.01 0.0634

7.7 Implementation of rmNN for PSFC

After theoretical development and computer simulation, the next sought-after
step is to build the software package for the implementation of rmNN power
system fault classification with a user friendly interface. The software package
provides the following functions:

– Feature extraction
– Rough set construction
– Rough membership computation
– Rough membership neural network calibration and verification
– Power system fault type detection

C++ programs as well as the executable codes have been developed for each
function. The executables are called and embedded in a LabVIEW program,
which creates a flexible and scalable user interface. With LabVIEW, users can
interface with real-world signals, analyze data for meaningful information, and
share results through intuitive displays and reports. The screen snapshot of the
user interface for rmNN power system fault classification is shown in Figure 70.

The main GUI (graphic user interface) window for the rmNN PSFC contains
five tabs that are created for the five functions. The first tab is designed for
the features extraction function seen in Figure 70. Users are allowed to select
either a fault file list or a specific fault file to be processed. An example of a
fault file list is FaultFiles train.txt, which contains the file names of all fault files
for training. The 23 signals are analyzed and 17 features are derived for each



fault file. The thresholds applied in the features extraction can be adjusted to
achieve optimized feature values for the best fault classification performance.
When partial features need to be updated, the switch allocated for each feature
can be individually turned off to disable the feature extraction operation.

Fig. 70. The user interface for rmNN power system fault classification.

The second tab allows accessing the rough set construction function shown
in Figure 71. The equivalence classes, the B-low approximations (Yes Sets) and
approximation boundary sets (YesOrNo Sets) are created based on features val-
ues of all training fault files. The rough sets need to be restructured whenever
the features values are updated.

The third tab is for the rough membership computation function illustrated in
Figure 72. Twelve rough membership training tables, which contain the training
sets for the calibration of twelve rmNNs, have been derived. These training tables
need to be re-generated as well whenever the features values are adjusted.

The forth tab allows accessing the rough membership neural network cali-
bration and verification function shown in Figure 73. Twelve pages have been
developed inside this function for calibration of twelve rmNNs respectively. The
learning rate and cycles are the parameters to be adjusted until the best clas-
sification performance is achieved. The learning error, learning output and test
result for each rmNN are displayed in three graphs respectively and the final
calibrated weights are reported in the table at the bottom-right quarter of the
tab window.



Fig. 71. Rough set construction for rmNN power system fault classification.

Fig. 72. Rough membership computation for rmNN power system fault classification.

The final function is for the power system fault type detection, which is
illustrated in Figure 74. For a fault file to be classified, 17 features are derived
by function 1 and loaded by this fault type detector. The 11 rough memberships,



Fig. 73. rmNN calibration and verification function for rmNN power system fault
classification.

Fig. 74. Power system fault type detection.



a rough membership set, based on 11 feature sets associated with a type of fault
are estimated. Consequently a total of 12 rough membership sets are derived
and input to 12 trained rmNNs respectively. Twelve degrees, one for each fault
type, are estimated by the 12 rmNNs and forwarded to a decider neuron, which
picks up the faults with degree output greater than the preset threshold. For
example, in Figure 74, the threshold is set as 0.8; the faults detected for fault
file F1112E80Whole.dat are a combination of fault 1 and fault 4 with a degree
of 0.911 and 0.985 respectively. The fault types are indicated in a text box. The
threshold can be adjusted lower to allow more fault types to be considered.

The developed graphic user interface makes the power system fault classi-
fication easy to operate for users. The software integrates features extraction,
rough sets construction, rough membership computation, rmNNs training, veri-
fication and fault type detection into one system, which provides the possibility
for further implementation of an adaptive learning real-time fault classification
system. Currently, the most time consuming component of the software package
is the features extraction, which takes two to three seconds and needs to be
computationally optimized. The rough membership computation and fault type
detection take less than one second, which meets the need of real-time.

8 Normal Artificial Neural Network (ANN) for PSFC

Before using the rmNN to classify the power system faults, two normal artificial
neural networks were investigated. Each row in the information table (Table 12)
is an input to the neurons in the first layer of both ANNs. No rough membership
is computed. The performance of these two types of ANNs is addressed in detail
in the following two sections.

8.1 A Single ANN for PSFC

First, a single ANN was considered to classify 12 types of faults. The single ANN
is designed with 3 layers, containing 17 neurons in the input layer and hidden
layer and 4 neurons in the output layer. Each neuron in the output layer indicates
one possible type of fault. As seen in Table 12, some *.x01 files are involved with
4 types of faults, i.e., F082016A.x01 is intervened with faults 1, 3, 5 and 7. The
four output neurons are expected to output 1, 3, 5 and 7 respectively when
processing fault F082016A.x01.

The architecture of the single ANN is illustrated in Figure 75, where

hj = g

(
17∑

i=1

rijBi (obj n)

)
, (61)

Ok =
17∑

j=1

wjkhj , (62)



Fig. 75. The architecture of the single ANN power fault classification system.

and g(·) is the logistic sigmoid activation function given by

g(a) =
1

1 + e−a
. (63)

The 17 neurons in the first layer receive values from functions representing
17 features. Unlike an rmNN, the features are not grouped. Back-propagation is
adopted as the network training function. A gradient descent learning function
is used as the weights updating function, and the least squared error function is
used as the learning performance evaluation function. The learning performance
is shown in Figure 76. After 1600 learning cycles, the LSE converged to 1.23.

Once the ANN is calibrated, 168 test files are applied to evaluate the accuracy
of this ANN fault classification system. Four neuron output compared with four
targets are displayed in Figures 77, 78, 79 and 80, respectively. It is noticeable
that over 60% of testing files failed the verification.



Fig. 76. Learning performance of the single ANN for power system fault classification.

Fig. 77. Target 1 verification.



Fig. 78. Target 2 verification.

Fig. 79. Target 3 verification.



Fig. 80. Target 4 verification.

8.2 Twelve Sub-ANNs for PSFC

The basic architecture of the second ANN power fault classification system is
similar to the rmNNs described earlier. Twelve ANNs are created and each of
them classifies one type of fault. An example of ANN for kth fault classification
is illustrated in Figure 81. The output from the 12 ANNs are the estimations
of the degrees of the 12 faults respectively. The output from the 12 ANNs are
forwarded to a decider neuron, which simply picks up the faults with degrees
above a preset threshold.

In Figure 81,

hk
j = g

(
17∑

i=1

rijBi (obj n)

)
, (64)

Ok =
17∑

j=1

wjh
k
j , (65)

and g(·) is the logistic sigmoid activation function same as the one applied in
the first type of ANN.

The 17 neurons in the first layer receive values from functions representing
17 features. Again, the features are not grouped. Backpropagation is still used
as the network training function, the gradient descent learning function as the
weights learning function, and the least squared error function as the learning



Fig. 81. The architecture of a sample ANN for kth fault classification.

performance evaluation function. The learning performance for fault 3 and 5
ANN is shown in Figures 82 and 83 respectively. After 800 learning cycles, both
LSEs are approximately 10.

After 800 learning cycles, 168 test files are applied to evaluate the perfor-
mance of the ANNs. The testing output for fault 3 and 5 ANN are displayed in
Figures 84 and 85 respectively. It is obvious that the threshold to pick up the
fault has to be reduced to 60% to generate better accuracy. The results for the
calibrations and verifications of the 12 ANNs are attached in an Appendix avail-
able at [15]. The classification accuracy is listed in Table 34. Compared with the
rmNN system, the accuracy of the ANN fault classification system is fairly poor.
It either produces low detection accuracy for the desired faults or generates a
great number of unexpected false alarms.

The failure of both ANN fault classification systems is possibly due to the
input, which are the 17 feature values. Consider the feature 5 (Pole Current
Trend), two possible codes are “313” and “343”. They are very close in terms of
the values of these two numbers when treated by the ANN system. But “313”
usually happens in fault 4 (Line Faults), and “343” happens in fault 1 (Minor
AC Disturbance). The rough membership computation distinguishes these two
numbers by assigning each of them with the degree of each type of fault, which
greatly improves the quality of the feature information and consequently the
classification performance.



Fig. 82. The learning performance for fault 3 ANN.

Fig. 83. The learning performance for fault 5 ANN.



Fig. 84. Fault 3 ANN verification.

Fig. 85. Fault 5 ANN verification.



Table 34. Accuracy of 12 ANNs for PSFC.

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 93 0.011
AC Disturbance 44 25 0.432
Valve Current Closed/Blocked/Deblocked 44 14 0.680
Line Fault 22 13 0.410
Commutation Failure 25 5 0.800
Pole Voltages/Current Closed/Blocked/Deblocked 15 7 0.530
Current Arc Back 6 1 0.830
Parallel Operation 9 5 0.440
Pole Current Oscillation 7 7 0.000
Normal Affected by Another Pole 4 4 0.000
Asymmetric Protection 6 5 0.170
Disturbance on DC Voltage 7 7 0.000

9 Classifier Fusion

9.1 Motivation in Using a Second Complementary Classifier

A number of classifier fusion methods have been recently developed and lead to
potential improvement in classification performance [1, 6, 30, 34, 35, 67, 74, 75]. In
this section, a second successful classifier based on mean and standard deviation
evaluation of the sum of 11 rough memberships is proposed. The goal is to take
advantage of the diversity of two classifiers to improve the performance of PSFC.

To achieve high overall performance of the classification function, the perfor-
mance of each individual classifier has to be optimized prior to using it within
any fusion schemes. That is, the fusion scheme will be able to improve the over-
all classification result relative to the performance of the individual classifiers.
If several classifiers with only marginal performance are being used, the results
cannot necessarily be expected to reach high performance. On the other hand,
if several classifiers are used that work exceptionally well, any further gains will
be exceedingly hard to accomplish because the opportunity for diversity is di-
minished.

Recall the performance of the 12 rmNNs. Table 35 lists the minimum rmNN
output for true cases and the maximum rmNN output for false cases in both
learning and verification. The classification performance of the rmNNs for fault
1, fault 2, fault 4, fault 5 and fault 12 are excellent and both the learning and
verification output for the true cases have high scores over 0.9, while for the false
cases have low scores less than 0.16.

Faults 1, 2, 4, 5 and 12 do not need to be reinforced by a second comple-
mentary classifier. However, for faults 3, 6, 7, 8, 9, 10 and 11 classification, a
second LMD classifier is introduced to fusion the output from rmNNs in order
to increase the overall PSFC accuracy.



Table 35. Maximum and minimum rmNN output for false and true cases, respectively.

Learning Verification
Lowest output for Highest output for Lowest output for Highest output for

true cases false cases true cases false cases
fault 1 0.94 0.08 0.93 0.01
fault 2 0.9 0.16 0.9 0.04
fault 3 0.87 0.22 0.82 0.19
fault 4 0.98 0.06 0.98 0.01
fault 5 0.94 0.14 0.95 0.04
fault 6 0.74 0.5 0.84 0.27
fault 7 0.85 0.31 0.79 0.01
fault 8 0.75 0.06 0.85 0.01
fault 9 0.87 0.15 0.87 0.01
fault 10 0.68 0.56 0.66 0.01
fault 11 0.61 0.34 0.81 0.39
fault 12 0.99 0.01 0.99 0.01

9.2 Linear Mean-Deviation (LMD) Based Classifier

The input for the linear mean and deviation based (LMD) classifier is the sum
of 11 rough memberships (SORM) in the training and testing tables for rmNNs.
Figure 86 shows the SORMs of 508 training files for fault 7.

Fig. 86. The SORMs of 508 training files for fault 7.

From all the points of SORM output, three sets are constructed. Set 1 consists
of all the points of true case with SORM values over 0.85. Set 2 contains all the
points of true case with SORM values less than 0.85. Set 3 collects all the points
of false case. These 3 sets are illustrated in Figure 87.

The points in sets 2 and 3 will be employed to estimate the mean and devi-
ation values to establish the distribution functions of set 2 and set 3. Assuming



Fig. 87. Three sets of SORMs.

that xij is the jth point in set i and there are Ni points in set i. The mean and
absolute deviation for set i, i.e., μi and devi are defined as follows.

μi =
1
Ni

Ni∑
j=1

xij . (66)

devi =
1
Ni

Ni∑
j=1

|xij − μi|. (67)

The Gaussian distribution function of set i, fi(x), is defined as,

fi(x) =
1√

2π(devi)2
e

−(x−μi)
2

2(devi)2 . (68)

Take fault 7 as an example, the mean and deviation of sets 2 and 3 are
calculated, and listed in Table 36.

Table 36. The mean and deviation of sets 2 and 3 for fault 7 training files.

Fault 7 training files

set 2 set 3

μ2 dev2 μ3 dev3

0.758 0.12 0.126 0.324

The degree of fault 7 will then be calculated as described in (69)

deg(x) =
{

x, if x ≥ 0.85,
f2(x)+1−f3(x)

2 , if x < 0.85.
(69)



Keep the SORM as the degree of fault 7, if it is bigger or equal to 0.85.
f2(x)+1−f3(x)

2 is only applied to the points with SORM values that are less than
0.85. In this way, the degree of fault 7 of the points in set 2 is raised. This method
is applied to faults 3, 6, 7, 8, 9, 10 and 11. For example, the degree of fault 7 of
508 training files is shown in Figure 88.

Fig. 88. Fault 7 LMD classifier output for 508 training files.

Use the training files, the mean and deviation of sets 2 and 3 can be estimated
to set up the distribution function for the points of true case with SORM values
less than 0.85 and the distribution function for the points of false case. The
trained distribution functions will be applied to the test points to estimate the
degree of a type of fault. In this example, the degree of fault 7 is estimated.

The SORMs of fault 7 for 168 testing files are shown in Figure 89, and the
fault 7 LMD classifier output for 168 testing files are shown in Figure 90. The
degrees of fault 7 for all the true case points are above 0.87. One point, file 128,
exists in the verification output for fault 7 rmNN. It has a low estimation of the
degree of fault 7, which is only 0.79 (Table 35, Section 9.1).

The fault 10 LMD classifier results are illustrated in Figures 91, 92, 93 and 94.
The SORMs of 508 training files are shown in Figure 91, and the LMD classifier
training output is shown in Figure 92. The SORMs of 168 testing files are shown
in Figure 93, and the LMD classifier testing output is shown in Figure 94. In
Figure 91, it is very clear that only two points (file 471 and file 472) have low
SORM output (i.e., 0.745 and 0.746) and they are almost at the same level.
The distribution function of set 2 is designed based on these two points and the
degree of fault 10 for these two points from the LMD classifier is high and raised
to 0.985. In the test, the degree of fault 10 for file 159 is boosted to 0.984 as



well. The rmNN classifier testing output for this point, however, is as low as 0.66
(Table 35, Section 9.1).

Fig. 89. The SORMs of 168 testing files for fault 7.

Fig. 90. Fault 7 LMD classifier output for 168 testing files.



Fig. 91. The SORMs of 508 training files for fault 10.

Fig. 92. Fault 10 LMD classifier output for 508 training files.



Fig. 93. The SORMs of 168 testing files for fault 10.

Fig. 94. Fault 10 LMD classifier output for 168 testing files.



The LMD classifier training and testing results for fault 6 are illustrated in
Figures 95 to Figure 98. There is one point, file 90, in the fault 6 LMD classifier
testing output, which gives a low estimation of the degree of fault 6. The degree
of fault 6 is only 0.786.

Fig. 95. The SORMs of 508 training files for fault 6.

Fig. 96. Fault 6 LMD classifier output for 508 training files.



Fig. 97. The SORMs of 168 testing files for fault 6.

Fig. 98. Fault 6 LMD classifier output for 168 testing files.

The SORMs for faults 3, 6, 7, 8, 9, 10 and 11 of both training and testing
files are listed in an Appendix available at [15]. The fault 3, 6, 7, 8, 9, 10 and
11 LMD classifier training and verification output is included in an Appendix
available at [15].

Table 37 summarizes the accuracy of the LMD classifiers. Except that the
accuracy for fault 6 classification is 0.93, the accuracy for all of the other 6
faults is 100%. LMD classifier considers the isolated points with medium and
low SORM values. For fault 7, “Current Arc Back”, and fault 10, “Normal



affected by another pole”, only 26 and 18 fault files are employed for calibration
respectively; but the LMD classifier test result is 100% accurate. On the other
hand, the rmNN classifier gives poorer results when it deals with a fault with less
files participate in learning. For fault 7 and 10, the rmNN classifier verification
accuracy is only 0.83 and 0.75 respectively (Table 32, Section 7.4).

Table 37. Accuracy of the LMD power fault classification system.

Fault type # of files for # of files Accuracy
verification incorrect

Fault 3: Valve Current Closed/Blocked/Deblocked 44 0 1
Fault 6: Pole Voltages/Current Closed/Blocked/Deblocked 15 1 0.93
Fault 7: Current Arc Back 6 0 1
Fault 8: Parallel Operation 9 0 1
Fault 9: Pole Current Oscillation 7 0 1
Fault 10: Normal Affected by Another Pole 4 0 1
Fault 11: Asymmetric Protection 6 0 1

One point that needs mentioning is that the LMD classifier is not suitable
for the classification for all 12 faults. Look at the SORMs for the 508 training
files of fault 1 and fault 2 (Figures 99 and 100), where the SORMs of many false
and true cases are comparable, which causes the failure of the LMD classifier.
The good thing is that the accuracy of the rmNN classifier for these two faults
is excellent and compensates the weakness of the LMD classifier.

Fig. 99. The SORMs of 508 training files for fault 1.



Fig. 100. The SORMs of 508 training files for fault 2.

9.3 Correlation of the rmNN and LMD Classifier

In classifier fusion, it is desirable to use classifiers that not only offer reasonable
performance but also have a mutually low correlation. If two classifiers are com-
pletely redundant, many fusion schemes not only will not gain anything, but will
actually exhibit poorer performance. Obviously, some degree of confirmatory in-
formation is desirable, but it is the complementary information that gives the
multi-classifier fusion a chance for success.

In this section, the correlation of the rmNN and LMD classifier will be esti-
mated to prove that they are good candidates for classifier fusion.

According to the 2-Classifier correlation analysis mentioned in Section 3.2,
the formula for the correlation is:

ρ2 =
2 × NFF

NTF + NFT + 2 × NFF
, (70)

where,
TT represents that the output of the rmm NN is T and the output of the

LMD is T;
TF represents that the output of the rmm NN is T and the output of the

LMD is F;
FT represents that the output of the rmm NN is F and the output of the

LMD is T; and
FF represents that the output of the rmm NN is F and the output of the

LMD is F;
and the following two methods are also applied for the correlation evaluation.

1. Try 3 thresholds for the ‘true’ decision making;
2. Consider both the training and testing files.



The correlation estimations of rmNN and LMD classifier for faults 3, 6, 7,
8, 9, 10 and 11 are listed in the following 3 tables for 3 thresholds respectively.
Table 38 shows that the correlations are all 0 for 7 faults when the threshold
= 0.8 for ‘true’ decision making. Table 39 shows that the correlations are still
0 when the threshold is pushed to 0.85. Table 40 shows that the correlation for
fault 6 and 11 are increased to 0.2 and 0.267 respectively when the threshold is
pushed to 0.86. But 0.2 and 0.267 still have a reasonably low correlation level to
ensure the success of the classifier fusion.

Table 38. 2-Classifier correlation estimation ( Threshold for true case is 0.8 ).

Threshold 0.8
Total true cases TT TF FT FF correlation

fault 3 189 189 0 0 0 0
fault 6 79 77 1 1 0 0
fault 7 32 31 0 1 0 0
fault 8 38 37 0 1 0 0
fault 9 38 38 0 0 0 0
fault 10 22 19 0 3 0 0
fault 11 31 30 0 1 0 0

Table 39. 2-Classifier correlation estimation ( Threshold for true case is 0.85 ).

Threshold 0.85
Total true cases TT TF FT FF correlation

fault 3 189 188 0 1 0 0
fault 6 79 70 6 3 0 0
fault 7 32 29 1 2 0 0
fault 8 38 33 3 2 0 0
fault 9 38 37 1 0 0 0
fault 10 22 18 0 4 0 0
fault 11 31 20 0 11 0 0

Table 40. 2-Classifier correlation estimation ( Threshold for true case is 0.86 ).

Threshold 0.86
Total true cases TT TF FT FF correlation

fault 3 189 188 0 1 0 0
fault 6 79 70 5 3 1 0.2
fault 7 32 27 3 2 0 0
fault 8 38 27 3 8 0 0
fault 9 38 37 1 0 0 0
fault 10 22 18 0 4 0 0
fault 11 31 18 0 11 2 0.266667



9.4 Results of the rmNN and LMD Classifier Fusion

The fusion methods are less important than the diversity of the classifier team,
but still need to consider which method is more suitable for specific problem
solving.

The classifier fusion function for two classifiers can be minimum, maximum,
average, median and oracle. The majority vote usually applies when having
more than two classifiers. The minimum will not help in this PSFC system. The
maximum and oracle emphasize the possible true points and it is easy to generate
a false alarm. The average and median methods are relatively soft and safe and
their performances are approximately the same. The average method is tried in
this PSFC system and tested out to gain excellent classification performance.

Once again, take fault 7 as an example. The training output for fault 7 LMD
and the rmNN classifier are shown in Figures 101.1 and 101.2 respectively. The
output is the degree of fault 7. The average of the two training output is shown
in Figure 101.3. The lowest point in the true cases from the LMD classifier is
at file 350 with a value of 0.817. On the other hand, the lowest point in the
true cases from the rmNN classifier is at file 345 with a value of 0.845. After
averaging, the degree of fault 7 for file 350 is increased to 0.862, which is the
lowest point after classifier fusion. In the training, the rmNN classifier helps to
lift the lowest point and improve the PSFC performance.

Now consider the verification results, which are illustrated in Figures 102.1,
102.2 and 102.3. The lowest point in the true cases from the LMD classifier is at
file 91 with a value of 0.869. On the other hand, the lowest point in the true cases
from the rmNN classifier is at file 128 with a value of 0.792. After averaging, the
degree of fault 7 for file 128 is increased to 0.867, which is the lowest point after
classifier fusion; and the overall performance of the PSFC is improved. In the
testing process, the LMD classifier helps to lift the lowest point and improve the
PSFC performance.

The Learning and testing results for faults 3, 6, 7, 8, 9, 10 and 11 after
the classifier fusion have been illustrated in an Appendix available at [15]. The
overall improvement of the PSFC performance will be discussed via Tables 41
and 42.

Table 41 lists the minimum learning output from the rmNN, LMD and fu-
sioned classifier for all the true cases in the training set. It is apparent that,
for faults 6, 8, 10 and 11, the minimums from rmNNs are lower than 0.8. After
classifier fusion the minimums are all above 0.8. On the other hand, for fault
6, the minimum from LMD is 0.793, lower than 0.8. After classifier fusion, the
minimum output is raised to 0.811.

Table 42 lists the minimum verification output from the rmNN, LMD and
fusioned classifier for all the true cases in the testing set. It is apparent that,
for faults 7 and 10, the minimums from rmNNs are 0.792 and 0.656, both lower
than 0.80. After classifier fusion, the minimums are all raised above 0.82. On the
other hand, for fault 6, the minimum from LMD is 0.786, lower than 0.8. After
classifier fusion, the minimum output is raised to 0.833.



101.1: The learning output for fault 7 from the LMD classifier.

101.2: The learning output for fault 7 from the rmNN classifier.

101.3: The average of two learning output for fault7 from the LMD and
rmNN classifiers.

Fig. 101. The learning output for fault 7 after the fusion of the LMD and rmNN
classifiers.



102.1: The verification output for fault 7 from the LMD classifier.

102.2: The verification output for fault 7 from the rmNN classifier.

102.3: The average of two verification output for fault7 from the LMD
and rmNN classifiers.

Fig. 102. The verification output for fault 7 after the fusion of the LMD and rmNN
classifiers.

The accuracy of the PSFC, which benefits from the fusion of the rmNN and
LMD classifiers is listed in Table 43. The threshold for ‘true’ decision making is
still 0.8.

It is obvious that the overall performance of the PSFC was improved via the
fusion of the two classifiers, the rmNN and LMD. The two classifiers provide



Table 41. Minimum learning output from the rmNN, LMD and fusioned classifier.

Evaluation of classifier fusion performance (Training)
Minimum learning Minimum learning Minimum learning
output of rmNN for output of LMD for output after classifier

true cases true cases fusion for true cases
value file index value file index value file index

Fault 3 0.871 92 0.899 401 0.901 92
Fault 6 0.742 383 0.793 362 0.811 383
Fault 7 0.845 345 0.817 350 0.862 350
Fault 8 0.748 235 0.835 384 0.861 382
Fault 9 0.87 414 0.84 387 0.896 387
Fault 10 0.68 471 0.984 471 0.832 471
Fault 11 0.61 93 0.854 103 0.803 93

Table 42. Minimum verification output from the rmNN, LMD and fusioned classifier.

Evaluation of classifier fusion performance (Verification)
Minimum verification output Minimum verification output Minimum verification output

of rmNN for true cases of LMD for true cases after classifier fusion
(true cases) for true cases

value file index value file index value file index
Fault 3 0.819 53 0.894 139 0.863 53
Fault 6 0.839 93 0.786 90 0.833 90
Fault 7 0.792 128 0.869 91 0.867 128
Fault 8 0.852 56 0.838 137 0.875 137
Fault 9 0.868 145 0.92 138 0.932 145
Fault 10 0.656 159 0.984 159 0.82 159
Fault 11 0.808 60 0.926 60 0.867 60

Table 43. The accuracy of the PSFC system.

Fault type # of files for # of files Accuracy
verification incorrect

Minor AC Disturbance 94 0 1.00
AC Disturbance 44 0 1.00
Valve Current Closed/Blocked/Deblocked 44 0 1.00
Line Fault 22 0 1.00
Commutation Failure 25 0 1.00
Pole Voltages/Current Closed/Blocked/Deblocked 15 0 1.00
Current Arc Back 6 0 1.00
Parallel Operation 9 0 1.00
Pole Current Oscillation 7 0 1.00
Normal Affected by Another Pole 4 0 1.00
Asymmetric Protection 6 0 1.00
Disturbance on DC Voltage 7 0 1.00



complementary information that gives the 2-classifier fusion method a chance
to succeed. The accuracy of the PSFC is 100%, which provides confident infor-
mation for fault decision making and enhances the quality of the power system
protection functionality.

10 Conclusion

This paper introduces a rough set approach to power system fault classifica-
tion. A form of rough neural computing based on the use of rough membership
functions is introduced in the design of what is known as a rough membership
function neural network (rmNN). A rough membership function makes it pos-
sible to measure the degree that any specified object with given feature values
belongs to a given set X . The set X in this application is a set of fault files,
which represent the same type of fault. Each rmNN has 3 layers: input, hidden,
and output. The input layer contains what are known as rmf neurons, i.e., neu-
rons that compute the degree overlap between a specific class containing objects
representing a fault type and a set of sample objects representing fault signals to
be classified. The neurons in the hidden layer aggregate the output from the rmf
neurons. The hidden layer neurons are designed using fuzzy set theory, which
is ideally suited for numerical representation of aggregated rmf neuron output.
The output neuron of an rmNN estimates the degree of a specific type of fault.

The most significant contribution of this research is a demonstration that
the rough membership function successfully distinguishes objects with similar
feature values. This makes rmNN a reasonable choice as a power system fault
classifier.

A C++ and Labview based graphic user interface is implemented for the
rmNN classifier, which makes the power system fault classification easy to oper-
ate.

To further improve the performance of the proposed approach to power sys-
tem fault classification, a 2-Classifier fusion method has been introduced. This
fusion method takes into account both the results of the rmNN classifier as well
as a linear mean and standard deviation (LMD) based classifier. The correla-
tion of the rmNN and LMD classifiers was estimated and has proved to be low
enough to ensure that these two classifiers provide complementary information
and are good candidates for classifier fusion. The ‘average’ method was selected
as a fusion function.

Future work will include an extension of the TranscanTM system used by
Manitoba Hydro. In addition, it is possible to reduce the complexity of this clas-
sification system by searching for minimal subsets of attributes approximately
preserving the decision information using rough set algorithms based on dis-
cernibility and Boolean reasoning. It is possible that the method of hierarchical
learning with domain knowledge can be well adjusted. It is also possible to con-
sider various forms of unsupervised, adaptive learning as a means of classifying
power system faults.



A Correlation Theory

Correlation is the degree to which two or more quantities are linearly associated.
The cross-correlation of two complex functions f(t) and g(t) of a real variable t,
denoted f 
 g, is defined by (71) [47]

f 
 g = f̄(−t) ∗ g(t), (71)

where ∗ denotes convolution and f̄ is the complex conjugate of f(t). Since con-
volution is defined as (72)

f(t) ∗ g(t) =
∫ ∞

−∞
f(τ)g(t − τ)dτ, (72)

it follows that
f(t) 
 g(t) =

∫ ∞

−∞
f̄(−τ)g(t − τ)dτ. (73)

Let τ ′ ≡ −τ , dτ ′ = −dτ , then (73) is equivalent to

f 
 g =
∫ −∞

∞
f̄(τ ′)g(t + τ ′)(−dτ ′)

=
∫ ∞

−∞
f̄(τ)g(t + τ)dτ. (74)

Similarly, for a complex function f(t), the autocorrelation ρf (t) is defined
by (75) [47]

ρf (t) ≡ f 
 f

= f̄(−t) ∗ f(t)

=
∫ ∞

−∞
f̄(τ)f(t + τ)dτ, (75)

Let series {ai, i = 0, 1, ..., N − 1} be a periodic sequence, then the autocorre-
lation of the sequences, sometimes called the periodic autocorrelation, is written
as (76) [86]

ρi =
N−1∑
j=0

ajaj+i, (76)

where the final subscript is understood to be taken modulo N . The cross-
correlation and autocorrelation discard phase information, returning only the
power, and are therefore irreversible operations.

The most important property of correlation is that f 
 f is maximum at the
origin (x = 0), in other words,∫ ∞

−∞
f(u)f(u + x)du ≤

∫ ∞

−∞
f2(u)du. (77)

It is efficient to classify the waveforms of fault signals for differentiating one
fault from others by applying the cross-correlation and autocorrelation opera-
tions.



B Conventional Fast Fourier Transform (FFT)

Fourier methods such as the Fourier series and Fourier integral are used in ana-
lyzing continuous time signals. That is, Fourier methods are applicable in systems
where there is a characteristic signal s(t) defined for all values of t in the interval
[-∞, ∞].

A Fourier transform decomposes a waveform into a sum of sinusoids of dif-
ferent frequencies [7]. The signal s(t) in the time domain is decomposed into the
sum of its sinusoids S(f) in the frequency domain by,

S(f) =
∫ ∞

−∞
s(t)e−j2πftdt, (78)

where j =
√−1.

In this paper, the focus is on the application of what is known as the Dis-
crete Fourier Transform (DFT) that is applicable to discrete-time signals. A
discrete time signal s[n] is defined for values of n in the interval [-∞, ∞]. A
discrete Fourier transform is used in studying finite collections of sampled data
{s0, ..., sN−1} relative to the sequence {S0, ..., SN−1}. The DFT is given by,

Sk =
N−1∑
n=0

sne−j 2π
N nk, k = 0, 1, ..., N − 1. (79)

A fast Fourier transform results from the application of a particular algorithm
that can compute the DFT more rapidly than other available algorithms [7].

C Wavelet Transform

The big disadvantage of a Fourier expansion is that it has only frequency res-
olution and no time resolution. This means that although we might be able to
determine all the frequencies present in a signal, we do not know when they are
present [81]. The wavelet transform provides a means of overcoming the short-
comings of the Fourier transform. In wavelet analysis, the use of a fully scalable
modulated window makes it possible to know the exact frequency and the exact
time of occurrence of this frequency in a signal. In other words, a signal can
simply be represented as a point in the time-frequency space. The window is
shifted along the signal and for every position the spectrum is calculated. Then
this process is repeated many times with a slightly shorter (or longer) window
for every new cycle. In the end, the result will be a collection of time-frequency
representations of a signal, all with different resolutions.

Wavelets provide a form of multiresolution analysis resulting from the collec-
tion of representations produced by applying a set of functions of different scales
to a signal. Large scales are used to paint the big picture, while small scales
expose the details. Thus, going from large scale to small scale is analogous to
zooming in.



The Continuous Wavelet Transform (CWT) in general is formally defined
by (80) [28]:

γ(s, τ) =
∫

f(t)Ψ∗
s,τ (t)dt, (80)

where ∗ denotes complex conjugation. Equation (80) shows how a function f(t)
is decomposed into a set of basis functions called wavelets. The variables s and
τ , scale and translation, are the new dimensions after the wavelet transform.
The inverse wavelet transform can be written as shown in (81) [28]:

f(t) =
∫ ∫

γ(s, τ)Ψs,τ (t)dsdτ. (81)

The wavelets Ψs,τ (t), sometimes called child wavelets, are generated from a
single basic wavelet Ψ(t), the so-called mother wavelet, by scaling (parameter s)
and translation (parameter τ) [28]. For a wavelet Ψs,τ (t), a family of curves with
parameters s and τ can be formed as:

Ψs,τ (t) =
1√
s
Ψ(

t − τ

s
), (82)

where s is the scale factor, τ is the translation factor and 1√
s

is the factor for
energy normalization across the different scales.

Unlike the Fourier transform or other transforms, the wavelet basis function,
Ψ(t) is not specified. The theory of wavelet transforms deals with the general
properties of the wavelets and wavelet transforms only. It defines a framework
for designing wavelets that satisfy different applications.

When discrete wavelets are used to transform a continuous signal, functions
of the form shown in (83) are selected [8].

Ψj,k(t) =
1√
sj
0

Ψ(
t − kτ0s

j
0

sj
0

), (83)

which is normally a piecewise continuous function, where j and k are integers and
s0 > 1 is a fixed dilation step. The translation factor τ0 depends on the dilation
step. The effect of discretizing the wavelet is that the time-scale space is now
sampled at discrete intervals. We usually choose s0 = 2 so that the sampling of
the frequency axis corresponds to dyadic sampling as shown in Figure 103. This
is a very natural choice for computers, the human ear and music for instance.
For the translation factor, it is usual to choose τ0 = 1 so that there is also a
dyadic sampling of the time axis.

Practical applications require Discrete Wavelet Transforms (DWT). The dis-
crete wavelets can be made orthogonal to their own dilations and translations by
special choices of the mother wavelet. There is a large class of wavelet functions
for which the set of child wavelets is an orthogonal basis. The simplest of these
is the Haar wavelet. An arbitrary signal can be reconstructed by summing the
orthogonal wavelet basis functions weighted by wavelet transform coefficients.



Fig. 103. Localization of discrete wavelets in the time-scale space on a dyadic grid [81].

The DWT and Inverse DWT (IDWT) of a signal f(t) are defined in (84)
and (85), respectively.

γj,k =
∫ ∞

−∞
f(t)Ψj,k(t)dt. (84)

f(t) =
∑

j

∑
k

γj,kΨj,k(t), (85)

Such wavelets give rise to a Wavelet Multiresolution Analysis (MRA) derived
as follows.

Define Wj to be a set of all signals f(t) which can be synthesized from the
child wavelets Ψj,k(t), −∞ < k < ∞. These spaces are orthogonal to each other
and we can synthesize any signal f(t) using (86)

f(t) =
∞∑

j=−∞
fj(t),

fj(t) =
∞∑

k=−∞
γj,kΨj,k(t), (86)

where fj(t) is in the space Wj .
There is another way to express this idea. Define Vj to be the set of all signals,

f(t), which can be synthesized from the child wavelets Ψi,k(t) where i < j and
−∞ < k < ∞ as in (87)

f(t) =
j−1∑

i=−∞

∑
k

γi,kΨi,k(t). (87)

The spaces Vj are nested inside each other, as follows:

{0} ⊂ ... ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ ... ⊂ L2. (88)



As j goes to ∞, Vj enlarges to become all energy signals (L2). As j goes to −∞,
Vj shrinks down to only the zero signal. It is clear from the definitions that every
signal in Vj+1 is the sum of a signal in Vj and Wj because

f(t) =
j∑

i=−∞

∑
k

γi,kΨi,k(t) =
j−1∑

i=−∞

∑
k

γi,kΨi,k(t) +
∑

k

γj,kΨj,k(t). (89)

Hence, it can be written:

Vj+1 = Vj + Wj . (90)

This shows that the spaces Wj are the differences (in the subspace sense)
between adjacent spaces Vj+1 and Vj . The spaces Vj and Wj can be visualized
as shown in Figure 104.

The term Wavelet Multiresolution Analysis (MRA) refers to the analysis
of signals in relation to a nested sequence of subspaces like the one shown in
Figure 104. For example, to decompose a signal, f(t), in space V0 a few times,
use the following decomposition:

V0 = V−1 + W−1

= V−2 + W−2 + W−1

= V−3 + W−3 + W−2 + W−1

= V−4 + W−4 + W−3 + W−2 + W−1. (91)

This leads to various decompositions:

f(t) = A1(t) + D1(t)
= A2(t) + D2(t) + D1(t)
= A3(t) + D3(t) + D2(t) + D1(t)
= A4(t) + D4(t) + D3(t) + D2(t) + D1(t), (92)

where Di(t), in W−i, is called the detail at level i and Ai(t), in V−i, is called the
approximation at level i.

Figure 105 gives an example of how the decomposition can be carried out in
MatlabTM using the wavemenu interface. There are a number of sample signals,
which can be used for a demonstration analysis. The signal sumsin is the sum
of two sine waves, and is decomposed four times in this example.

Notice that different aspects of the signal appear at different levels of the
details and approximations in Figure 105.

The space Vj has a very important property related to time compression by
factors of 2. The MRA Two Scale Property asserts that a signal f(t) is in the
space Vj if and only if, f(2t) is in the next space Vj+1. Therefore, investigation
of the multiresolution analysis leads to a scaling function, a pair of discrete time
filters, and a perfect reconstruction filter bank, which can be used to calculate



Fig. 104. MRA: nested subspaces.

105.1: First level decomposition 105.2: Second level decomposition

105.3: Third level decomposition 105.4: Forth level decomposition

Fig. 105. An example of Wavelet Multiresolution Analysis (MRA) decomposition.

the DWT quickly. In other words, a wavelet has a band-pass like spectrum. Given
that compression in time is equivalent to stretching the spectrum and shifting
it upwards, a time compression of the wavelet by a factor of 2 will stretch the
frequency spectrum of the wavelet by a factor of 2 and also shift all frequency
components up by a factor of 2. Using this insight, the finite spectrum of a signal
can then be covered with the spectra of dilated wavelets in the same way that
the signal is covered in the time domain with translated wavelets. Alternatively,



if one wavelet can be seen as a band-pass filter, then a series of dilated wavelets
can be seen as a band-pass filter bank.

The filter bank can be built in several ways. One way is to build many
bandpass filters to split the spectrum into frequency bands. Another way is to
split the signal spectrum into two (equal) parts, a lowpass and a highpass part.
The low-pass part can be split into a lowpass and a highpass part again. This
splitting process continues until the details of a signal that has been exposed are
satisfied. In this way, an iterated filter bank is created as shown in Figure 106.

Fig. 106. Splitting the signal spectrum with an iterated filter bank [81].

Four mother wavelets often used in wavelet analysis are shown in Figure 107.
The difference between these wavelets is mainly due to the different lengths of
filters that define the wavelet and scaling functions [36].

The scaled (dilated) and translated (shifted) versions of the Daubechies
mother wavelet are shown in Figure 108. Daubechies wavelets belong to a spe-
cial class of mother wavelets and are actually used most often for detection,
localization, identification and classification of power disturbances.

Transient signals in a power system are non-stationary, time-varying voltage
and current signals. Wavelet transforms are feasible to provide efficient and lo-
calized analysis of non-stationary, fast transient fault signals for power systems.
More detailed discussion on the application of wavelets analysis for classification
of fault signals for power systems will be addressed in Section 4.2.

D Time-Frequency Representation (TFR) Theory

In addition to applying wavelet theory to power system fault classification, the
Time-Frequency Representation (TFR) algorithm is becoming attractive to sci-
entists and engineers in the power industry. This section will introduce the basics



Fig. 107. Four mother wavelets often used in wavelet analysis [36].

Fig. 108. Scaled and translated versions of the D4 wavelet [36].

of TFR theory, and Section 4.3 will present the TFR in classifying power system
faults.

TFR P (t, f) can be expressed as a two-dimensional Fourier transform of
the product of the ambiguity plane A(η, τ) of the signal and a kernel function
ϕ(η, τ) [14]:

P (t, f) =
∫ ∞

−∞

∫ ∞

−∞
A(η, τ)ϕ(η, τ)ej2πηte−j2πfτdηdτ, (93)

where t represents time, f represents frequency, η represents continuous fre-
quency shift, and τ represents continuous time lag. The ambiguity plane A(η, τ)



for a given signal s(t) is defined as:

A(η, τ) =
∫ ∞

−∞
s(t)s∗(t + τ)ej2πηtdt, (94)

where s(t) represents the signal at time t, and s(t + τ) represents the signal at
a future time t + τ , and the s∗(t + τ) means the complex conjugate of s(t + τ).

The kernel ϕi[η, τ ] is defined as a binary matrix (each matrix element is
either 0 or 1). Feature points are ambiguity plane points of locations (η, τ) where
ϕi[η, τ ] = 1.
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