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Abstract.  This paper introduces a monocular vision system that learns with 
approximation spaces to control the pan and tilt operations of a digital camera that is 
tracking a moving target.    This monocular vision system has been designed to facilitate 
inspection by a line-crawling robot that moves along an electric power transmission line.  
The principal problem considered in this article is how to use various forms of 
reinforcement learning to control movements of a digital camera.   Prior work on the 
solution to this problem was done by Chris Gaskett using neural Q-learning starting in 
1998 and more recently by Gaskett in 2002.   However, recent experiments have revealed 
that both classical target tracking as well as other forms of reinforcement learning control 
outperform Q-learning.  This article considers various forms of the Actor Critic (AC) 
method to solve the camera movement control problem.   Both the conventional AC 
method as well as a modified AC method that has a built-in run-and-twiddle (RT) control 
strategy mechanism, are considered in this article.  The RT mechanism introduced by 
Oliver Selfridge in 1981 is an action control strategy, where an organism continues what 
it has been doing while things are improving (increasing action reward) and twiddles 
(changes its action strategy) when past actions yield diminishing rewards.  In this work, 
RT is governed by measurements (by a critic) of the degree of overlap between past 
behaviour patterns and a behavior pattern template representing a standard are carried out 
within the framework provided by approximation spaces introduced by Zdzisław Pawlak 
during the early 1980s.  This paper considers how to guide reinforcement learning based 
on knowledge of acceptable behavior patterns.   The contribution of this article is an 
introduction to actor critic learning methods that benefit from approximation spaces in 
controlling camera movements during target tracking. 
 
Keywords: Actor critic method, approximation space, monocular vision, reinforcement 
learning, rough sets, run-and-twiddle, target tracking. 
 
 
1  Introduction 
 
The problem considered in this paper is how to guide action choices by an actor that is 
influenced by a critic governed by the evaluation of past actions.  Specifically, one might 
ask how to measure the value of an action relative to what has been learned from 
experience (i.e., from previous patterns of behavior), and how to learn good policies for 
choosing rewarding actions.  The solution to this problem stems from a rough set 
approach to reinforcement learning by cooperating agents.   It is an age-old adage that 
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experience is a good teacher, and one learns from experience.  This is at the heart of 
reinforcement learning, where estimates of the value of an action are based on past 
experience. 
 In reinforcement learning, the choice of an action is based on estimates of the value of 
a state and/or the value of an action in the current state. A swarm learns the best action to 
take in each state by maximizing a reward signal obtained from the environment.  Three 
different forms of actor-critic (AC) method are investigated in this article, namely, a 
conventional AC method and a form of AC method that includes an adaptive learning 
strategy called run—and—twiddle (RT) played out in the context of remembered 
behavior patterns that accumulate in what are known as ethograms.  An ethogram is a 
table of stored behavior patterns (i.e., vectors of measurements associated with behavior 
features) borrowed from ethology by Tinbergen (1963).  Quantitative comparisons of past 
behavior patterns with a template representing “normal” or desirable behavior are carried 
out within the framework an approximation space.  Approximation spaces were 
introduced by Zdzislaw Pawlak (1981) during the early 1980s, elaborated by Orlowska 
(1982), Pawlak (1982), and generalized by Skowron and Stepaniuk (1995) and Stepaniuk 
(1998).  The motivation for considering approximation spaces as an aid to reinforcement 
learning stems from the fact that it becomes possible to derive pattern-based action 
preferences (see, e.g.,  Peters and Henry (2005a, 2005b)). 
 Prior work on the reinforcement learning control was done by Chris Gaskett (2002) 
using neural Q-learning starting in 1998.   However, recent experiments have revealed 
that both classical target tracking as well as other forms of reinforcement learning control 
outperform Q-learning.  Consideration of Gaskett’s particular version of Q-learning and 
neural networks as means of camera movement control is outside the scope of this article.  
This article considers various forms of the Actor Critic (AC) method to solve the camera 
movement control problem. AC methods have been studied extensively (see, e.g., Barto 
(1983), Berenji (2003), Bertsekas (1996), Konda (2000), Rosenstein (2003), Sutton and 
Barto (1998), Watkins and Dayan (1992), Wawrzynski (2005)}).  The conventional actor 
critic method evaluates whether things have gotten better or worse than expected as a 
result of an action-selection in the previous state.  A temporal difference (TD) error term 
δ is computed by the critic to evaluate an action previously selected.  An estimated action 
preference in the current state is then determined by an actor using δ.   Swarm actions are 
generated by a policy that is influenced by action preferences.  In the study of swarm 
behavior of multiagent systems such as systems of cooperating bots, it is helpful to 
consider ethological methods (see, e.g., Tinbergen (1963)), where each proximate cause 
(stimulus) usually has more than one possible response.  Swarm actions with lower TD 
error tend to be favored.   A second form of actor critic method is defined in the context 
of an approximation space (see, e.g., Peters(2004a), Peters (2004b), Peters (2005), Peters 
and Ramanna (2004), Peters and Henry (2006), Peters, Skowron, Synak, Ramanna 
(2003), Skowron and Stepaniuk (1995), Stepaniuk (2002)) and which is an extension of 
recent work with reinforcement comparison (Peters (2005), Peters and Henry (2005a), 
Peters and Henry (2005b), Peters and Henry (2006)).  This form of actor critic method 
utilizes what is known as a reference reward, which is pattern-based and action-specific.   
Each action has its own reference reward which is computed within an approximation 
space that makes it possible to measure the closeness of action-based blocks of equivalent 
behaviors to a standard.   The contribution of this article is an introduction to a form of 
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monocular vision system that learns with approximation spaces used as frameworks for 
pattern-based evaluation of behavior during reinforcement learning. 

This article is organized as follows.  Rough set theory is briefly introduced in Sect. 2.  
The basic idea of an approximation space is presented in Sect. 3.   An approach to 
commanding a monocular vision  system is described in Sect. 4.   A description of a 
testbed for learning experiments with a monocular vision systems is given in Sect. 5.   A 
model for the design of a monocular vision system that learns with approximation spaces 
is given in Sect. 6.   A rough coverage form of actor critic method is presented in Sect. 7.  
Finally, the results of learning by a monocular vision system in a non-noisy and in a 
noisy environment are presented in Sections 8 and 9. 

 
2   Rough Sets: Basic Concepts 
 
This section briefly presents some fundamental concepts in rough set theory resulting 
form the seminal work by Zdzisław Pawlak (for an overview, see, e.g., Peters and 
Skowron (2006, 2007)) and  that provides a foundation for a new approach to 
reinforcement learning by collections of cooperating agents.   The rough set approach 
introduced by Zdzisław Pawlak (1981a, 1981b, 1982) and Pawlak and Skowron (2007a, 
2007b, 2007c) provides, for example, a ground for concluding to what degree a set of 
equivalent objects are covered by a set of objects representing a standard.  The term 
``coverage'' is used relative to the extent that a given set is contained in a standard set.  
An overview of rough set theory and applications is given by Polkowski (2002).  For 
computational reasons, a syntactic representation of knowledge is provided by rough sets 
in the form of data tables.    A data (information) table IS is represented by a pair (U, A), 
where U is a non-empty, finite set of elements and A is a non-empty, finite set of 
attributes (features), where a: U → Va for every a ∈ A and Va is the value set of a.  For 
each B ⊆ A, there is associated an equivalence relation IndIS(B) such that IndIS(B) = {(x, 
x’) ∈ U2 | ∀a ∈ B, a(x)=a(x’)}.  Let U/IndIS(B) denote a partition of U determined by B 
(i.e., U/IndIS(B) denotes the family of all equivalence classes of relation IndIS(B), and let 
B(x) denote a set of B-indiscernible elements containing x.  B(x) is called a block, which 
is in the partition U/IndIS(B).   For X ⊆ U, the sample X can be approximated from 
information contained in B by constructing a B-lower and B-upper approximation 
denoted by B*X and B*X, respectively, where B*X = ∪{ B(x) | B(x) ⊆ X} and B*X  = ∪{ 
B(x) | B(x) ∩ X  ≠ ∅}.  The B-lower approximation B*X is a collection of blocks of 
sample elements that can be classified with full certainty as members of X using the 
knowledge represented by attributes in B.  By contrast, the B-upper approximation B*X is 
a collection of blocks of sample elements representing both certain and possibly uncertain 
knowledge about X.    Whenever B*X is a proper subset of B*X, i.e., B*X ⊂ B*X, the 
sample X has been classified imperfectly, and is considered a rough set. 
 
2   Approximation Spaces 
 
This section gives a brief introduction to approximation spaces.  The basic model for an 
approximation space was introduced by Pawlak (1981a), elaborated by Orlowska (1982) 
and Pawlak (1981b), generalized by Skowron and Stepaniuk (1995), Stepaniuk 1998), 
and applied in a number of ways (see, e.g., Peters (2005), Skowron, Swiniarski, and 



J.F. Peters et al., Monocular Vision System that Learn                                                          4 

Synak (2005), Peters and Henry (2006)). An approximation space serves as a formal 
counterpart of perception or observation (Orlowska (1982)), and provides a framework 
for approximate reasoning about vague concepts.  A generalized approximation space is 
a system GAS = (U, N, ν ) where 
 

• U is a non-empty set of objects, Ρ(U) is the powerset of U, 
• N : U → Ρ(U) is a neighborhood function, 
• ν : Ρ(U) × Ρ(U) → [0, 1] is an overlap function. 

 
A set X ⊆ U is definable in a GAS if, and only if X  is the union of some values of the 
neighborhood function.  In effect, the uncertainty function N defines for every object x a 
set of similarly defined objects.   That is, N defines a neighborhood of every sample 
element x belonging to the universe U (see, e.g., Peters, Skowron, Synak and Ramanna 
(2003)). Specifically, any information system IS = (U, A) defines for any feature set B ⊆ 
A a parameterized approximation space ASB = (U, NB, ν), where NB = B(x), a B-
indiscernibility class in the partition of U.   The overlap function ν computes the degree 
of overlap between two subsets of U.   Let Ρ(U) denote the powerset of U.   We are 
interested in the larger of the two sets (assume that the card(Y) ≥ card(X)) because we 
want to see how well Y ``covers'' X, where Y represents a standard for evaluating sets of 
similar objects.  Standard rough coverage (SRC)  νSRC can be defined as in Eq. 1. 
 

 ( )
,  ,

,
1           ,   .

SRC

X Y
if Y

X Y Y
if Y

ν
⎧ ∩

≠ ∅⎪= ⎨
⎪ =∅⎩

 (1) 

 
In other words, νSRC(X, Y) returns the degree that Y covers X.  In the case where X = Y, 
then νSRC(X, Y) = 1. The minimum coverage value νSRC(X, Y) = 0 is obtained when X  ∩  
Y = ∅ (i.e., X and Y have no elements in common). 

 
3   Environment for Line-Crawling Robot 
 
This section briefly describes the environment to be inspected by a second generation 
Autonomous Line-Crawling robot named ALiCE II, which is a member of a family of 
line-crawling bots designed to inspect electric power transmission towers (see Figs. 1 and 
2).   
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Fig. 1.  ALiCE II Camera                                Fig. 2.   ALiCE II Wireless Card 
 
ALiCE II has been designed to crawl along a wire stretched between a particular class of 
steel towers in the Manitoba Hydro power transmission system.   Sample steel towers in 
the Manitoba hydro system are shown in Figs. 3 and 5.  ALiCE II has been designed to 
crawl along the top, lightning guard wire (called a sky wire) of a tower like the one 
shown in Fig. 5.  A bot suspended from a sky wire stretched between electric power 
transmission towers usually sways from side--to--side as it moves along a wire due to 
buffeting by the wind.  For example, in Manitoba towers usually range from 20 to 50 
metres in height (see, e.g., Fig. 4).   The tallest transmission towers in the Manitoba 
Hydro system are more than 100 metres high to support the long crossing of the Nelson 
River (see Berger, R.P. (1995)).   A broad range of target objects (e.g., insulators, pins, 
bolts, cross braces) would part of the repetoire of objects that ALiCE II would inspect.  A 
sample insultator group is shown in Fig. 6 (notice that the top insulator in Fig. 6 is 
damaged, and needs to be replaced). 
 

      
 
Fig. 3.  Sample Steel Towers                        Fig. 4.   Sample Tower Measurements  
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Fig. 5.  Sample Steel Tower                        Fig. 6.   Sample Insulator Group 
 
Hence, once a bot identifies a target (e.g., insulator or tower cross--brace), target tracking 
is necessary to move a camera to compensate for wind action so that it continues to 
inspect a target object.    
 
4   Commanding 
 
Commanding of ALiCE II is made possible by a wireless network as shown in Fig. 2.   
Specifically, ALiCE II uses the Sierra AirCard 580 Wireless WAN Modem (see, e.g., 
Fig. 2) to establish the connection to the Point-To-Point Protocol (PPP) server over the 
Telus cellular network. PPP has three main components corresponding to RFC 1332 from 
the IETF (2006), a method for sending data over the connection between two nodes, a 
Link Control Protocol (LCP) for maintaining the data link, and a suite of Network 
Control Protocols (NCPs) used to establish and configure different network-layer 
protocols.  Specifically, the NCP protocol used to establish the IP address is the PPP 
Internet Protocol Control Protocol (IPCP) which negotiates the IP address only after the 
data link has been established and tested by the IETF (2006).   What follows is a 
comparison of several types of tracking systems using classical as well as reinforcement 
learning methods. 
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Fig. 7.  ALiCE II Wireless network                        Fig. 8   UML Comm. Dialogue 
 
 
Only the tilt servo is visible in Fig. 2.  A bot suspended from a sky wire stretch between 
electric power transmission towers usually sways from side--to--side as it moves along a 
wire.  Hence, once a bot identifies a target (e.g., insulator or tower cross--brace), target 
tracking is necessary to move a camera so that it continues to inspect a target object.  
What follows is a comparison of several types of tracking systems using classical as well 
as reinforcement learning methods. 
 
5   Monocular Vision System Testbed 
 
This section gives a brief overview of a testbed for the ALiCE II vision system (see Figs. 
1, 2, and 9).   The main processing unit of ALiCE II is the TS-5500 compact full-featured 
PC compatible Single Board Computer based on the AMD Elan520 processor from Elan 
(2006).   The TS-5500 is running the Linux operating system (see Torvalds, L. (2006)) on 
the Elan 0x586 class processor from Technologic (2006) using the Elan microcontroller.  
The TS-5500 is configured to use an Orinoco wireless ethernet card which can be 
programmed as a wireless Access Point (AP), or to connect to an existing AP such as the 
DLink wireless router to send camera images to a base station.    Furthermore, the TS-
5500 is also configured to use a Sierra 555 wireless network card which can connect to 
the internet through a cellular CDMA 1X network (see Fig. 7).   The main constraint 
limiting the possible algorithms which can be used for target tracking is the relatively low 
computational power of the CPU, which is run by a 133 MHz clock. As a result, the TS-
5500 has computational power comparable to a Pentium III processor with an 
approximately 70 MHz  clock.    The TS-5500 is also equipped with a Creative NX Ultra 
WebCam that is mounted on two Hobbico mini servo's.  The servo's provide the camera 
with two degrees of freedom (DOF), because it is mounted on two servos (one servo for 
swinging the camera in a horizontal plane (panning) and a second servo for swinging the 
camera up and down (tilting)) . Each servo's movement can be controlled separately.  
Two additional computers (IBM Thinkpads) are included in the hardware test setup (see 
Fig. 9).  One IBM ThinkPad display's a randomly moving target.   A second Thinkpad 
serves as an Observation PC, which is connected to a server running on the TS-5500.   
This second Thinkpad provides visual feedback and records data for comparison 
purposes. 
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Fig. 9   Testbed for Monocular Vision System 
 

6   Monocular Vision System 
 
The goal of the monocular vision system is to point a camera at a moving target, 
continuously.  To achieve this goal, a fast and efficient image processing technique is 
required to detect the position of a target in an input frame obtained from the webcam.  
The approach utilized in our system is called template matching.  However, before 
template matching can occur, preprocessing of the input image from the camera is 
necessary due to the computational restraints of the TS-5500 (comparable to a Pentium 
III processor with a clock speed ≈ 70 MHz).  Preprocessing consists of both spatially 
decimating the input image as well as transforming the RGB colours into grey levels.  
Spatial decimation is performed in each dimension (both x and y) by taking every nth 
pixel.  In our case, we selected every 4th pixel to transform the smallest available output 
of the webcam from 160 × 120 pixels to 40 × 30 pixels.  Furthermore, conversion into 
grey levels is preformed using Eq. 2. 
 

 ( )
3

R G B
I

+ +
= . (2) 

 
The result of preprocessing is an image that is over 40 times smaller (160 × 120 × 3 = 
57600 bytes compared with 40 × 30 × 1 = 1320 bytes) and still contains sufficient 
information to perform template matching.    Template matching is implemented in this 
system using the Sum of Squared Differences (SSD), which is similar to the approach 
used by Gaskett (2002, 2005).  The idea is to find a match of the template in the input 
image, where it is assumed that the template is the smaller of the two images. The SSD 
model is given in Eq. 3, and is calculated for every position of the template in the input 
image. 
 
 ( ) ( ) 2

( , ) , ,
j k

SSD x y input j k template j k k y= − − −⎡ ⎤⎣ ⎦∑∑ . (3) 
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The result is that Eq. 3 is minimal at the point in which the template occurs in the input 
image.  Next, the coordinates of the minimum are passed on to the target tracking 
algorithms.  Finally, it is important to note that the coordinates of the target refer to the 
centre of the template and will only span a subset of size 28 × 21 of the 40 × 30 image.  
For example, consider Fig. 10, which is a simple example showing in grey all the 
possible coordinates of the centre of a template of size 5 × 5 within an image of size 8 × 
8. 
 

              
 
        Fig. 10.  Image Template                                 Fig. 11   System States 
 
6.1   Reinforcement Learning by Vision System 
 
At the heart of reinforcement learning is the principle of state and state transitions.  The 
learning agent determines the state from observed changes in its environment.  
Furthermore, for each perceived state there is one or more desirable actions that will 
cause a change in the environment and produce a transition into a beneficial state.  
Rewards can then be defined by the perceived desirability of the new state.  States in the 
monocular vision system are based on the coordinates of the target obtained from the 
template matching process and are shown in Fig. 11.  These states are applied to the 28 × 
21 subset described above.  The selection of states in a learning environment is more of 
an art than a science.  The states given in Fig. 11 were arrived at through trial and error.  
The goal was to select areas small enough to allow a few ideal servo movements in each 
state, but not so small as to severely limit the set of possible movements.  Similarly, the 
actions available in each state are based on the maximum distance from the centre of the 
28 × 21 area to the outside edge in any single dimension which is approximately 14 
pixels.  Consequently, the actions available in each state range from 1 - 12 and represent 
increments to the servos position.  Each step increment to the servos provides a rotation 
of 0.9 degrees with an accuracy of ±0.25%.  Furthermore, the two numbers located below 
each state identifier in Fig. 11 represent the direction of the pan and tilt servo's 
respectively.  Finally, reward is calculated using Eq. 4. 
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 1 distancereward
maxdistance

= − , (4) 

 
where distance is calculated using Eq. 5. 
 
 2 2distance x y= + . (5) 
 
Note that x and y represent the coordinates of the target, and the origin is selected as the 
centre of the camera's field of view, thus, there is no need to include the coordinates of 
the centre in the distance calculation.  A result computed using Eq. 4 is a normalized 
reward which equals 1 when the target is located at the centre, and 0 when the target is at 
the outside edge of the field of view. 
 
6.2   Classical Target Tracking 
 
This section presents the classical tracking system implemented in the monocular vision 
system.  The classical target tracking method is a deterministic algorithm and does not 
perform any learning.  Consequently, this algorithm defines its state space separately than 
the reinforcement learning algorithms. In effect, every possible target coordinate can be 
considered a state and the only action available in each state is to move the servo's the 
calculated distance (using Eq. 5) to the target.  In a sense, it selects the right action to take 
in every state.  As a result, this algorithm is important because it demonstrates the desired 
behaviour of the reinforcement learning algorithms and provides a baseline for 
comparison when plotting the results.  The classical target tracking method is provided in 
Alg.  1. 
 
Algorithm 1:  Classical Target Tracking 
Input: States s ∈ S; //1 state for each possible set of target coordinates 
Output: Deterministic policy π(s); //selects the same action in every state. 
while (true) do 
 get current state;  //i.e., coordinates of target 
 pan ← target’s horizontal distance from center of camera view; 
 tilt ← target’s vertical distance from center of camera view; 
 move servos by (pan, tilt); 
end 
 
6.3   Actor-Critic Learning Method 
 
Actor-critic (AC) learning methods are temporal difference (TD) learning methods with a 
separate memory structure to represent policy independent of the value function used.  
The AC method considered in this section is an extension of reinforcement comparison in 
Sutton and Barto (1998).  The estimated value function V(s) is an average of the rewards 
received while in state s.  After each action selection, the critic evaluates the quality of 
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the selected action using δ in Eq. 6, which represents the error (labeled the TD error) 
between successive estimates of the expected value of a state. 
 
 ( ) ( )1 ,t t t tr V s V sδ γ += + −  (6) 
 
where γ is the discount rate, and the value of a state implemented by the critic is given in 
Eq. 7. 
 
 ( ) ( ) ,t t t tV s V s α δ= +  (7) 
 
where αt is the critic's learning rate at time t.  For simplicity, the subscript t is omitted in 
what follows.  If δ > 0, then it can be said that the expected return received from taking 
action at is larger than the expected return in state s t resulting in an increase to action 
preference p(s, a).  Conversely, if δ < 0, the action at produced a return that is worse than 
expected and p(s, a) is decreased (see, e.g., Wawrzynski (2005)).  The run-and-twiddle 
(RT) method introduced by Selfridge (1989) and elaborated by Watkins (1989) is a 
control strategy inspired by behaviour that has been observed in biological organisms 
such as E. Coli and silk moths, where an organism continues its current action until the 
strength of a signal obtained from the environment falls below an acceptable level, and 
then it ``twiddles'' (i.e., works out a new action strategy).  This idea can be applied to the 
value of δ  in Alg. 2.   Whenever δ < 0 occurs too often, it can be said that an agent is 
performing below expectations, and that a ``twiddle" is necessary to improve the current 
situation.  The preferred action a in state s is calculated using Eq. 8. 
 
 ( ) ( ), , ,p s a p s a βδ= +  (8) 
 
where β is the actor's learning rate.  The preferred action p(s, a) is employed by an actor 
to choose actions stochastically using the Gibbs softmax method as shown in Eq. 9. 
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Alg. 2 gives the Actor-Critic method that is an extension of the reinforcement comparison 
method given in Sutton and Barto (1998).  It is assumed that the behaviour represented by 
Alg. 2 is episodic, and is executed continuously. 
 
Algorithm 2:  Actor-Critic Method 
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β. 
Output: Policy π(s, a) //controls selection of action a in state s. 
for (all s ∈ S,  a ∈ A) do 
 p(s, a) ← 0; 
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end 
while (true) do 
 initialize s; 
 for (t = 0; t < Tm; t = t + 1) do 

choose a from s using π(s, a); 
take action a, observe r, s’;  //s’ = st+1 

( ) ( )'r V s V sδ γ= + − ; 

( ) ( )V s V s αδ= + ; 

( ) ( ), ,p s a p s a βδ= + ; 

( )
( )

( )

,

( ) ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

; 

s ← s’; 
end 

end 
 
7  Actor-Critic Method using Rough Coverage 
 
This section presents a modified actor critic method using rough coverage derived within 
the context of an approximation space, which is constructed relative to a decision table 
known as an ethogram.   An ethogram is a decision table where each object in the table 
represents an observed behavior, which has features such as state, action and proximate 
cause inspired by Tinbergen (1963).  This is explained in detail in Peters, Henry and 
Ramanna (2005a), and not repeated, here.  
 
7.1  Average Rough Coverage 
 
This section illustrates how to derive average rough coverage using an ethogram.  During 
a swarm episode, an ethogram is constructed, which provides the basis for an 
approximation space and the derivation of the degree that a block of equivalent 
behaviours is covered by a set of behaviours representing a standard (see, e.g., Peters 
(2005b), Tinbergen (1963), Peters, Henry and Ramanna (2005a).  Let xi, s, PC, a, p(s, a), 
r, d denote ith observed behaviour, current state, proximate cause (Tinberben (1963)), 
possible action in current state, action-preference, reward for an action in previous state, 
and decision (1 = choose action, 0 = reject action), respectively. 
 
Assume, for example, Ba(x) = {y ∈ Ubeh | xIND(B ∪ {a})y}. Let Β = { Ba(x) | x ∈ Ω} 
denote a set of blocks representing actions in a set of sample behaviours Ω.   Let r   
denote average rough coverage as shown in Eq. 10. 
 

 ( )( )( )
*1

1 ,
( )

card
ai

r B x B D
card

νΒ
Β=

=
Β ∑ , (10) 
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where Ba(x) ∈ Β.  Computing the average lower rough coverage value for action blocks 
extracted from an ethogram implicitly measures the extent that past actions have been 
rewarded.  What follows is a simple example of how to set up a lower approximation 
space relative to an ethogram.  The calculations are performed on the feature values 
shown in Table 1. 
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7.2  Rough Coverage Actor Critic Method 
 
The rough coverage actor critic (RCAC) method is one among many forms of the actor 
critic method (see, e.g., Barto (1983), Berenji (2003), Bertsekas and Tsitsiklis (1996), 
Konda (1995), Peters and Henry (2005), Sutton and Barto (1998), Watkins and Dayan 
(1992), Wawrzyński and Pacut (2004), Wawrzyński (2005)).   Common variations 
include additional factors which vary the amount of credit assigned to selected actions.  
This is most commonly seen in calculating preference, p(s, a).  The rough coverage form 
of the Actor-Critic method calculates preference values as shown in Eq. 11. 
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 ( ) ( ) [ ], ,p s a p s a rβ δ← + − , (10) 
 
where r  denotes average rough coverage computed using Eq. 10.    This is reminiscent 
of the idea of a reference reward used during reinforcement comparison.  Recall that 
incremental reinforcement comparison uses an incremental average of all recently 
received rewards as suggested by Sutton and Barto (1998). Intuitively, this means action 
probabilities are now governed by the coverage of an action by a set of equivalent actions 
which represent a standard.  Rough coverage values are defined within a lower 
approximation space.   Alg. 3 is the RCAC learning algorithm used in the monocular 
vision system.  Notice that the only difference between Algorithms 2 and 3 is the addition 
of the reference reward r , which is calculated using rough coverage. 
 
Algorithm 3:  Rough Coverage Actor-Critic Method 
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β. 
Output: Policy π(s, a) //controls selection of action a in state s. 
for (all s ∈ S,  a ∈ A) do 
 p(s, a) ← 0; 

 ( )
( )

( )

,

( ) ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

; 

end 
while (true) do 
 initialize s;  
 for (t = 0; t < Tm; t = t + 1) do 

choose a from s using π(s, a); 
take action a, observe r, s’;  //s’ = st+1 

( ) ( )'r V s V sδ γ= + − ; 

( ) ( )V s V s αδ= + ; 

( ) ( ) [ ], ,p s a p s a rβ δ= + − ; 

( )
( )

( )

,

( ) ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

; 

s ← s’; 
end 
Extract ethogram table ISswarm = (Ubeh, A, d); 
Discretize feature values in ISswarm; 
Compute r  as in Eq. 10 using ISswarm; 

end 
 
7.3  Run-and-Twiddle Actor Critic Method 
 
This section briefly presents a run-and-twiddle (RT) form of AC method in Alg. 4.  Both 
AC methods use preference values to compute action selection probabilities.  However, 
the RT AC method uses aν  (average rough coverage of all the blocks containing action a) 
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to control the rate of learning instead of β in the actor.  A ``twiddle'' entails advancing the 
window of the ethogram (recorded behavior patterns of ecosystem organisms, or, in the 
monocular vision system, behavior patterns of a moving camera) and recalibrating 

a a Aν ∀ ∈ .  This form of twiddling mimics the behaviour of E. Coli bacteria (diminishing 
food supply results in change in movement) or a male silk moth following the perfume 
emitted by a female silk moth (diminishing perfume signal results in a change of the 
search path), which is described by Selfridge (1984).   This idea can be applied to the 
value of δ in Alg. 3.  When δ < 0 occurs too often, then it can be said that the agent is 
performing below expectations, and that a ``twiddle" is necessary to improve the current 
situation.   This is the basic approach underlying Alg. 4. 
 
Algorithm 3:  Rough Coverage Actor-Critic Method 
Input: States s ∈ S, Actions a ∈ A, initialized α, γ, β, th. //th = threshold 
Output: Policy π(s, a) //controls selection of action a in state s. 
for (all s ∈ S,  a ∈ A) do 
 p(s, a) ← 0; 

 ( )
( )

( )

,

( ) ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

; 

end 
while (true) do 
 initialize s;  ν ← 0; 
 for (t = 0; t < Tm; t = t + 1) do 

choose a from s using π(s, a); 
take action a, observe r, s’;  //s’ = st+1 

( ) ( )'r V s V sδ γ= + − ; 

( ) ( )V s V s αδ= + ; 

( ) ( ) [ ], ,p s a p s a rβ δ= + − ; 

( )
( )

( )

,

( ) ,
1

,
p s a

A s p s b
b

es a
e

π
=

=
∑

; 

if (δ < 0) then 
 ν ← ν + 1; 
 if  (ν < th) then 
  Extract ethogram table ISswarm = (Ubeh, A, d); 
 Discretize feature values in ISswarm; 
  Compute a a Aν ∀ ∈ ; 
  ν ← 0; 
 end 
end 
s ← s’; 

 end 
 

end 
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8   Results 
 
The values shown in the plots in Figs. 12(a)-12(d) represent the RMS error between the 
distance of the target from the centre of the field-of-view of each camera image and a 
running average of the distance values.   Preliminary experiments suggest that the RC AC 
method has the poorest performance among (see sample RMS plots in Figs. 12(a), 12(b), 
12(c)).  This is due largely to the fact that the RC AC method must construct a lower 
approximation space at the end of each episode (in contrast to the run and twiddle method 
which only constructs a lower approximation space whenever things appear to be going 
badly).  As a result, the RC AC algorithm hangs due to the limited processing power of 
the TS-5500 and, as a result, the target moves a significant distance from the centre of the 
image.  However, note that the RC AC method performs quite similar to the AC and RT 
AC when observing the normalized totals of the state value function V (see Fig. 13).  
This suggests that the RC AC method is comparable to the other two AC methods in 
terms of converging to an optimal policy.  The RC AC method just does poorly in this 
real-time learning environment because its ``calculate hang" causes the algorithm to lose 
the target.  This can be corrected by implementing the RC AC method on a system with 
more processing power. 
 

    
 
 Fig. 12(a) RC AC vs. RT AC Fig. 12(b) AC, RC AC, classical 
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 Fig. 12(c) RMS for 4 AC methods Fig. 12(d) AC vs. RT AC 
 
 
In preliminary tests with camera control in the monocular vision system, the performance 
of run-and-twiddle (RT AC) method compares favorably the actor critic (AC) method.   
Evidence of this can be seen in the plots in Fig. 12(a) and Fig. 12(d). 
 

 
Fig. 13 Comparison of Normalized Total State Values 

 
Finally, it is important to note that there are two reasons why the classical tracking 
method outperforms the reinforcement learning algorithms in the sample RMS plots in 
Figs. 12(b), 12(c).  At the beginning of the tests, the RL algorithms are performing more 
exploration than greedy selection to determine the best possible action to select in each 
state.  Toward the end of the tests (in later episodes), the RL algorithms consistently 
converge to an optimum policy.   However, even during later episodes, the AC methods 
still perform exploration some of the time.  As a result, the classical method should out- 
perform the RL methods every time.   The RL algorithms are ideally suited to deal with 
noise, which has not be considered in the form of SSD given in  Eq. 3.  In this context, 
the term noise denotes irregular fluctuations in either movements of a target or in the 
environment that influences the quality of camera images.  Noise has a number of sources 
(e.g., camera vibration due to buffeting of the wind, electromagnetic field, and weather 
conditions such has rain, glare from the sun). This is very important because of the noisy 
environment in which the monocular vision system must operate.   In the presence of 
noise, the classical algorithm will not do as well as RL because is has no provision for 
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exploration whenever it is not clear what action should be performed next to find a 
moving target. 
 
9   Learning Experiments in Noisy Environment 
 
To induce noise, the platform that the camera was sitting on (see Fig. 9) was purposely 
placed on a slope rather than a flat surface.  The result of this placement caused the entire 
platform to vibrate when the camera servos were activated.  This provided a degree of 
realism analogous to what would be experienced in a suspended system where any type 
of motion onboard ALiCE II will disturb the system somewhat.  The extra motion was 
intended to provide a more challenging movement of the target as it varied with the step 
sizes, greater motion resulted from larger step sizes.  The resulting motion of the platform 
was a rocking action from back to front only. 

 
Fig. 14  Actor Critic in Noisy Environment 

 
 The illumination for the experiments was kept as uniform as possible with the addition 
of papers surrounding the monitor in an attempt to restrict the available ambient light.  
The experiments were all conducted for 5 minutes each, providing a reasonable time 
period to get an idea of their individual performance.  Overall, this resulted in a 
controlled environment with some extra fluctuations in movement and a slightly more 
difficult target tracking problem than the previous set of experiments. 
 One thing that can readily be seen in Figs. 14-16 is that there is a periodicity in the 
experimental procedure.  This is due to the trajectory that the target takes.  The peaks in 
the cycle correspond to the highest error and this coincides to part of the trajectory where 
the target travels down the right hand side where the field of view can only see part of the 
target and often the camera would lose the target depending on the method in question.  
Note that the performance of the actor critic method (both the convention AC with 
sample RMS values in Fig. 14 and rough coverage AC with RMS values in Figs. 15-16) 
is excellent and it has managed to out-perform the classical tracking method. 
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Fig. 15  Rough Coverage Actor Critic in Noisy Environment 

 

 
Fig. 16  RC AC, AC, Classical Tracking in Noisy Environment 

 
The classical tracking system is being out performed by the AC and RC AC learning 
methods.  The likely explanation for the worsened performance of the classical tracking 
algorithm is that the extra motion from the camera platform and a tendency for the target 
to slip down so that the field of view of the camera includes only part or none of the 
target.  With these new problems, the AC and RC AC learning methods led to improved 
performance, since these reinforcement learning methods were able to explore in a 
somewhat noisy environment to discover a better tracking profile.   Notice that the rough 
coverage form of actor critic method tends to have slightly better performance than the 
conventional AC method (see, for example, Fig. 16). 
 
10   Conclusion 
 
This article introduce a monocular vision system that learns with the help of 
approximations.   This results in a vision system with actions that are influenced by 
patterns of behavior discovered in the context of approximation spaces that have been 
constructed periodically from ethograms.  In a noisy environment, the rough coverage 
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form of actor critic method tends to do better than the classical tracking method.  This is 
in keeping the basic approach introduced in 1981 by Zdzisław Pawlak, who suggested 
classifying objects by means of their features.   In the context of target tracking by a 
monocular vision system, an object an observed behavior of the system.   Classification 
of vision system behavior is made possible by comparing feature values of observed 
system behaviors in different states, which have been captured in ethogram tables.   The 
basic approach in the design of the vision system described in this chapter is derived from 
ethology introduced by Tinbergen in 1963.   The current work on vision systems is part 
of a swarm intelligence approach, where pairs of cameras on separate, cooperating bots 
synchronize to form binocular vision systems that learn.   Future work will consider n-
ocular vision systems that learn with approximation spaces as well as various 
reinforcement learning methods not considered, here. 
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