
J.F. Peters et al., Monocular Vision System that Learn 1

Monocular Vision System that Learns with Approximation Spaces
J.F. Peters, Maciej Borkowski, Christopher Henry, Dan Lockery

Department of Electrical & Computer Engineering, University of Manitoba
75A Chancellor’s Circle, Winnipeg, Manitoba R3T 5V6 Canada

{jfpeters,maciey,chenry,dlockery}@ee.umanitoba.ca

Abstract. This paper introduces a monocular vision system that learns with
approximation spaces to control the pan and tilt operations of a digital camera that is
tracking a moving target. This monocular vision system has been designed to facilitate
inspection by a line-crawling robot that moves along an electric power transmission line.
The principal problem considered in this article is how to use various forms of
reinforcement learning to control movements of a digital camera. Prior work on the
solution to this problem was done by Chris Gaskett using neural Q-learning starting in
1998 and more recently by Gaskett in 2002. However, recent experiments have revealed
that both classical target tracking as well as other forms of reinforcement learning control
outperform Q-learning. This article considers various forms of the Actor Critic (AC)
method to solve the camera movement control problem. Both the conventional AC
method as well as a modified AC method that has a built-in run-and-twiddle (RT) control
strategy mechanism, are considered in this article. The RT mechanism introduced by
Oliver Selfridge in 1981 is an action control strategy, where an organism continues what
it has been doing while things are improving (increasing action reward) and twiddles
(changes its action strategy) when past actions yield diminishing rewards. In this work,
RT is governed by measurements (by a critic) of the degree of overlap between past
behaviour patterns and a behavior pattern template representing a standard are carried out
within the framework provided by approximation spaces introduced by Zdzisław Pawlak
during the early 1980s. This paper considers how to guide reinforcement learning based
on knowledge of acceptable behavior patterns. The contribution of this article is an
introduction to actor critic learning methods that benefit from approximation spaces in
controlling camera movements during target tracking.

Keywords: Actor critic method, approximation space, monocular vision, reinforcement
learning, rough sets, run-and-twiddle, target tracking.

1 Introduction

The problem considered in this paper is how to guide action choices by an actor that is
influenced by a critic governed by the evaluation of past actions. Specifically, one might
ask how to measure the value of an action relative to what has been learned from
experience (i.e., from previous patterns of behavior), and how to learn good policies for
choosing rewarding actions. The solution to this problem stems from a rough set
approach to reinforcement learning by cooperating agents. It is an age-old adage that

J.F. Peters et al., Monocular Vision System that Learn 2

experience is a good teacher, and one learns from experience. This is at the heart of
reinforcement learning, where estimates of the value of an action are based on past
experience.
 In reinforcement learning, the choice of an action is based on estimates of the value of
a state and/or the value of an action in the current state. A swarm learns the best action to
take in each state by maximizing a reward signal obtained from the environment. Three
different forms of actor-critic (AC) method are investigated in this article, namely, a
conventional AC method and a form of AC method that includes an adaptive learning
strategy called run—and—twiddle (RT) played out in the context of remembered
behavior patterns that accumulate in what are known as ethograms. An ethogram is a
table of stored behavior patterns (i.e., vectors of measurements associated with behavior
features) borrowed from ethology by Tinbergen (1963). Quantitative comparisons of past
behavior patterns with a template representing “normal” or desirable behavior are carried
out within the framework an approximation space. Approximation spaces were
introduced by Zdzislaw Pawlak (1981) during the early 1980s, elaborated by Orlowska
(1982), Pawlak (1982), and generalized by Skowron and Stepaniuk (1995) and Stepaniuk
(1998). The motivation for considering approximation spaces as an aid to reinforcement
learning stems from the fact that it becomes possible to derive pattern-based action
preferences (see, e.g., Peters and Henry (2005a, 2005b)).
 Prior work on the reinforcement learning control was done by Chris Gaskett (2002)
using neural Q-learning starting in 1998. However, recent experiments have revealed
that both classical target tracking as well as other forms of reinforcement learning control
outperform Q-learning. Consideration of Gaskett’s particular version of Q-learning and
neural networks as means of camera movement control is outside the scope of this article.
This article considers various forms of the Actor Critic (AC) method to solve the camera
movement control problem. AC methods have been studied extensively (see, e.g., Barto
(1983), Berenji (2003), Bertsekas (1996), Konda (2000), Rosenstein (2003), Sutton and
Barto (1998), Watkins and Dayan (1992), Wawrzynski (2005)}). The conventional actor
critic method evaluates whether things have gotten better or worse than expected as a
result of an action-selection in the previous state. A temporal difference (TD) error term
δ is computed by the critic to evaluate an action previously selected. An estimated action
preference in the current state is then determined by an actor using δ. Swarm actions are
generated by a policy that is influenced by action preferences. In the study of swarm
behavior of multiagent systems such as systems of cooperating bots, it is helpful to
consider ethological methods (see, e.g., Tinbergen (1963)), where each proximate cause
(stimulus) usually has more than one possible response. Swarm actions with lower TD
error tend to be favored. A second form of actor critic method is defined in the context
of an approximation space (see, e.g., Peters(2004a), Peters (2004b), Peters (2005), Peters
and Ramanna (2004), Peters and Henry (2006), Peters, Skowron, Synak, Ramanna
(2003), Skowron and Stepaniuk (1995), Stepaniuk (2002)) and which is an extension of
recent work with reinforcement comparison (Peters (2005), Peters and Henry (2005a),
Peters and Henry (2005b), Peters and Henry (2006)). This form of actor critic method
utilizes what is known as a reference reward, which is pattern-based and action-specific.
Each action has its own reference reward which is computed within an approximation
space that makes it possible to measure the closeness of action-based blocks of equivalent
behaviors to a standard. The contribution of this article is an introduction to a form of

J.F. Peters et al., Monocular Vision System that Learn 3

monocular vision system that learns with approximation spaces used as frameworks for
pattern-based evaluation of behavior during reinforcement learning.

This article is organized as follows. Rough set theory is briefly introduced in Sect. 2.
The basic idea of an approximation space is presented in Sect. 3. An approach to
commanding a monocular vision system is described in Sect. 4. A description of a
testbed for learning experiments with a monocular vision systems is given in Sect. 5. A
model for the design of a monocular vision system that learns with approximation spaces
is given in Sect. 6. A rough coverage form of actor critic method is presented in Sect. 7.
Finally, the results of learning by a monocular vision system in a non-noisy and in a
noisy environment are presented in Sections 8 and 9.

2 Rough Sets: Basic Concepts

This section briefly presents some fundamental concepts in rough set theory resulting
form the seminal work by Zdzisław Pawlak (for an overview, see, e.g., Peters and
Skowron (2006, 2007)) and that provides a foundation for a new approach to
reinforcement learning by collections of cooperating agents. The rough set approach
introduced by Zdzisław Pawlak (1981a, 1981b, 1982) and Pawlak and Skowron (2007a,
2007b, 2007c) provides, for example, a ground for concluding to what degree a set of
equivalent objects are covered by a set of objects representing a standard. The term
``coverage'' is used relative to the extent that a given set is contained in a standard set.
An overview of rough set theory and applications is given by Polkowski (2002). For
computational reasons, a syntactic representation of knowledge is provided by rough sets
in the form of data tables. A data (information) table IS is represented by a pair (U, A),
where U is a non-empty, finite set of elements and A is a non-empty, finite set of
attributes (features), where a: U → Va for every a ∈ A and Va is the value set of a. For
each B ⊆ A, there is associated an equivalence relation IndIS(B) such that IndIS(B) = {(x,
x’) ∈ U2 | ∀a ∈ B, a(x)=a(x’)}. Let U/IndIS(B) denote a partition of U determined by B
(i.e., U/IndIS(B) denotes the family of all equivalence classes of relation IndIS(B), and let
B(x) denote a set of B-indiscernible elements containing x. B(x) is called a block, which
is in the partition U/IndIS(B). For X ⊆ U, the sample X can be approximated from
information contained in B by constructing a B-lower and B-upper approximation
denoted by B*X and B*X, respectively, where B*X = ∪{ B(x) | B(x) ⊆ X} and B*X = ∪{
B(x) | B(x) ∩ X ≠ ∅}. The B-lower approximation B*X is a collection of blocks of
sample elements that can be classified with full certainty as members of X using the
knowledge represented by attributes in B. By contrast, the B-upper approximation B*X is
a collection of blocks of sample elements representing both certain and possibly uncertain
knowledge about X. Whenever B*X is a proper subset of B*X, i.e., B*X ⊂ B*X, the
sample X has been classified imperfectly, and is considered a rough set.

2 Approximation Spaces

This section gives a brief introduction to approximation spaces. The basic model for an
approximation space was introduced by Pawlak (1981a), elaborated by Orlowska (1982)
and Pawlak (1981b), generalized by Skowron and Stepaniuk (1995), Stepaniuk 1998),
and applied in a number of ways (see, e.g., Peters (2005), Skowron, Swiniarski, and

J.F. Peters et al., Monocular Vision System that Learn 4

Synak (2005), Peters and Henry (2006)). An approximation space serves as a formal
counterpart of perception or observation (Orlowska (1982)), and provides a framework
for approximate reasoning about vague concepts. A generalized approximation space is
a system GAS = (U, N, ν) where

• U is a non-empty set of objects, Ρ(U) is the powerset of U,
• N : U → Ρ(U) is a neighborhood function,
• ν : Ρ(U) × Ρ(U) → [0, 1] is an overlap function.

A set X ⊆ U is definable in a GAS if, and only if X is the union of some values of the
neighborhood function. In effect, the uncertainty function N defines for every object x a
set of similarly defined objects. That is, N defines a neighborhood of every sample
element x belonging to the universe U (see, e.g., Peters, Skowron, Synak and Ramanna
(2003)). Specifically, any information system IS = (U, A) defines for any feature set B ⊆
A a parameterized approximation space ASB = (U, NB, ν), where NB = B(x), a B-
indiscernibility class in the partition of U. The overlap function ν computes the degree
of overlap between two subsets of U. Let Ρ(U) denote the powerset of U. We are
interested in the larger of the two sets (assume that the card(Y) ≥ card(X)) because we
want to see how well Y ``covers'' X, where Y represents a standard for evaluating sets of
similar objects. Standard rough coverage (SRC) νSRC can be defined as in Eq. 1.

 ()
, ,

,
1 , .

SRC

X Y
if Y

X Y Y
if Y

ν
⎧ ∩

≠ ∅⎪= ⎨
⎪ =∅⎩

 (1)

In other words, νSRC(X, Y) returns the degree that Y covers X. In the case where X = Y,
then νSRC(X, Y) = 1. The minimum coverage value νSRC(X, Y) = 0 is obtained when X ∩
Y = ∅ (i.e., X and Y have no elements in common).

3 Environment for Line-Crawling Robot

This section briefly describes the environment to be inspected by a second generation
Autonomous Line-Crawling robot named ALiCE II, which is a member of a family of
line-crawling bots designed to inspect electric power transmission towers (see Figs. 1 and
2).

J.F. Peters et al., Monocular Vision System that Learn 5

Fig. 1. ALiCE II Camera Fig. 2. ALiCE II Wireless Card

ALiCE II has been designed to crawl along a wire stretched between a particular class of
steel towers in the Manitoba Hydro power transmission system. Sample steel towers in
the Manitoba hydro system are shown in Figs. 3 and 5. ALiCE II has been designed to
crawl along the top, lightning guard wire (called a sky wire) of a tower like the one
shown in Fig. 5. A bot suspended from a sky wire stretched between electric power
transmission towers usually sways from side--to--side as it moves along a wire due to
buffeting by the wind. For example, in Manitoba towers usually range from 20 to 50
metres in height (see, e.g., Fig. 4). The tallest transmission towers in the Manitoba
Hydro system are more than 100 metres high to support the long crossing of the Nelson
River (see Berger, R.P. (1995)). A broad range of target objects (e.g., insulators, pins,
bolts, cross braces) would part of the repetoire of objects that ALiCE II would inspect. A
sample insultator group is shown in Fig. 6 (notice that the top insulator in Fig. 6 is
damaged, and needs to be replaced).

Fig. 3. Sample Steel Towers Fig. 4. Sample Tower Measurements

J.F. Peters et al., Monocular Vision System that Learn 6

Fig. 5. Sample Steel Tower Fig. 6. Sample Insulator Group

Hence, once a bot identifies a target (e.g., insulator or tower cross--brace), target tracking
is necessary to move a camera to compensate for wind action so that it continues to
inspect a target object.

4 Commanding

Commanding of ALiCE II is made possible by a wireless network as shown in Fig. 2.
Specifically, ALiCE II uses the Sierra AirCard 580 Wireless WAN Modem (see, e.g.,
Fig. 2) to establish the connection to the Point-To-Point Protocol (PPP) server over the
Telus cellular network. PPP has three main components corresponding to RFC 1332 from
the IETF (2006), a method for sending data over the connection between two nodes, a
Link Control Protocol (LCP) for maintaining the data link, and a suite of Network
Control Protocols (NCPs) used to establish and configure different network-layer
protocols. Specifically, the NCP protocol used to establish the IP address is the PPP
Internet Protocol Control Protocol (IPCP) which negotiates the IP address only after the
data link has been established and tested by the IETF (2006). What follows is a
comparison of several types of tracking systems using classical as well as reinforcement
learning methods.

J.F. Peters et al., Monocular Vision System that Learn 7

Fig. 7. ALiCE II Wireless network Fig. 8 UML Comm. Dialogue

Only the tilt servo is visible in Fig. 2. A bot suspended from a sky wire stretch between
electric power transmission towers usually sways from side--to--side as it moves along a
wire. Hence, once a bot identifies a target (e.g., insulator or tower cross--brace), target
tracking is necessary to move a camera so that it continues to inspect a target object.
What follows is a comparison of several types of tracking systems using classical as well
as reinforcement learning methods.

5 Monocular Vision System Testbed

This section gives a brief overview of a testbed for the ALiCE II vision system (see Figs.
1, 2, and 9). The main processing unit of ALiCE II is the TS-5500 compact full-featured
PC compatible Single Board Computer based on the AMD Elan520 processor from Elan
(2006). The TS-5500 is running the Linux operating system (see Torvalds, L. (2006)) on
the Elan 0x586 class processor from Technologic (2006) using the Elan microcontroller.
The TS-5500 is configured to use an Orinoco wireless ethernet card which can be
programmed as a wireless Access Point (AP), or to connect to an existing AP such as the
DLink wireless router to send camera images to a base station. Furthermore, the TS-
5500 is also configured to use a Sierra 555 wireless network card which can connect to
the internet through a cellular CDMA 1X network (see Fig. 7). The main constraint
limiting the possible algorithms which can be used for target tracking is the relatively low
computational power of the CPU, which is run by a 133 MHz clock. As a result, the TS-
5500 has computational power comparable to a Pentium III processor with an
approximately 70 MHz clock. The TS-5500 is also equipped with a Creative NX Ultra
WebCam that is mounted on two Hobbico mini servo's. The servo's provide the camera
with two degrees of freedom (DOF), because it is mounted on two servos (one servo for
swinging the camera in a horizontal plane (panning) and a second servo for swinging the
camera up and down (tilting)) . Each servo's movement can be controlled separately.
Two additional computers (IBM Thinkpads) are included in the hardware test setup (see
Fig. 9). One IBM ThinkPad display's a randomly moving target. A second Thinkpad
serves as an Observation PC, which is connected to a server running on the TS-5500.
This second Thinkpad provides visual feedback and records data for comparison
purposes.

J.F. Peters et al., Monocular Vision System that Learn 8

Fig. 9 Testbed for Monocular Vision System

6 Monocular Vision System

The goal of the monocular vision system is to point a camera at a moving target,
continuously. To achieve this goal, a fast and efficient image processing technique is
required to detect the position of a target in an input frame obtained from the webcam.
The approach utilized in our system is called template matching. However, before
template matching can occur, preprocessing of the input image from the camera is
necessary due to the computational restraints of the TS-5500 (comparable to a Pentium
III processor with a clock speed ≈ 70 MHz). Preprocessing consists of both spatially
decimating the input image as well as transforming the RGB colours into grey levels.
Spatial decimation is performed in each dimension (both x and y) by taking every nth
pixel. In our case, we selected every 4th pixel to transform the smallest available output
of the webcam from 160 × 120 pixels to 40 × 30 pixels. Furthermore, conversion into
grey levels is preformed using Eq. 2.

 ()
3

R G B
I

+ +
= . (2)

The result of preprocessing is an image that is over 40 times smaller (160 × 120 × 3 =
57600 bytes compared with 40 × 30 × 1 = 1320 bytes) and still contains sufficient
information to perform template matching. Template matching is implemented in this
system using the Sum of Squared Differences (SSD), which is similar to the approach
used by Gaskett (2002, 2005). The idea is to find a match of the template in the input
image, where it is assumed that the template is the smaller of the two images. The SSD
model is given in Eq. 3, and is calculated for every position of the template in the input
image.

 () () 2

(,) , ,
j k

SSD x y input j k template j k k y= − − −⎡ ⎤⎣ ⎦∑∑ . (3)

J.F. Peters et al., Monocular Vision System that Learn 9

The result is that Eq. 3 is minimal at the point in which the template occurs in the input
image. Next, the coordinates of the minimum are passed on to the target tracking
algorithms. Finally, it is important to note that the coordinates of the target refer to the
centre of the template and will only span a subset of size 28 × 21 of the 40 × 30 image.
For example, consider Fig. 10, which is a simple example showing in grey all the
possible coordinates of the centre of a template of size 5 × 5 within an image of size 8 ×
8.

 Fig. 10. Image Template Fig. 11 System States

6.1 Reinforcement Learning by Vision System

At the heart of reinforcement learning is the principle of state and state transitions. The
learning agent determines the state from observed changes in its environment.
Furthermore, for each perceived state there is one or more desirable actions that will
cause a change in the environment and produce a transition into a beneficial state.
Rewards can then be defined by the perceived desirability of the new state. States in the
monocular vision system are based on the coordinates of the target obtained from the
template matching process and are shown in Fig. 11. These states are applied to the 28 ×
21 subset described above. The selection of states in a learning environment is more of
an art than a science. The states given in Fig. 11 were arrived at through trial and error.
The goal was to select areas small enough to allow a few ideal servo movements in each
state, but not so small as to severely limit the set of possible movements. Similarly, the
actions available in each state are based on the maximum distance from the centre of the
28 × 21 area to the outside edge in any single dimension which is approximately 14
pixels. Consequently, the actions available in each state range from 1 - 12 and represent
increments to the servos position. Each step increment to the servos provides a rotation
of 0.9 degrees with an accuracy of ±0.25%. Furthermore, the two numbers located below
each state identifier in Fig. 11 represent the direction of the pan and tilt servo's
respectively. Finally, reward is calculated using Eq. 4.

J.F. Peters et al., Monocular Vision System that Learn 10

 1 distancereward
maxdistance

= − , (4)

where distance is calculated using Eq. 5.

 2 2distance x y= + . (5)

Note that x and y represent the coordinates of the target, and the origin is selected as the
centre of the camera's field of view, thus, there is no need to include the coordinates of
the centre in the distance calculation. A result computed using Eq. 4 is a normalized
reward which equals 1 when the target is located at the centre, and 0 when the target is at
the outside edge of the field of view.

6.2 Classical Target Tracking

This section presents the classical tracking system implemented in the monocular vision
system. The classical target tracking method is a deterministic algorithm and does not
perform any learning. Consequently, this algorithm defines its state space separately than
the reinforcement learning algorithms. In effect, every possible target coordinate can be
considered a state and the only action available in each state is to move the servo's the
calculated distance (using Eq. 5) to the target. In a sense, it selects the right action to take
in every state. As a result, this algorithm is important because it demonstrates the desired
behaviour of the reinforcement learning algorithms and provides a baseline for
comparison when plotting the results. The classical target tracking method is provided in
Alg. 1.

Algorithm 1: Classical Target Tracking
Input: States s ∈ S; //1 state for each possible set of target coordinates
Output: Deterministic policy π(s); //selects the same action in every state.
while (true) do
 get current state; //i.e., coordinates of target
 pan ← target’s horizontal distance from center of camera view;
 tilt ← target’s vertical distance from center of camera view;
 move servos by (pan, tilt);
end

6.3 Actor-Critic Learning Method

Actor-critic (AC) learning methods are temporal difference (TD) learning methods with a
separate memory structure to represent policy independent of the value function used.
The AC method considered in this section is an extension of reinforcement comparison in
Sutton and Barto (1998). The estimated value function V(s) is an average of the rewards
received while in state s. After each action selection, the critic evaluates the quality of

J.F. Peters et al., Monocular Vision System that Learn 11

the selected action using δ in Eq. 6, which represents the error (labeled the TD error)
between successive estimates of the expected value of a state.

 () ()1 ,t t t tr V s V sδ γ += + − (6)

where γ is the discount rate, and the value of a state implemented by the critic is given in
Eq. 7.

 () () ,t t t tV s V s α δ= + (7)

where αt is the critic's learning rate at time t. For simplicity, the subscript t is omitted in
what follows. If δ > 0, then it can be said that the expected return received from taking
action at is larger than the expected return in state s t resulting in an increase to action
preference p(s, a). Conversely, if δ < 0, the action at produced a return that is worse than
expected and p(s, a) is decreased (see, e.g., Wawrzynski (2005)). The run-and-twiddle
(RT) method introduced by Selfridge (1989) and elaborated by Watkins (1989) is a
control strategy inspired by behaviour that has been observed in biological organisms
such as E. Coli and silk moths, where an organism continues its current action until the
strength of a signal obtained from the environment falls below an acceptable level, and
then it ``twiddles'' (i.e., works out a new action strategy). This idea can be applied to the
value of δ in Alg. 2. Whenever δ < 0 occurs too often, it can be said that an agent is
performing below expectations, and that a ``twiddle" is necessary to improve the current
situation. The preferred action a in state s is calculated using Eq. 8.

 () (), , ,p s a p s a βδ= + (8)

where β is the actor's learning rate. The preferred action p(s, a) is employed by an actor
to choose actions stochastically using the Gibbs softmax method as shown in Eq. 9.

 ()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

. (9)

Alg. 2 gives the Actor-Critic method that is an extension of the reinforcement comparison
method given in Sutton and Barto (1998). It is assumed that the behaviour represented by
Alg. 2 is episodic, and is executed continuously.

Algorithm 2: Actor-Critic Method
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β.
Output: Policy π(s, a) //controls selection of action a in state s.
for (all s ∈ S, a ∈ A) do
 p(s, a) ← 0;

J.F. Peters et al., Monocular Vision System that Learn 12

 ()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

end
while (true) do
 initialize s;
 for (t = 0; t < Tm; t = t + 1) do

choose a from s using π(s, a);
take action a, observe r, s’; //s’ = st+1

() ()'r V s V sδ γ= + − ;

() ()V s V s αδ= + ;

() (), ,p s a p s a βδ= + ;

()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

s ← s’;
end

end

7 Actor-Critic Method using Rough Coverage

This section presents a modified actor critic method using rough coverage derived within
the context of an approximation space, which is constructed relative to a decision table
known as an ethogram. An ethogram is a decision table where each object in the table
represents an observed behavior, which has features such as state, action and proximate
cause inspired by Tinbergen (1963). This is explained in detail in Peters, Henry and
Ramanna (2005a), and not repeated, here.

7.1 Average Rough Coverage

This section illustrates how to derive average rough coverage using an ethogram. During
a swarm episode, an ethogram is constructed, which provides the basis for an
approximation space and the derivation of the degree that a block of equivalent
behaviours is covered by a set of behaviours representing a standard (see, e.g., Peters
(2005b), Tinbergen (1963), Peters, Henry and Ramanna (2005a). Let xi, s, PC, a, p(s, a),
r, d denote ith observed behaviour, current state, proximate cause (Tinberben (1963)),
possible action in current state, action-preference, reward for an action in previous state,
and decision (1 = choose action, 0 = reject action), respectively.

Assume, for example, Ba(x) = {y ∈ Ubeh | xIND(B ∪ {a})y}. Let Β = { Ba(x) | x ∈ Ω}
denote a set of blocks representing actions in a set of sample behaviours Ω. Let r
denote average rough coverage as shown in Eq. 10.

 ()()()
*1

1 ,
()

card
ai

r B x B D
card

νΒ
Β=

=
Β ∑ , (10)

J.F. Peters et al., Monocular Vision System that Learn 13

where Ba(x) ∈ Β. Computing the average lower rough coverage value for action blocks
extracted from an ethogram implicitly measures the extent that past actions have been
rewarded. What follows is a simple example of how to set up a lower approximation
space relative to an ethogram. The calculations are performed on the feature values
shown in Table 1.

(){ }
{ } { }

() { }{ }
() { } () { }
() { } () { } () { } () { }

() (){ } { }
()() ()

4 5

5 5 5 5

*

4 * 5 *

, , , , , ,

| () 1 1, 3, 5, 7, 8

| () ,

0 0, 2, 4, 6, 8 , 1 1 ,

3 3 , 5 5 , 7 7 , 9 9 ,

| 1, 3, 5, 7

0 , 0, 1 ,

i i i ii

a beh

a a

a a a a

a a

B a B a

B s PC a p s a r

D x U d x x x x x x

B x y U xIND B a y hence

B x x x x x x B x x

B x x B x x B x x B x x

B D B x B x D x x x x

B x B D B x Bν ν

= =

= = = =

= =

=

= ∈ = =

= ∈ ∪

= =

= = = =

= ∪ ⊆ =

= ()
()() ()()
()() ()()
()()

5 * 5 *

5 * 5 *

*

0.25,

3 , 0.25, 5 , 0.25,

7 , 0.25, 9 , 0,

, 0.1667

B a B a

B a B a

B a

D

B x B D B x B D

B x B D B x B D

r B x B D

ν ν

ν ν

ν

= =

= =

=

= =

= =

= =

7.2 Rough Coverage Actor Critic Method

The rough coverage actor critic (RCAC) method is one among many forms of the actor
critic method (see, e.g., Barto (1983), Berenji (2003), Bertsekas and Tsitsiklis (1996),
Konda (1995), Peters and Henry (2005), Sutton and Barto (1998), Watkins and Dayan
(1992), Wawrzyński and Pacut (2004), Wawrzyński (2005)). Common variations
include additional factors which vary the amount of credit assigned to selected actions.
This is most commonly seen in calculating preference, p(s, a). The rough coverage form
of the Actor-Critic method calculates preference values as shown in Eq. 11.

J.F. Peters et al., Monocular Vision System that Learn 14

 () () [], ,p s a p s a rβ δ← + − , (10)

where r denotes average rough coverage computed using Eq. 10. This is reminiscent
of the idea of a reference reward used during reinforcement comparison. Recall that
incremental reinforcement comparison uses an incremental average of all recently
received rewards as suggested by Sutton and Barto (1998). Intuitively, this means action
probabilities are now governed by the coverage of an action by a set of equivalent actions
which represent a standard. Rough coverage values are defined within a lower
approximation space. Alg. 3 is the RCAC learning algorithm used in the monocular
vision system. Notice that the only difference between Algorithms 2 and 3 is the addition
of the reference reward r , which is calculated using rough coverage.

Algorithm 3: Rough Coverage Actor-Critic Method
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β.
Output: Policy π(s, a) //controls selection of action a in state s.
for (all s ∈ S, a ∈ A) do
 p(s, a) ← 0;

 ()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

end
while (true) do
 initialize s;
 for (t = 0; t < Tm; t = t + 1) do

choose a from s using π(s, a);
take action a, observe r, s’; //s’ = st+1

() ()'r V s V sδ γ= + − ;

() ()V s V s αδ= + ;

() () [], ,p s a p s a rβ δ= + − ;

()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

s ← s’;
end
Extract ethogram table ISswarm = (Ubeh, A, d);
Discretize feature values in ISswarm;
Compute r as in Eq. 10 using ISswarm;

end

7.3 Run-and-Twiddle Actor Critic Method

This section briefly presents a run-and-twiddle (RT) form of AC method in Alg. 4. Both
AC methods use preference values to compute action selection probabilities. However,
the RT AC method uses aν (average rough coverage of all the blocks containing action a)

J.F. Peters et al., Monocular Vision System that Learn 15

to control the rate of learning instead of β in the actor. A ``twiddle'' entails advancing the
window of the ethogram (recorded behavior patterns of ecosystem organisms, or, in the
monocular vision system, behavior patterns of a moving camera) and recalibrating

a a Aν ∀ ∈ . This form of twiddling mimics the behaviour of E. Coli bacteria (diminishing
food supply results in change in movement) or a male silk moth following the perfume
emitted by a female silk moth (diminishing perfume signal results in a change of the
search path), which is described by Selfridge (1984). This idea can be applied to the
value of δ in Alg. 3. When δ < 0 occurs too often, then it can be said that the agent is
performing below expectations, and that a ``twiddle" is necessary to improve the current
situation. This is the basic approach underlying Alg. 4.

Algorithm 3: Rough Coverage Actor-Critic Method
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β, th. //th = threshold
Output: Policy π(s, a) //controls selection of action a in state s.
for (all s ∈ S, a ∈ A) do
 p(s, a) ← 0;

 ()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

end
while (true) do
 initialize s; ν ← 0;
 for (t = 0; t < Tm; t = t + 1) do

choose a from s using π(s, a);
take action a, observe r, s’; //s’ = st+1

() ()'r V s V sδ γ= + − ;

() ()V s V s αδ= + ;

() () [], ,p s a p s a rβ δ= + − ;

()
()

()

,

() ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

;

if (δ < 0) then
 ν ← ν + 1;
 if (ν < th) then
 Extract ethogram table ISswarm = (Ubeh, A, d);
 Discretize feature values in ISswarm;
 Compute a a Aν ∀ ∈ ;
 ν ← 0;
 end
end
s ← s’;

 end

end

J.F. Peters et al., Monocular Vision System that Learn 16

8 Results

The values shown in the plots in Figs. 12(a)-12(d) represent the RMS error between the
distance of the target from the centre of the field-of-view of each camera image and a
running average of the distance values. Preliminary experiments suggest that the RC AC
method has the poorest performance among (see sample RMS plots in Figs. 12(a), 12(b),
12(c)). This is due largely to the fact that the RC AC method must construct a lower
approximation space at the end of each episode (in contrast to the run and twiddle method
which only constructs a lower approximation space whenever things appear to be going
badly). As a result, the RC AC algorithm hangs due to the limited processing power of
the TS-5500 and, as a result, the target moves a significant distance from the centre of the
image. However, note that the RC AC method performs quite similar to the AC and RT
AC when observing the normalized totals of the state value function V (see Fig. 13).
This suggests that the RC AC method is comparable to the other two AC methods in
terms of converging to an optimal policy. The RC AC method just does poorly in this
real-time learning environment because its ``calculate hang" causes the algorithm to lose
the target. This can be corrected by implementing the RC AC method on a system with
more processing power.

 Fig. 12(a) RC AC vs. RT AC Fig. 12(b) AC, RC AC, classical

J.F. Peters et al., Monocular Vision System that Learn 17

 Fig. 12(c) RMS for 4 AC methods Fig. 12(d) AC vs. RT AC

In preliminary tests with camera control in the monocular vision system, the performance
of run-and-twiddle (RT AC) method compares favorably the actor critic (AC) method.
Evidence of this can be seen in the plots in Fig. 12(a) and Fig. 12(d).

Fig. 13 Comparison of Normalized Total State Values

Finally, it is important to note that there are two reasons why the classical tracking
method outperforms the reinforcement learning algorithms in the sample RMS plots in
Figs. 12(b), 12(c). At the beginning of the tests, the RL algorithms are performing more
exploration than greedy selection to determine the best possible action to select in each
state. Toward the end of the tests (in later episodes), the RL algorithms consistently
converge to an optimum policy. However, even during later episodes, the AC methods
still perform exploration some of the time. As a result, the classical method should out-
perform the RL methods every time. The RL algorithms are ideally suited to deal with
noise, which has not be considered in the form of SSD given in Eq. 3. In this context,
the term noise denotes irregular fluctuations in either movements of a target or in the
environment that influences the quality of camera images. Noise has a number of sources
(e.g., camera vibration due to buffeting of the wind, electromagnetic field, and weather
conditions such has rain, glare from the sun). This is very important because of the noisy
environment in which the monocular vision system must operate. In the presence of
noise, the classical algorithm will not do as well as RL because is has no provision for

J.F. Peters et al., Monocular Vision System that Learn 18

exploration whenever it is not clear what action should be performed next to find a
moving target.

9 Learning Experiments in Noisy Environment

To induce noise, the platform that the camera was sitting on (see Fig. 9) was purposely
placed on a slope rather than a flat surface. The result of this placement caused the entire
platform to vibrate when the camera servos were activated. This provided a degree of
realism analogous to what would be experienced in a suspended system where any type
of motion onboard ALiCE II will disturb the system somewhat. The extra motion was
intended to provide a more challenging movement of the target as it varied with the step
sizes, greater motion resulted from larger step sizes. The resulting motion of the platform
was a rocking action from back to front only.

Fig. 14 Actor Critic in Noisy Environment

 The illumination for the experiments was kept as uniform as possible with the addition
of papers surrounding the monitor in an attempt to restrict the available ambient light.
The experiments were all conducted for 5 minutes each, providing a reasonable time
period to get an idea of their individual performance. Overall, this resulted in a
controlled environment with some extra fluctuations in movement and a slightly more
difficult target tracking problem than the previous set of experiments.
 One thing that can readily be seen in Figs. 14-16 is that there is a periodicity in the
experimental procedure. This is due to the trajectory that the target takes. The peaks in
the cycle correspond to the highest error and this coincides to part of the trajectory where
the target travels down the right hand side where the field of view can only see part of the
target and often the camera would lose the target depending on the method in question.
Note that the performance of the actor critic method (both the convention AC with
sample RMS values in Fig. 14 and rough coverage AC with RMS values in Figs. 15-16)
is excellent and it has managed to out-perform the classical tracking method.

J.F. Peters et al., Monocular Vision System that Learn 19

Fig. 15 Rough Coverage Actor Critic in Noisy Environment

Fig. 16 RC AC, AC, Classical Tracking in Noisy Environment

The classical tracking system is being out performed by the AC and RC AC learning
methods. The likely explanation for the worsened performance of the classical tracking
algorithm is that the extra motion from the camera platform and a tendency for the target
to slip down so that the field of view of the camera includes only part or none of the
target. With these new problems, the AC and RC AC learning methods led to improved
performance, since these reinforcement learning methods were able to explore in a
somewhat noisy environment to discover a better tracking profile. Notice that the rough
coverage form of actor critic method tends to have slightly better performance than the
conventional AC method (see, for example, Fig. 16).

10 Conclusion

This article introduce a monocular vision system that learns with the help of
approximations. This results in a vision system with actions that are influenced by
patterns of behavior discovered in the context of approximation spaces that have been
constructed periodically from ethograms. In a noisy environment, the rough coverage

J.F. Peters et al., Monocular Vision System that Learn 20

form of actor critic method tends to do better than the classical tracking method. This is
in keeping the basic approach introduced in 1981 by Zdzisław Pawlak, who suggested
classifying objects by means of their features. In the context of target tracking by a
monocular vision system, an object an observed behavior of the system. Classification
of vision system behavior is made possible by comparing feature values of observed
system behaviors in different states, which have been captured in ethogram tables. The
basic approach in the design of the vision system described in this chapter is derived from
ethology introduced by Tinbergen in 1963. The current work on vision systems is part
of a swarm intelligence approach, where pairs of cameras on separate, cooperating bots
synchronize to form binocular vision systems that learn. Future work will consider n-
ocular vision systems that learn with approximation spaces as well as various
reinforcement learning methods not considered, here.

Acknowledgements

Many thanks to Wes Mueller, who has been a great help in obtaining images showing
hydro transmission equipment. This research has been supported by Natural Sciences
and Engineering Research Council of Canada (NSERC) grant 185986 and grant T247
from Manitoba Hydro.

References

Barto, A.G., Sutton, R.S., Anderson, C.W. (1983). Neuronlike elements that can solve
difficult problems. IEEE Trans. on Systems, Man, and Cybernetics 13, 834-846.

Berenji, H.R. (2003). A convergent actor-critic-based FRL algorithm with application to
power management of wireless transmitters. IEEE Trans. on Fuzzy Systems 11/4, 478-
485.

Bertsekas, D.P., Tsitsiklis, J.N. (1996). Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA.

Berger, R.P. (1995). Fur, Feathers & Transmission Lines:
http://www.hydro.mb.ca/environment/publications/fur_feathers.pdf

Elan (2006). Elan SC520 Microcontroller User's Manual at
http://www.embeddedarm.com/

Gaskett, C. (2002). Q-Learning for Robot Control. Ph.D. Thesis, Supervisor: A.
Zelinsky, Department of Systems Engineering, The Australian National University.

Gaskett, C., Ude, A., Cheng, G. (2005). Hand-Eye Coordination through Endpoint
Closed-Loop and Learned Endpoint Open-Loop Visual Servo Control. In Proc. Int. J. of
Humanoid Robotics, 2 (2), 203-224.

J.F. Peters et al., Monocular Vision System that Learn 21

Internet Engineering Task Force (2006). RFC 1332 The PPP Internet Protocol Control
Protocol (IPCP) at http://www.ietf.org/rfc/rfc1332.txt

Konda, V.R., Tsitsiklis, J.N. (1995). Actor--critic algorithms, Adv. Neural Inform.
Processing Sys., 345--352.

Pawlak, Z. (1981a). Classification of Objects by Means of Attributes. Institute for
Computer Science, Polish Academy of Sciences Report 429.

Pawlak, Z. (1981b). Rough Sets. Institute for Computer Science, Polish Academy of
Sciences Report 431.

Pawlak, Z. (1982). Rough sets, International J. Comp. Inform. Science, 11, 341—356.

Peters, J.F., Pawlak, Z. (2007). Zdzisław Pawlak life and work (1906-2006), Information
Sciences 177, 1-2.

Pawlak, Z., Skowron, A. (2007a). Rudiments of rough sets, Sciences 177, 3-27.

Pawlak, Z., Skowron, A. (2007b). Rough sets: Some extensions, Sciences 177, 28-40.

Pawlak, Z., Skowron, A. (2007c). Rough sets and Boolean reasoning, Sciences 177, 41-
73.

Peters, J.F., Henry, C., Ramanna, S. (2005a). Rough Ethograms : Study of Intelligent
System Behavior. In: M.A. Kłopotek, S. Wierzchoń, K. Trojanowski (Eds.), New Trends
in Intelligent Information Processing and Web Mining (IIS05), Gdańsk, Poland, 117-126.

Peters, J.F. (2005b). Rough ethology: Towards a Biologically-Inspired Study of
Collective Behavior in Intelligent Systems with Approximation Spaces. Transactions on
Rough Sets, III, LNCS 3400, 153-174.

Peters, J.F., Henry, C. (2005). Reinforcement learning in swarms that learn. Proc.
IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology (IAT 2005), Compiègne
Univ. of Tech., France, 400-406.

Peters, J.F., Henry, C. (2006). Reinforcement learning with approximation spaces.
Fundamenta Informaticae 71 (2-3) , 323-349.

Peters, J.F., Skowron, A., Synak, P., Ramanna, S. (2003). Rough sets and information
granulation. In: Bilgic, T., Baets, D., Kaynak, O. (Eds.), Tenth Int. Fuzzy Systems
Assoc. World Congress IFSA, Instanbul, Turkey, Lecture Notes in Artificial Intelligence
2715, Physica-Verlag, Heidelberg, 370--377.

Peters, J.F., Skowron, A. (2006). Zdzislaw Pawlak: Life and Work, Transactions on
Rough Sets V, 1-24.

J.F. Peters et al., Monocular Vision System that Learn 22

Polkowski, L. (2002). Rough Sets. Mathematical Foundations. Springer-
Verlag,Heidelberg.

Selfridge, O.G. (1984). Some themes and primitives in ill-defined systems. In:
Selfridge, O.G., Rissland, E.L., Arbib, M.A. (Eds.): Adaptive Control of Ill-Defined
Systems. Plenum Press, London.

Skowron, A., Stepaniuk, J. (1995). Generalized approximation spaces. In: Lin,
T.Y.,Wildberger, A.M. (Eds.), Soft Computing, Simulation Councils, San Diego, 18-21.

Skowron, A., Swiniarski, R., Synak, P. (2005). Approximation spaces and information
granulation, Transactions on Rough Sets III, 175-189.

Stepaniuk, J. (1998). Approximation spaces, reducts and representatives. In: Polkowski,
L., Skowron, A.: (Eds.), Rough Sets in Knowledge Discovery 2, Studies in Fuzziness
and Soft Computing 19. Springer-Verlag,Heidelberg, 109-126.

Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An Introduction. The MIT
Press, Cambridge, MA.

Tinbergen, N. (1963). On aims and methods of ethology, Zeitschrift fűr Tierpsychologie
20, 410--433.

Torvalds, L. (2006). Linux Operating System at http://www.linux.org/

Technologic (2006). TSUM User’s Manual at http://www.embeddedarm.com/

Watkins, C.J.C.H. (1989). Learning from Delayed Rewards, Ph.D. Thesis, supervisor:
Richard Young, King’s College, University of Cambridge, UK.

Watkins, C.J.C.H., Dayan, P. (1992). Technical note: Q-learning, Machine Learning, 8,
279-292.

Wawrzyński. P., Pacut, A. (2004). Intensive versus nonintensive actor-critic algorithms
of reinforcement learning. Proc. 7th Int. Conf. on Artificial Intelligence and Soft
Computing, Springer 3070, 934-941.

Wawrzyński. P. (2005). Intensive Reinforcement Learning, Ph.D. dissertation,
supervisor: Andrzej Pacut, Institute of Control and Computational Engineering, Warsaw
University of Technology.

	Text1: In: Hassanien, A.E., Suraj, Z., Slezak, D., Lingras, P., Eds.: Rough Computing. Theories, Technologies, and Applications. Information Science Reference, Hersey, NY (2008) 186-203.

