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Abstract. The problem considered in this paper1 is how to recognize
similar objects based on the detection of patterns in pairs of images. This
article introduces a new form of classifier based on approximation spaces
in the context of near sets for use in pattern recognition. By way of intro-
ducing the basic approach, nonlinear diffusion is used for edge detection
and object contour extraction. This form of image transformation makes
it possible to compare the contours of objects in pairs of images. Once the
contour of an image has been identified, it is then possible to construct
approximation spaces based on vectors of probe function measurements
associated with selected image features. In this article, the only feature
considered is contour, which leads to many contour probe functions. The
contribution of this article is a new form of classifier, based on approxi-
mation spaces, for use in image pattern recognition.
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1 Introduction

The problem considered in this paper is how to recognize similar objects based on
the detection of patterns in pairs of images. The proposed solution to this prob-
lem utilizes approximation spaces introduced by Zdzis�law Pawlak (see, e.g., [4,
5]), later generalized in [8], and further refined in [6]. In this paper, the approach
to approximation space-based image pattern recognition is strictly limited to dis-
covering similar objects in images based on object contours. Specifically, a user
creates a template image by creating a “sketch.” The goal is then to obtain all
images within a database that match the template. The results reported in this
article are limited to three unknown objects, two that match the template, and
one that does not. Nonlinear diffusion is used for image smoothing and object
contour extraction. The traditional approach suggested in [3], for recognition of
an object in an image I with a suspected match in an image I1 is performed by
comparing probe function values in
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I ≈ (I1)T ⇔ |f(I) − f(I1)| < ε, ∀f, ε ∈ [0, 1]

where I is approximately the same as I1 after some transformation T , iff |f(I)−
f(I1)| < ε for all f associated with, e.g., the contour of an object in an image.
In contrast, the approach taken in this article is to match a sketch drawn by a
user with an object contained in an image by recording contour probe function
values of both objects in a data table and constructing an approximation space.
Lower rough coverage values are then used to determine if the template image
is a match to the unknown image. The contribution of this article is a new form
of approximation space-based classifier for use in image pattern recognition.

This article is organized as follows. An approach to edge detection is briefly
presented in Section 2. Sections 3 and 4 briefly present the fundamentals of
approximation spaces with respect to near sets and their application to pattern
recognition, respectively. Finally, sample results of the proposed approach are
presented in Section 5.

2 Edge detection

Sketches inherently represent edges of the objects we are trying to match. Conse-
quently, a natural place to start is with image segmentation, which is the process
of partitioning an image into regions that are representative of the objects within
the image [2]. This can be accomplished by identifying the edges which are high
contrast regions of an image. This article uses nonlinear diffusion image filter-
ing to achieve segmentation (and subsequently perform edge detection). This
method is based on actual physical processes such as the diffusion of heat in
a metal bar [1, 9, 10]. The process is considered nonlinear because the diffusiv-
ity becomes a decreasing function of the magnitude of the gradient, since the
gradient will produce a large value in areas of large contrast (edges within the
image) [9]. The result is that uniform (low gradient magnitude) areas within the
image undergo more diffusion than areas with high contrast (high gradient mag-
nitude). An example of nonlinear diffusion is given in Fig. 1 using the nonlinear
diffusion toolbox for Matlab [1].

3 Approximation spaces

This section introduces a view of approximation spaces defined in a slightly mod-
ified manner in comparison with the original definition in [8]. Any generalized
approximation space (GAS) is a tuple

GAS = (U, A, Nr, νB),

where U is the universe (elements of U may be, for example, objects, behaviours,
or perhaps states), A is a set of probe functions (such that x ∈ U and f(x) ∈ A),
Nr is a neighbourhood family function and νB is an overlap function defined by



1.1: Original image 1.2: Segmentation using
nonlinear diffusion

1.3: Binary contour us-
ing nonlinear diffusion

Fig. 1: Results of nonlinear diffusion on an image

νB : P(U) × P(U) −→ [0, 1], (1)

where and P(U) is the powerset of U [6]. Equation 1 maps a pair of sets to a
number in [0, 1] representing the degree of overlap between the sets of objects
with features defined by B ⊆ A [8]. For each subset B ⊆ A of probe functions,
define the binary relation ∼B= {(x, x′) ∈ U × U : ∀f ∈ B, f(x) = f(x′)}. Since
each ∼B, is an equivalence relation (i.e the IndB indiscernibility relation), for
B ⊂ A and x ∈ U let [x]B denote the equivalence class, or block, containing x,
that is,

[x]B = {x′ ∈ U : ∀f ∈ B, f(x′) = f(x)} ⊆ U.

If (x, x′) ∈∼B (also written x ∼B x′) then x and x′ are said to be B-indiscernible.
Then define a family of neighborhoods Nr(A), i.e.,

Nr(A) =
⋃

B⊆Pr(A)

[x]B ,

where Pr(A) = {B ⊆ A | |B| = r} for any r such that 1 ≤ r ≤ |A|. That is,
r denotes the number of features used to construct families of neighborhoods.
Information about a sample X ⊆ U can be approximated from information
contained in B by constructing a Nr(B)-lower approximation

Nr(B)∗X =
⋃

x:[x]B⊆X

[x]B,

and a Nr(B)-upper approximation

Nr(B)∗X =
⋃

x:[x]B∩X �=∅
[x]B.



Then Nr(B)∗X ⊆ Nr(B)∗X and the boundary region BNDNr(B)(X) between
upper and lower approximations of a set X is defined to be the complement of
Nr(B)∗X , i.e.

BNDNr(B)(X) = Nr(B)∗X\Nr(B)∗X = {x ∈ Nr(B)∗X | x /∈ Nr(B)∗X}.

A family of neighborhoods Nr(B) is near a set X iff |BNDNr(B)(X)| ≥ 0. This
means every rough set is a near set but not every near set is a rough set. Lastly,
use the notation Bj(x) to denote a subset of Nr(B), where j ∈ B. Put

νj(Bj(x), Nr(B)∗X) =

{
|Bj(x)∩Nr(B)∗X|

|Nr(B)∗X| , ifNr(B)∗X �= ∅,
1, ifNr(B)∗X = ∅, (2)

where νj is a specialized form of rough coverage (see, e.g., [7]).

4 Approximation spaces and pattern recognition

It is now possible to formulate a basis for object recognition, which parallels the
traditional formulation of pattern recognition. Let X = D represent a decision
class containing all elements of U obtained from the template image using probe
functions from B. D represents a standard for classifying images. Observe that
a non-zero rough coverage value νj means that Bj(x) contains elements that are
members of the decision class D. Further, a larger number of non-zero coverage
values implies that a significant number of blocks contain elements that are part
of the decision class (the template image). Consequently, the ratio of non-zero
coverage values to total coverage values can be used as a new form of image
classifier. Put,

Cν(GAS) =
|{νj : ∀Bj(x) ∈ Nr(B), νj > 0}|

|{νj : ∀Bj(x) ∈ Nr(B)}| ,

where Cν(GAS) is the ratio of non-zero coverage values to total coverage val-
ues obtained from a specific GAS (for convenience we simply write Cν). Then
recognition of objects that are approximately the same is defined by comparing
non-zero coverage ratios using

O ≈ (Oid)T ⇔ Cν > ε,

where ε ∈ [0, 1]. That is to say, the object O is approximately the same as Oid

after some transformation T whenever Cν is greater than some ε.
By way of an illustration of the utility of approximation spaces, a near set

approach to pattern recognition is briefly considered here. Recall that the goal
of this process is to match a template with an unknown image. Let us define
a decision system as a data table (U, A) such that A contains a distinguished
probe function d representing a decision. Thus the set D ⊆ U consists of all
the elements for which d(x) = 1. The first step in creating a decision system is



to create the data table. Such tables will then be used to set up approximation
spaces to determine the degree that an object in an image resembles the template.
The approach used in this article is to create a data table from two images
where all elements associated with the template make up the decision class D.
Two such tables are given in Tables 1 and 2 created from the images shown in
Fig. 2. Table 1 represents the ideal case in which the template in Fig. 2.1 is
compared with itself. Similarly, Table 2 contains data obtained from comparing
the template in Fig. 2.1 with the unknown image given in Fig. 2.2.
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2.1: Template image
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2.2: Unknown image

Fig. 2: Contour comparison

Table 1: Decision system for Fig. 2.1

xi Probe functions f0 · · · f10 d

x0 0 0 0 0 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 3 2 3 0 0 0 0 1
x3 0 0 0 3 0 0 0 3 0 0 0 1
x4 0 0 0 2 0 0 0 2 0 0 0 1
x5 0 0 0 3 0 0 0 3 0 0 0 1
x6 0 0 0 0 3 0 3 0 0 0 0 1
x7 0 0 0 0 0 3 0 0 0 0 0 1
x8 0 0 0 0 0 0 0 0 0 0 0 1
x9 0 0 0 0 0 0 0 0 0 0 0 1
x10 0 0 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 3 2 3 0 0 0 0 0
x13 0 0 0 3 0 0 0 3 0 0 0 0
x14 0 0 0 2 0 0 0 2 0 0 0 0
x15 0 0 0 3 0 0 0 3 0 0 0 0
x16 0 0 0 0 3 0 3 0 0 0 0 0
x17 0 0 0 0 0 3 0 0 0 0 0 0
x18 0 0 0 0 0 0 0 0 0 0 0 0
x19 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Dec. sys. for Figs. 2.1 and 2.2

xi Probe functions f0 · · · f10 d

x0 0 0 0 0 0 0 0 0 0 0 0 1
x1 0 0 0 0 0 0 0 0 0 0 0 1
x2 0 0 0 0 3 2 3 0 0 0 0 1
x3 0 0 0 3 0 0 0 3 0 0 0 1
x4 0 0 0 2 0 0 0 2 0 0 0 1
x5 0 0 0 3 0 0 0 3 0 0 0 1
x6 0 0 0 0 3 0 3 0 0 0 0 1
x7 0 0 0 0 0 3 0 0 0 0 0 1
x8 0 0 0 0 0 0 0 0 0 0 0 1
x9 0 0 0 0 0 0 0 0 0 0 0 1
x10 0 0 0 0 0 0 0 0 0 0 0 0
x11 0 0 0 0 0 0 0 0 0 0 0 0
x12 0 0 0 0 4 3 2 3 0 0 0 0
x13 0 0 0 4 0 0 0 0 3 0 0 0
x14 0 0 0 3 0 0 0 0 2 0 0 0
x15 0 0 0 4 0 0 0 0 3 0 0 0
x16 0 0 0 0 4 0 0 0 4 0 0 0
x17 0 0 0 0 0 4 3 4 0 0 0 0
x18 0 0 0 0 0 0 0 0 0 0 0 0
x19 0 0 0 0 0 0 0 0 0 0 0 0

Moreover, to populate the tables, the coordinates of the centroid of each
image are calculated to find the geometric centre of the image (the grey pixels in
the centres of the contours). Next, the distances from the centroid are calculated
using the taxicab metric for each point on the contour of each image. Note,
distances are only reported for points on the contour. Lastly, what follows is an



example showing how to obtain Cν = 1 for Table 1. Similar calculations produce
a value of Cν = 0.592593 for Table 2. Observe that Table 2 produces a lower
value of Cν since Fig. 2.1 and Fig. 2.2 are not identical.

Decision class: D = {x0, x1, x2, x3, x4, x5, x6, x7, x8, x9}

Bj(x) : {νj}
Bf0(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf1(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf2(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf3(x0) = {x0, x1, x2, x6, x7, x8, x9, x10, x11, x12, x16, x17, x18, x19} : {1.0000}
Bf3(x3) = {x3, x5, x13, x15} : {1.0000}
Bf3(x4) = {x4, x14} : {1.0000}
Bf4(x0) =
{x0, x1, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14, x15, x17, x18, x19} : {1.0000}
Bf4(x2) = {x2, x6, x12, x16} : {1.0000}
Bf5(x0) =
{x0, x1, x3, x4, x5, x6, x8, x9, x10, x11, x13, x14, x15, x16, x18, x19} : {1.0000}
Bf5(x2) = {x2, x12} : {1.0000}
Bf5(x7) = {x7, x17} : {1.0000}
Bf6(x0) =
{x0, x1, x3, x4, x5, x7, x8, x9, x10, x11, x13, x14, x15, x17, x18, x19} : {1.0000}
Bf6(x2) = {x2, x6, x12, x16} : {1.0000}
Bf7(x0) = {x0, x1, x2, x6, x7, x8, x9, x10, x11, x12, x16, x17, x18, x19} : {1.0000}
Bf7(x3) = {x3, x5, x13, x15} : {1.0000}
Bf7(x4) = {x4, x14} : {1.0000}
Bf8(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf9(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}
Bf10(x0) = {x0, x1, x2,
x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17, x18, x19} : {1.0000}

Nr(B)∗X = {∅}
Cν = 1

5 Results

Again by way of illustration of the approach to recognizing similar objects in
images, template images of tea cups (see Fig. 3) were compared to unknown
sample image contours (see Fig. 4) obtained by nonlinear diffusion. The goal
was to obtain a higher value of Cν when comparing a sketch of a tea cup with
that of a contour obtained from an image of a tea cup. As shown in Table 3, the
template image in both cases produces a higher ratio of non-zero lower coverage
vales when compared to the contour of a tea cup than that of the fire hydrant.



3.1: Sketch of
first tea cup

3.2: Sketch of sec-
ond tea cup

Fig. 3: Sample sketches (template images)

4.1: First tea cup 4.2: Second tea cup 4.3: Fire hydrant

Fig. 4: Sample image contours

These results are promising, since they show that a lower approximation
space in the context of near sets can be used for pattern recognition. However,
there is still much to be investigated. For instance, observing the effects of trans-
lation and rotation on the sample images. This method should be translation
and rotation independent (within some small ε). This is due to the fact that this
method uses centroid distances that should not change on rotation or translation
of the image as long as the entire object is still within an image.

Other problems should be investigated as well. For example, a comparison of
other edge detection techniques and the nonlinear diffusion process is required.
This method was selected because it had already been implemented. However,
it may not be best suited to the task at hand. Also, other edge detection meth-
ods may be more attractive in terms of timing. Currently, the proposed method
takes several minutes to obtain the gradient. This is fine when comparing two
images, but is unrealistic when searching through an archive containing thou-
sands of them. Similarly, other forms of feature extraction should be explored
as well. At present, only one feature, namely, contour has been considered. Con-
tour probe function measurements constituting the top five distances from the



centroid are used. It may be that there are better features or a combination of
multiple features that can be used to provide better results. Finally, both ratios
were higher for the tea cup images than the fire hydrant, however, there was a
large difference between the results obtained for both tea cups. Consequently,
thresholding techniques (such as neural networks) need to also be investigated to
determine when it is sufficient to say a sample image being considered “matches”
the sketch drawn by a user.

Table 3: Sample Results

Decision Systems Lower coverage ratios

Template image Fig. 3.1 vs. tea cup contour Fig. 4.1 0.521186
Template image Fig. 3.1 vs. fire hydrant contour Fig. 4.3 0.437100
Template image Fig. 3.2 vs. tea cup contour Fig. 4.2 0.515041
Template image Fig. 3.2 vs. fire hydrant contour Fig. 4.3 0.413616

6 Conclusion

This article introduces an approximation space-based classifier for use in image
pattern recognition. Initial results are promising inasmuch as templates (ob-
tained from sketches) of target objects (e.g., tea cups) produce higher non-zero
coverage ratios when compared to objects in test images and low coverage ratios
when compared to other objects (e.g., fire hydrants). However, further insti-
gation is required before definite conclusions can be made about the proposed
approach to image.
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