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Abstract. 1 This article introduces an approach to matching 2D im-
age segments using approximation spaces. The rough set approach in-
troduced by Zdzis law Pawlak provides a ground for concluding to what
degree a particular set of similar image segments is a part of a set of im-
age segments representing a norm or standard. The number of features
(color difference and overlap between segments) typically used to solve
the image segment matching problem is small. This means that there
is not enough information to permit image segment matching with high
accuracy. By contrast, many more features can be used in solving the
image segment matching problem using a combination of evolutionary
and rough set methods. Several different uses of a Darwinian form of
a genetic algorithm (GA) are introduced as a means to partition large
collections of image segments into blocks of similar image segments. Af-
ter filtering, the output of a GA provides a basis for finding matching
segments in the context of an approximation space. A coverage form of
approximation space is presented in this article. Such an approximation
space makes it possible to measure the the extent that a set of image
segments representing a standard covers GA-produced blocks. The con-
tribution of this article is the introduction of an approach to matching
image segments in the context of an approximation space.

Keywords: Approximation space, coverage, genetic algorithm, image,
2D matching, rough sets, image segment.

1 Introduction

Considerable work on the application of rough set methods in image process-
ing has been reported (see, e.g., [37,2,18,51,52]). This paper introduces an ap-
proach to matching image segments in the context of approximation spaces.
The basic model for an approximation space was introduced by Pawlak in
1981 [30], elaborated in [28,32], generalized in [46,47,50], and applied in a num-
ber of ways (see, e.g., [36,38,39,48,11]). An approximation space serves as a
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formal counterpart of perception or observation [28], and provides a frame-
work for approximate reasoning about vague concepts. Image segmentation (see,
e.g.,[43,4,8,13,14,23,29,56,54]), and the image segment matching problem (see,
e.g.,[12,55,42,53]) have been widely studied . The goal of an image-matching
system is to match the segments from the two given images. Color and over-
lap are the two features of image segments that are commonly used to solve
the matching problem. To achieve more accuracy in matching image segments,
a combination of an evolutionary approach to finding sets of similar segments
and approximation spaces are used. The evolutionar approach is realized with
a genetic algorithm (GA) that partitions collections of image segments into sets
of similar image segments. Filtering out GA-produced sets of image segments
with the best match is carried out in the context of an approximation space.
This approach makes it possible to solve the image segment matching problem
with larger sets of features that yield more information about segments. This
approach also results in more accurate matching of image segments. An overview
of the 2D image segment matching method presented in this article is shown in
Fig. 1.

Fig. 1: 2D Image Segment Matching Steps

The matching process begins by forming a composite of a pair of images, then
carrying out color quantization (step 2 in Fig. 1). After that, the quantized image
is segmented, which results in a pair of segmented images. Next, feature values
of image segment pairs are obtained in step 5 in Fig. 1. Then a GA is applied
to a collection of image segment pairs, which are partitioned into sets. After
eliminating non-disjoint sets of segment pairs, the coverage of the remaining
sets of segment pairs is measured relative to a standard (norm), which is a set of
image segment pairs that represent certain knowledge. The end result in step 8 of



Fig. 1 is a collection of best matching pairs of image segments. This is in keeping
with the original view of approximation spaces as counterparts of perception
(in this case, approximations provide a framework for visual perception). The
contribution of this paper is the use of approximation spaces to solve the image
segment matching problem.

This paper is organized as follows. A brief introduction to rough set theory
is given in Sect. 2. Set approximation is presented in Sect. 2.1, and the structure
of generalized approximation spaces is given in Sect. 2.2. The basic structure
of a Darwinian form of genetic algorithm is presented in Sect. 3. Fundamental
terminology for 2D digital images and classical 2D image processing techniques
are presented in Sect. 4 and Sect. 5, respectively. Upper and lower approximation
of sets of image segment pairs is described in Sect. 6 and Sect. 7, respectively.
A detailed presentation of GAs for image processing is given in Sect. 8. An
approach to matching image segments is presented in Sect. 9.

2 Basic Concepts About Rough Sets

This section briefly presents some fundamental concepts in rough set theory
that provide a foundation for the image processing described in this article.
In addition, a brief introduction to approximation spaces is also given, since
approximation spaces are used to solve the 2D matching problem.

2.1 Rough Set Theory

The rough set approach introduced by Zdzis law Pawlak [31,32,33] provides a
ground for concluding to what degree a set image segment pairs representing a
standard cover a set of similar image segment pairs. The term “coverage” is used
relative to the extent that a given set is contained in standard set. An overview of
rough set theory and applications is given in [40,21]. For computational reasons,
a syntactic representation of knowledge is provided by rough sets in the form
of data tables. A data (information) table IS is represented by a pair (U , A),
where U is a non-empty, finite set of elements and A is a non-empty, finite
set of attributes (features), where a : U −→ Va for every a ∈ A. For each
B ⊆ A, there is associated an equivalence relation IndIS(B) such that IndIS(B)
=

{

(x, x′) ∈ U2|∀a ∈ B, a(x) = a(x′)
}

. Let U/IndIS(B) denote a partition of U
determined by B (i.e.,U/IndIS(B) denotes the family of all equivalence classes
of IndIS(B)), and let B(x) denote a set of B-indiscernible elements containing
x. B(x) is called a block, which is in the partition U/IndIS(B). For X ⊆ U , the
sample X can be approximated from information contained in B by constructing
a B-lower and B-upper approximation denoted by B∗X and B∗X, respectively,
where B∗X= ∪{B(x)|B(x) ⊆ X} and B∗X = ∪{B(x)|B(x) ∩ X 6= ∅}. The B-
lower approximation B∗X is a collection of blocks of sample elements that can be
classified with full certainty as members of X using the knowledge represented
by attributes in B. By contrast, the B-upper approximation B∗X is a collection
of blocks of sample elements representing both certain and possibly uncertain



knowledge about X. Whenever B∗X is a proper subset of B∗X, i.e., B∗X ⊂
B∗X, the sample X has been classified imperfectly, and is considered a rough
set.

2.2 Approximation Spaces

This section gives a brief introduction to approximation spaces. The basic model
for an approximation space was introduced by Pawlak in 1981 [30], elaborated
in [28,32], generalized in [46,47,50], and applied in a number of ways (see,
e.g., [36,38,48,11]). An approximation space serves as a formal counterpart of
perception or observation [28], and provides a framework for approximate rea-
soning about vague concepts.

A very detailed introduction to approximation spaces considered in the con-
text of rough sets is presented in [40]. The classical definition of an approxima-
tion space given by Zdzis law Pawlak in [30,32] is represented as a pair (U , Ind),
where the indiscernibility relation Ind is defined on a universe of objects U (see,
e.g., [44]). As a result, any subset X of U has an approximate characterization
in an approximation space. A generalized approximation space was introduced
by Skowron and Stepaniuk in [46,47,50]. A generalized approximation space is
a system GAS = ( U , N , ν ) where

• U is a non-empty set of objects, and P(U) is the powerset of U ,
• N : U → P(U) is a neighborhood function,
• ν : P(U) x P(U) → [0, 1] is an overlap function.

A set X ⊆ U in a GAS if, and only if X is the union of some values of the
neighborhood function. In effect, the uncertainty function N defines for every
object x a set of similarly defined objects [45]. That is, N defines a neighborhood
of every sample element x belonging to the universe U (see, e.g., [35]). Generally,
N can be created by placing constraints on the value sets of attributes (see, e.g.,
[40]) as in ( 1).

y ∈ N(x) ⇔ max
a

{dista(a(x), a(y))} ≤ ε. (1)

where dista is a metric on the value set of a and ε represents a threshold
[40]. Specifically, any information system IS = (U,A) defines for any B ⊆ A
a parameterized approximation space ASB = (U,NB , ν), where NB = B(x), a
B-indiscernibility class in the partition of U [45]. The rough inclusion function ν
computes the degree of overlap between two subsets of U. Let P(U) denote the
powerset of U . The overlap function ν is commonly defined as standard rough
inclusion (SRI) ν : P(U) x P(U) → [0, 1] as defined in (2).

νSRI(X,Y ) =

{

|X∩Y |
|X| , if X 6= ∅,

1 , if X = ∅.
(2)

for any X, Y ⊆ U , where it is understood that the first term is the smaller of the
two sets. The result is that νSRI(X,Y ) represents the proportion of X that is



“included” in Y . However, we are interested in the larger of the two sets (assume
that the card(Y ) ≥ card(X)) because we want to see how well Y “covers” X,
where Y represents a standard for evaluating sets of similar image segments.
Standard rough coverage (SRC) νSRC can be defined as in (3).

νSRC (X,Y ) =

{

|X∩Y |
|Y | , if Y 6= ∅,

1 , if Y = ∅.
(3)

In other words, νSRC (X,Y ) returns the degree that Y covers X. In the case
where X = Y , then νSRC (X,Y ) = 1. The minimum coverage value νSRC(X, Y )
= 0 is obtained when X ∩ Y = ∅ (i.e., X and Y have no elements in common).

3 Genetic Algorithms

Evolution has been characterized as an optimization process [9,19,25]. Darwin
observed “organs of extreme perfection” that have evolved [5]. Genetic algo-
rithms (GAs) belong to a class of evolutionary algorithms introduced by John
Holland in 1975 [19] as a means of studying evolving populations. A GA has
three basic features:

• Representation: each population member has a representation,

• Method of Selection: fitness of each population member is evaluated,

• Method of Variation (Crossover): create new population member by
combining the best features from pairs of highly fit individuals.

Crossover is the fundamental operation used in classical genetic algorithms. Mu-
tation is another method used in GAs to induce variations in the genes of a
chromosome representing a population member. The basic steps in a genetic
algorithm are described as follows. Let P (t) denote an initial population of indi-
vidual structures, each with an initial fitness at time t. Then an iteration begins.
Individuals in P (t) are selected for mating and copied to a mating buffer C(t)
at time step t. Combine individuals in C(t) to form a new mating buffer C ′(t).
Construct a new population Pt+1 from Pt and C ′(t). A desired fitness is used as
a stopping criterion for the iteration in a GA. A representation of a very basic
GA that uses only the crossover operation is given in Alg. 1.

GAs have proven to be useful in searching for matching segments in pairs of
images (see Sect. 8). In preparation for the GA approach to matching images,
some basic terminology (see Sect. 4), rudiments of classical 2D image processing
(see Sect. 5), and image matching using rough set methods (e.g., upper approx-
imation approach in Sect. 6 and lower approximation approach in Sect. 7) are
presented.



1: Basic GA
Input : population Pt, mating pool Ct

Output: evolved population PT at time T
t = 0;
Initialize fitness of members of Pt;
while (Termination condition not satisfied) do

t = t + 1;
Construct mating pool Ct from Pt−1;
Crossover structures in Ct to construct new mating pool C′

t;
Evaluate fitness of individuals in C′

t;
Construct new population Pt from Pt−1 and C′

t;
end

4 Classical 2D Matching Terminology

This section gives an introduction to the basic definitions of technical terms
associated with the classical approach to 2D matching images.

Definition 1. ([12,24,17]) Pixel. A pixel (also referred to as a image element,
picture element, or pel) is an element of a digital image.

Definition 2. ([12]) Color. A color of a pixel is a mapping from a space of all
colors perceived by humans into a finite set of integer numbers grouped into three
components. Each component Red, Green and Blue is represented by a number
from 0 to 255. The total number of different colors represented by a pixel is
16,777,216.

Definition 3. ([12]) Grayscale. Grayscale represents a subset of RGB space,
where all components have equal values, eg. Red = Green = Blue. There are
only 256 such combinations and therefore the grayscale values can be represented
only by one number from the range 0 to 255.

In a digital image, a pixel (short for picture element) is an element that has a
numerical value that represents a grayscale or RGB intensity value. Pixels are
part of what are known as 4-neighborhoods, which provide a basis for identifying
image segments.

Definition 4. ([12,24]) 4-Neighborhood. A pixel p with coordinates (x,y) has
4 neighbors (2 vertical and 2 horizontal neighbors) at coordinates

(x + 1, y) , (x − 1, y) , (x, y + 1) , (x, y − 1)

Definition 5. ([12]) Pixel Membership. Pixel p1 = (x1, y1) belongs to a 4-
neighborhood of pixel p2 = (x2, y2) if and only if exactly one coordinate of p2

differs from the corresponding coordinate of p1. This difference must be equal to
1.



Definition 6. Segment. A segment is a collection of 4-neighborhood connected
pixels, which have the same color.

The process of matching segments described in this article is based on four
parameters described in the section 5.3. These parameters are degree of overlap
between segments, angle of rotation between segments, distance between mean
colors of segments and ratio of cardinalities of both segments. A combination
of a genetic algorithm and rough set-based post processing is used to combine
the information from all four parameters to find the best matches between the
segments.

The problem of finding the match between image segments is not trivial.
The four parameters required for matching image segments sometimes contain
contradictory information about the quality of match. Thus it is impossible to
find proper matches using only one or two of these parameters. The simplest
approach is to find the matches with the smallest distance in the space defined
by the four parameters. This space is denoted by Ω and consists of vectors where
each coordinate value is the difference of some parameter values.

Definition 7. Image Segment Parameter Space. Define space Ω to be a
subspace of R

4 such that

Ω = C × O × A × RC ⊆ R
4.

where C, O, A and RC denote domains of the four parameters’ values, i.e. the
distance between mean colors of segments, degree of overlap between segments,
the angle of rotation between segments and ratio of cardinalities of both segments,
respectively.

The match between two points s, t ∈ Ω can be calculated as a weighted distance
between their parameters’ values.

Definition 8. Distance in Image Segment Parameter Space. The dis-
tance between two vectors s and t such that s, t ∈ Ω is defined to be a distance
between these points in the space Ω weighted by the vector ω = (C,O,A,Rc).

‖s − t‖ω =
√

C · (s1 − t1)2 + O · (s2 − t2)2 + A · (s3 − t3)2 + Rc · (s4 − t4)2.

where s = (s1, s2, s3, s4) and t = (t1, t2, t3, t4).

Here, the weight vector (C,O,A,Rc) denotes the importance of each parameter.
Each such vector and an ideal vector ζ define a measure of the quality of a
match.

Definition 9. Measure of Quality. A measure of quality of a match between
two segments s parametrized by the vector ω = (C,O,A,Rc) and the ideal solu-
tion ξ is given by the distance between points s and ξ in Ω space.

Qω,ξ(s) = ‖s − ξ‖ω .



The problem with the Def. 9 is with defining the ideal solution ξ. The first
two parameters in ω can be defined, where the difference in color C = 0 and
the overlap between two segments O = 1. The remaining two parameters (A
and Rc) in ω can be defined only with respect to some set of matches. It does
not make sense to define the ideal angle of rotation between segments, since it
depends on the images and can be different for any pair of images. Therefore,
the ideal solution can be defined only in the first two positions. In order to make
the remaining two parameters not influential, the ω vector must contain zeros
in the third and fourth position. As a result, the ideal vector is defined as

ζ = (0, 1, 0, 0) , ω = (x, y, 0, 0) .

where x, y ∈ R. Unfortunately, this solution uses only two parameters instead of
four. This can lead to wrong classification as shown in the Fig. 9 or Fig. 12 (◦
denotes the correct match and + denotes the closest match using Qω,ξ measure).

An algorithm which uses all four image segment features should generate a
set of possible good matches. A genetic algorithm (GA) is the example of such
an algorithm. It is possible to design a genetic algorithm (see, e.g., GA Alg. 6
and Alg. 7) which orders image segments. This form of GA can be considered
an image segment matching algorithm, which uses all four features in the im-
age segment feature space. The basis for this form of image segment matching
algorithm is explained in Sect. 5.

5 2D image processing

This section introduces the basic concepts that will be used in a GA-based image
segment matching algorithm. At the 2D image processing level, the information
available about digital images comes from the locations of pixels and their RGB
values. The main goal of 2D image matching is to match all pixels from one
image with corresponding pixels from a second image. This operation is known
as image registration [7], [57], [3].

5.1 Image Segmentation

Quantization has been defined as a process of converting analog signal to digital
signal [10]. A quantizer is defined as a mapping from an uncountably infinite
space of values into a finite set of output levels. In proposed system the source
signal is digital image. Its domain is a finite set (pixels) of integer numbers
(colors). Since colors are represented by three components, namely Red, Green
and Bule, and each component is described by one byte, the input signal is
already finite. Thus, the term quantization is rather used as mapping from a
finite set of numbers to another finite set of numbers, where the cardinality of
the destination set is smaller than the source set. In what follows, the Lloyd
quantization algorithm [10] has been used, see Alg. 2.



2: The Lloyd Algorithm [10] (alg. Qn)

Input: image I, required number of colors n
Output: optimal codebook with n entires Copt

Initialize codebook C1 with n entries randomly, set m = 1
repeat

Based on codebook Cm and using nearest neighbour condition partition the
image I into the quantization cells Rm

Using centroid condition find optimal codebook Cm+1 for cells Rm

Set m = m + 1
until distortion caused by Cm small enough

Set Copt = Cm

A quantization mapping is usually expressed by a codebook. A codebook
is a set of n colors which are used to represent the original image. The map-
ping is performed by replacing the original color with the closest color from the
codebook. The optimal codebook of size n is the set of colors which minimizes
the distortion caused by the codebook. Here, the distortion is calculated as the
squared difference between all components of the original color and its nearest
neighbor from the codebook.

The Lloyd algorithm consists of main two steps, which are repeated until
the distortion caused by the codebook is small enough. The first step is the
partitioning of the input image based on the current codebook. The partitioning
is performed using nearest neighbour condition, e.g. each pixel is assigned to the
cell closest to the color of given pixel. In the second step, a new codebook is
created based on the partitioning from the first step. Each codebook entry is
replaced by a centroid of all colors of pixels from the corresponding cell.

Color quantization is used as an aid in image segmentation. It works only
in the color space. The actual segmentation needs to take into account also a
spacial information, namely the position of pixels. Only the combination of color
and spatial information leads to identification of image segments. The averaging
step fills the gap regarding the use of spatial information. It’s only purpose is
to average information carried out by pixels representing similar colors. The
term similar is in this context precisely defined. Assume, that an original image
denoted by Io is given. First, quantization reducing number of colors to n1

is performed. This step is denoted by formula 4 to obtain a quantized image
denoted by Iqn1

(symbol Q represents the algorithm 2, where Io is the input
image I and n1 is the required number of colors n).

Io

Qn1−→ Iqn1
(4)

As a result of quantization, the quantized image Iqn1
contains only n1 colors.

In the next step, the information from Iqn1
image is used to average the colors

among all pixels, which are connected.
In quantized image, regions of pixels of the same color can be identified.

These regions create segments. To each such segment is assigned a color, which



is an average of all original colors from pixels belonging to this region. This step
is denoted by the formula in (5), see also Alg. 3.

Iqn1

AvIo−→ IAvn1
(5)

The image IAvn1
resulting from (5) has more than n1 colors, where pixels are

grouped into segments. This procedure, namely steps defined in (4) and (5), is
repeated. The number of colors gradually decreases in consecutive iterations so
that the creation of segments can be observed.

3: The Spacial Color Averaging (alg. AvIsn
)

Input: image I
Output: averaged image IA

Mark all pixels from I as not processed

foreach not processed pixel p in I do
Find segment S(p) in I containing pixel p
Assign to each corresponding pixel in IA from S(p) an average color of all
pixels from S(p)
Set all pixels from S(p) as processed

end

The unwanted effect of the algorithm defined this way is that if a segment
is created at some step, there are no chances to change it in consecutive steps.
In other words, the first quantization plays a crucial role in entire process. In
addition, the resulting image still contains a lot of details (even though the
number of colors was reduced). An example of such image processed using seven
iterations described by the succession of mappings in (6), where numbers ni for
i = 1, 2, ..., 62 are 256, 64, 32, 16, 12, 8 and 4 are shown in left side of figure 2.

Isni−1

Qni−→ Iqni

AvIsni−1

−→ IAvni
(6)

To make the entire segmentation process more robust and force the creation of
bigger segments, one extra step for each stage defined by (6) is added. That is,
after the colors are recreated from the original image, a 3 by 3 median filter is
used. This causes almost uniform areas to blur even more and allows edges of
neighboring segments to overlap. As a result, all small details from the image are
lost, and big uniform segments are formed instead. The final formula describing
one step of this iterated algorithm is shown in (7).

Isni−1

Qni−→ Iqni

AvIsni−1

−→ IAvni

M3x3−→ Isni
(7)

2 For i = 0 it is assumed that Isn0
= Io, and after each iteration Isni−1

= IAvni−1
.



Fig. 2: Hydrant image after 7 iterations of (6) (left) and (7) (right)

The M3x3 symbol denotes the median filter which is applied to each pixel
from an input image. The median filter is applied to 3 by 3 neighborhood of
given pixel p(x, y).

M3x3(p) = median{p(x − 1, y − 1), p(x, y − 1), p(x + 1, y − 1), p(x − 1, y),

p(x, y), p(x + 1, y), p(x − 1, y + 1), p(x, y + 1), p(x + 1, y + 1)} (8)

In order to find the median, all pixels are sorted by their color value and the one
in the middle (e.g. at the 5-th place) is chosen.

The right side of figure 2 shows the result of applying seven-step iterative
algorithm (with the same values as in previous example), where each step is
described by (7). There are still many small segments, but comparing with the
corresponding image, where the median filter was not used, their number was
greatly reduced.

Figure 3 shows all steps of applying formula (7). The image in the first row
and leftmost column is the original image. The second image in the first row, is
a result of 8-bit quantization. The third image shows the result of applying 3 by
3 median filter. In the second row, the second iteration is shown. Leftmost image
shows the result of averaging colors in segments from previous step. Middle image
shows result of 5-bit quantization and rightmost image shows result of applying
3 by 3 median filter. The remaining five rows are organized the same way as the
second row.

5.2 Segment Selection

At this stage it is assumed that a digital image is divided into segments. To
increase the chances of identifying the same segments in both images, image
quantization is performed on one large image, which is a composite of two in-
dividual images placed next to the other. After segmentation of the composite
image, the two images in the composite are extracted and the analysis continues
on the separate images. In this step, only some segments from all of the segments



Fig. 3: Quantized images obtained by iterating (7)



created so far are selected. The reason for this is the high number of segments
and their shape. During a procedure to match shapes (described in section 8),
all segments from both images are matched using a GA search for segments,
which satisfy specific criteria. A GA is used because there is a need to work with
the smallest number of segments possible. In addition, the matching algorithm
requires that each segment satisfy some additional properties.

• Lower bound on segment size: avoid too few segments,

• Upper bound on segment size: avoid too many segments,

• Convexity factor: avoid perspective distortion.

Segment size is measured by the number of pixels belonging to a given segment.
A lower bound on segment size is need for the following reasons. First, if there
are not too many pixels, for example less than 10, the pixels can describe only
a small number of distinctive shapes. Matching of such shapes is very difficult,
since such a small number of pixels does not have enough power to uniquely
represent fairly distinctive shape. Second, if all tiny segments are considered,
the search space for matching segments becomes too large. There is a small
chance that these tiny shapes can be uniquely matched.

The explanation for upper bound of segment size is motivated by character-
istics of most images. Usually, images contain large areas of a solid color. For
outdoor images it can be the sky, for indoor images it can be the walls of the
room the image is shot in. These solid areas function as a background for the
given scene. The shape of the background is not unique and it changes due to
perspective transformation. By setting upper bound for segment size all seg-
ments, which can be part of the background are filtered out. For this research,
this limit is set to be 30% of the entire image area.

The last constraint in matching image segments is the convexity factor, which
deals with perspective distortion and filters out shapes, which are difficult to
match. To get a deeper insight into this problem, consider what detected seg-
ments represent and how they differ from image to image. Each image is a 2D
representation of a 3D scene. Similarly, segments which are flat represent 3D
objects. The transformation from 3D space into 2D images flattens objects in a
sense that the information from different parts of an object is represented in a
small area. For example, consider the silhouette of a tripod. Given one segment
representing an entire tripod, each leg is separated from the other legs by some
background pixels (at least at the bottom of the tripod). Depending on the angle
of the camera, some legs can be quite close to each other. The shape of a tripod
changes dramatically with the change of view angle. Attempts to match such
shapes should be avoided. This example shows that objects which are spread in
all three dimensions are separated by some pixels not belonging to the object.
This condition is expressed for flat images in terms of convexity. A segment S
is convex if each point from a straight line connecting any two points in S also
belongs to S [12].



Definition 10. Convexity factor. The convexity factor for a segment S is a
number Cf (S) between 0 and 1 specifying how many lines between all combina-
tions of points from segment S lie entirely inside the segment S.

Cf (S) =
# lines entirely inside S

# all possible lines
.

To filter out segments which are potentially difficult to match, a threshold for a
convexity factor is set and only segments greater than the threshold are selected.
Based on experiments, a threshold of 0.5 has worked well.
Implementation of an algorithm used to calculate a convexity factor from the
definition requires n2 lines to be tested, where n is the number of segment pixels.
In order to speed up the calculations the estimation is performed. The estimation
process is applied on two levels. First, not all combinations of points are checked.
Instead, randomly selected 50 · n pairs of points are chosen. Second, instead of
checking if an entire line is contained within a segment, only checks for 7 points
are performed: middle point of a line, one fourth, three fourths and remaining
multiples of 1/8, namely, 1/8th, 3/8th, 5/8th and 7/8th of the line. In order to
calculate each of these points only as few as two additions and two divisions are
required, which makes this algorithm very fast with a complexity of O(n).

5.3 Feature Generation

In this section, the following four features used for matching segments are elab-
orated.

• degree of overlap between segments,
• angle of rotation between segments,
• distance between mean colors of segments,
• ratio of cardinalities of segment pairs.

This section describes how these features are extracted from two sets of seg-
ments (one set of segments for each image). Sect. 8 elaborates about how the
actual matching is performed using these features. First, recall that segments
are only two dimensional representations of three dimensional objects. Due to
the change of view angle, segments undergo transformation, which alters their
shape. Therefore, simple comparison of shapes is not enough to pair segments.

Before the matching can start, values for the four features for all combinations
of segments from both sets are generated. First two features are generated by
an algorithm which tries to find the biggest overlap between two segments.

Overlap. This parameter measures the overlap between two segments. To
calculate the overlap, two segments are plotted in one image using the same color
(one seg denotes the number of pixels belong to one segment). Pixels which
belong to both segments are denoted by a second color (two seg denotes the
number of pixels belonging to both segments). A measure of the overlap between
a pair of image segments is computed using Eq. 9.



overlap = e
−

|Pone seg|

|Ptwo seg| . (9)

where Pi denotes pixels of i-th color. For |Pone seg| 6= 0 and |Ptwo seg| = 0 it

is assumed that
|Pone seg|
|Ptwo seg|

= ∞. In other words, overlap measures how well one

segment matches the other. The minimum value for overlap is zero. In this case,
the number of pixels belonging to both segments is equal to zero, which means
that the segments do not intersect. A maximum overlap = 1 occurs when both
segments have the same same shape and are located at the same position. In the
case where one seg = 0, e0 = 1. For all other cases, overlap ε(0, 1).

The formula 9 was chosen for two reasons. First, it rescales the range of
overlap values from (0,∞) to (0, 1) interval. A finite interval is easier to handle
than the infinite one. Second, the exponential function compresses the output of

the original
|Pone seg|
|Ptwo seg|

function in the range where Pone seg is much greater than

Ptwo seg (for example, where
|Ptwo seg|
|Pone seg|

< 2.5, see figure 4). The absolute value

of the slope of the overlap function from Eq. 9 is much smaller than the slope

of the
|Pone seg|
|Ptwo seg|

function. This allows for easier comparison of overlap values in

the last stage of overlapping, e.g. when there is much more common pixels than
not matched ones. The smaller slope means that small changes in the ratios of
common/not matched pixels will not cause huge changes of the overlap function.
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Fig. 4: The result of applying exponential into overlap function

Fig. 5 illustrates best overlap. For better visualization, the two segments are
plotted using different colors. The intersection is denoted by the brightest shade
of gray. The lefthand side of Fig. 5 shows both segments with their original
rotation, scale and position. The righthand side of Fig. 5 shows the two seg-
ments with maximum overlap = 0.85. Observe that the area occupied by only
one segment has been significantly decreased in comparison with the original
configuration.



Fig. 5: Preliminary overlap of 2 segments(left), and best overlap (right)

Example 1. The figure 6 shows three sample steps out of many steps performed
during segment matching of the figure 2. These three steps explain the idea
behind the overlap formula introduced in the Eq. 9.

The first image in the figure 6 shows the first stage when the two segments
do not have any pixels in common. The area of the first image is 41083 pixels
and the area of the second one is 36447 pixels. Since there are no common pixels
|Pone seg| = 41083 + 36447 = 77530 and |Ptwo seg| = 0. From the assumption

for |Pone seg| 6= 0 and |Ptwo seg| = 0 the fraction
|Pone seg|
|Ptwo seg|

= ∞. Because of the

formula 9 the overlap is not equal to infinity but a finite number e−∞ = 0. It is
easier to deal with finite numbers than infinite.

The second image shows one of the intermediate steps, where the two segment
have a lot of pixels in common, but also a lot of non overlapping pixels. The
area of the first segment, which does not intersect with the second one is 18219
pixels. The area of the second segment, which dos not intersect with the first
one is 13583 pixels. The area of overlap between these segments is 22864 pixels.
Therefore, |Pone seg| = 18219 + 13583 = 31802 and |Ptwo seg| = 22864. The

overlap is equal to overlap = e
−

|Pone seg|

|Ptwo seg| = e−
31802

22864 = e−1.391 = 0.248.

The third image shows the final result of search for the best overlap. The first
segment, was being translated, rotated and rescaled to maximize the overlap
function. In this position the overlap is maximum. Here, the |Pone seg| = 5540 +

1097 = 6637 and |Ptwo seg| = 35350. Thus, overlap = e−
6637

35350 = e−0.187 = 0.828.

The figure 7 shows the entire process of finding the best overlap for segments
from figure 2. The horizontal axis denotes the iteration number. In each iteration
the position, rotation and scale for the first segment is altered to minimize the

overlap function. In the left part of the figure 7 a ratio
|Pone seg|
|Ptwo seg|

is plotted.

For the first several iterations it takes on high values compared to the end of
matching process. In fact, the ending of the matching process is more important,
since it can detect small differences in segments’ shapes. Therefore, the overlap
function, showed in the right part of the figure 7, is more sensitive to changes
in the second half of the matching process. When two segments do not overlap



Fig. 6: Three sample steps of segment matching.

significantly, the overlap function is close to zero. Only after there is a lot of
overlap between segments, see the middle image from the figure 6, the overlap
function changes more rapidly to emphasis the change in overlap.
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Fig. 7: The process of finding the best overlap for
|Pone seg|
|Ptwo seg|

and overlap para-
meter.

Angle. The angle of rotation is the relative angle which one segment must
be rotated to maximize the overlap between two segments.

Color. The previous two parameters (overlap and angle) dealt with geomet-
rical properties of segments. The color parameter takes into account the color of
a segment. Recall that all pixels from one segment are assigned the mean value
of the colors from the original image. Cdiff (i, j) denotes the distance between the
RGB vectors of colors for a pair of segments. If the i-th segment’s color is denoted
by Ci = (Ri, Gi, Bi) and j-th segment’s color is denoted by Cj = (Rj , Gj , Bj),
then Cdiff (i, j) is defined by Eq. 10.

Cdiff (i, j) = |Ci − Cj | =
√

(Ri − Rj)2 + (Gi − Gj)2 + (Bi − Bj)2. (10)



Ratio of Cardinalities. The RatioofCardinalities parameter is a measure
of the relative size of a pair of segments. Let Si, Sj denote sets of 4-neighborhood
connected pixels for image segment i and j, respectively. Further, let RC denote
a measure of the Ratio of Cardinalities, which is defined by Eq. 11.

RC(i, j) =
|Si|

|Sj |
. (11)

5.4 Exhaustive Feature Matching

The goal of the matching algorithm is to produce a set of segment pairs so
that each segment of a pair belongs to a different images. Given n1 segments
identified in the first image and n2 segments identified in the second image, the
total number of possible pairs is n1 ·n2. From n1 ·n2 matches only small number
corresponds to the correct matches. In order to allow for grouping of several
image segment matches a hypothesis is introduced.

The central notion of the searching algorithm is a hypothesis. A hypothesis it
is a set of image segment matches. A hypothesis is created by assuming that all
four parameters for correctly matched segments are in the same range of values.
In other words, a hypothesis identifies a set of paired segments.

The algorithm searches through the space of matches using hypotheses to
validate each pair. It can be characterized by the average rotation angle between
segments and average ratio of cardinalities of both segments, where the average
is taken with respect to all pairs in the hypothesis. The rotation angle between
segments corresponds to the rotation between images and the ratio of cardinal-
ities corresponds to the difference in distances between object and the camera
for the two views. Thus, a hypothesis contains only pairs of segments, which are
similar to each other with respect to these two conditions. If the difference in
a segment’s shape is not caused by the change of view point, for example, the
difference comes from the fact that non-matching segments are being considered.
In that case, the values for relative rotation and ratio of cardinalities are random
for different pairs. When there is a big difference in these two parameters, it is
not possible to extract segments. On the other hand, if the difference in these
parameters is caused by the change of the view point, it is the same for any two
correctly paired segments. This allows for creation of bigger hypotheses with
higher probability that each contains only correct matches.

The four parameters are denoted by the following tables:

C(i, j): color difference,
O(i, j): overlap,
A(i, j): angle of relative rotation,
RC(i, j): ratio of cardinalities.

where (i, j) denotes i-th segment from the first image and j-th segment from the
second image, respectively. Next, a brief description of how these parameters are
used to evaluate hypotheses, is given.



Ratio of cardinalities. This condition uses the ratio of cardinalities pa-
rameter RC(i, j). If all the pairs from a given hypothesis are correct matches,
then the value of this parameter for each pair should be in the same range. The
minimal and maximal values of RC(i, j) for all pairs from a given hypothesis are
found. The minimum and maximum values should be in a ±RCth range from the
mean value of all rations of cardinality for given hypothesis. If any RC(i, j) value
from given hypothesis is outside the interval [(1−RCth) ∗RC, (1 + RCth) ∗RC]
then a given hypothesis is not valid and is discarded. Otherwise, the next check
is performed.

Angle of rotation. This check utilizes the assumption that for correct
matches the angles of rotation A(i, j) should be similar to each other for all
pairs from a given hypothesis. First, the average angle of all angles is calculated
(except for the pair added last). Then the rotation angle from the pair added
last, is compared to the average angle. If the absolute value of the difference is
greater than some threshold Ath, then the given hypothesis fails the check and
is removed from the system. Otherwise, the next check is performed.

Triangle property. After passing the Ratio of cardinalities and Angle of
rotation checks, a newly added pair in a given hypothesis is checked against
the triangle property. This property assures that a newly added pair preserves
the order in which any three segments are arranged in a triangle. Given three
segments in one image, one can connect the centroids of these segments creating
a triangle. The vertices of this triangle can be ordered in clockwise or counter-
clockwise order. After repeating the same procedure for corresponding segments
in a second image, a second triangle is formed. By checking the order of the
vertices in the second triangle, one can validate the correctness of matches. If
the order of vertices is not the same, this does not mean that the matching in
not correct. The order is preserved between two different views if the triangle
of interest is face up on the same side. The centroids of segments need not lay
on the plane in the real 3D space. This means that while moving from one view
to the second one, the triangle formed by these segments is flipped to the other
side, which reverses the order of the vertices. Nevertheless, this effect is very
hard to obtain. Notice, that the identified segments would have to look the same
from both sides. In most cases, the change in position between the two views is
too small to cause this to happen. Hence, despite this special case, the power of
discriminating bad matches is very useful for this application and is utilized in
this check to decrease the number of hypotheses.

In Alg. 4, the centroid of a segment from a new pair is used to build trian-
gles with all combinations of centroids from the hypothesis. The corresponding
triangles for segments from a second image are built as well. If the order of ver-
tices for any of these corresponding triangles do not match, the hypothesis fails
the check and is removed from the set M . Otherwise, the algorithm finishes the
pruning part and moves to the growing step.

The last part of the matching Alg. 4 identifies the hypothesis, which is the
most likely to contain only correct matches. After applying algorithm 4, the set
M consists of many hypotheses, which satisfy all conditions. From them, only one



4: Matching Segments

Input: tables C(i, j), O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: hypothesis with highest score, sets of matches M

Set the set of all hypotheses M = ∅, and NM = |M |;
for all segments si in the first image do

Create pairs Pi =
⋃

j Pij with all segments Sj from second image;
Remove from Pi all pairs Pij such that
C(i, j) > Cth or O(i, j) < Oth;
Add NP = |Pi| pairs to NM existing hypotheses
producing total of NM + NM · NP + NP hypotheses;
foreach hypothesis Mk ∈ M do

Set RC =
∑

i,j
RC(i,j)
|Mk|

if ∃RC(i,j).RC(i, j) /∈ [(1 − RCth) · RC, (1 + RCth) · RC] or
|A(inew, jnew) − meanP (i,j)∈Mk\P (inew,jnew)A(i, j)| > Ath or
P (inew, jnew) changes triangle order then

Remove Mk from M ;
end

end
end

hypothesis is selected. The measure of correctness is the number of hypotheses
the pair associated with a pair of image segments. Each pair is assigned a number
based on its hypothesis count. Then each hypothesis is assigned a score, which is
the sum of all measures of correctness of all pairs belonging to a given hypothesis.
The hypothesis with the highest score is selected as the output of Alg. 4. The
list of pairs from the selected hypothesis consists of correctly paired segments
from both images.

6 Single Point Standard (Upper Approximation)

The goal of an image-matching system is to match segments from two given im-
ages. Consider, for example, Fig. 8 shows generated segments for the Wearever R©3

box scene. The left image in Fig. 8 contains 68 segments and the right image
contains 51 segments.
Let IS = (U , A) be an information system, where U is a set of pairs of image
segments,and A is a set of image segment attributes. The attributes in A are
defined relative to two segments, namely, degree of overlap, angle of rotation,
distance between mean colors and ratio of cardinalities. Hence, each attribute
value is indexed by two numbers which are the indices of the segments in a pair
x ∈ U . For example, let Si, Sj be sets of image segments for image i and image j,
respectively. Then the subscripting for the image segment pair (si, sj) specifies

3 Trademark of the WearEver Company, http://www.wearever.com



Fig. 8: Generated segments for the Wearever box scene.

that si ∈ Si and sj ∈ Sj . Most ranges of values for the segment attributes have
been adjusted so that they are in the interval [0, 1] or [−1, 1]. A summary of the
segment attributes is given in the table 1.

color range [0, 1]. 0 means identical colors; 1, all channels differ by
the maximal value, e.g. the color value is 1 if one segments
has color (0, 0, 0) in RGB space and the second segment has
color (255, 255, 255) in RGB space (where for each channel
the range of values is from 0 to 255).

overlap range [0, 1]. 0 means no overlap between segments; 1, identical
segments (after translation, rotation and scaling).

angle of
rotation

range [−1, 1]. 0 means no rotation between segments; 1, rota-
tion by 180 degrees, where the sign denotes the direction of
rotation.

RC range [0,∞]. 1 means that both segments have the same area.
For RC ∈ [0, 1] the second segment is greater than the first
one. For RC > 1 the first segment is greater than the second
one.

Table 1: Attributes’ ranges

The angle of rotation for a proper match is unknown. Hence, use of this
attribute does not introduce any new information and is not considered in what
follows, since the standard for this attribute is unknown.

The rough matching is performed relative to the standard set B∗Z, which is
an ideal match of two image segments. In other words, B∗Z is the optimal case



for matching two identical image segments and such case may, but does not have
to exist in the real data.

All segment pairs are ranked based on the information represented by B∗Z.
Different upper approximations can be constructed by changing the equivalence
relation and subsets of attributes used to obtain B∗Z. In the original K-means
clustering algorithm [27], data points are arranged so that they are clustered
around K centers. In this work, an equivalence relation based on the K-means
clustering algorithm has been introduced (see, e.g., [37]), and which we summa-
rize in this section. Briefly, two segments si and sj are in relation IndK(B) if
and only if the values of all attributes for si and sj are associated with the same
cluster. IndK(B) is formally defined in Eq. 12.

IndK(B) =

{

(si, sj) ∈ U2| ∀a ∈ B,
∃l.1 ≤ l ≤ K, a (si) ∈ Cl ∧ a (sj) ∈ Cl

}

. (12)

where Cl denotes the l-th cluster from the set of K clusters. Let the set Z be
defined as in 13.

Z =







x ∈ U × U |
color(x) = 0,
overlap(x) = 1.







(13)

The set Z consists of matched pairs of segments with attribute values specified
in 13. Let B(x) be a block in the partition of U , which is a set of B-indiscernible
pairs of image segments containing x. At this point, there is interest in finding
the upper approximation of Z, which is described in (14).

B∗(Z) = {x | B(x) ∩ Z 6= ∅}. (14)

Alg. 5 gives the steps for ranking segment matches using the upper approx-
imation. To each vote is assigned the same unit weight. Because cases where 2
attributes are used include cases where 1 attribute is used, the effective weights
are greater for cases with multiple attributes used. The table 2 show the effective
voting weights for the algorithm 5.

Figures 9 and 10 show sample voting results for two segments. A circle ◦
denotes the good match made by visual inspection of the two images, and a
cross + denotes the segment which is the closest to the standard Z. That is, for
a given segment i from the first image, a + denotes the segment jmin from the
second image such that

jmin = min
j

|Z − {C(i, j), O(i, j)}|.

Fig. 9 shows how the information is extracted from the generated attributes
using the upper approximation B∗(Z) of the set Z. The cross + shows that
the best match using the distance between the given three parameters is with
segment number 44. However, the correct match is with segment number 18.
The number of votes for the segment number 18 is higher than the number of



5: Matching Segments Using Upper Approximation

Input: set of attributes A = {C(i, j), O(i, j)}
Output: ranking of all segment pairs sij

for (all segments si in the first image) do
for (K=2 to (# of segments in the second image)/2) do

Perform K-means clustering for each attrib. separately
for (each subset B of the set of all attributes A) do

Find B∗(Z)
for (each segment sj from the second image) do

if (sj ∈ B∗(Z)) then
vote for pair sij

end
end

end
end

end

# of attributes in B # of votes effective # of votes

1 1 1

2 1 3

Table 2: Voting table T for algorithm 5

votes for the segment 44. This means that using this algorithm, segment 18 is
more likely to be chosen as the match than segment 44.

The problem which is still to be solved is the high number of segments with
high votes. For example, in Fig. 9, segments 18, 20 and 33 have high votes and
it is not possible to select the best match. Hence, there is interest in considering
the lower approximation B∗(Z) of the set Z.

7 Interval Standard (Lower Approximation)

This section presents an extension of the method described in Sect. 6. The lower
approximation B∗(Z) is derived relative to Z, which is defined as the approxi-
mation of a set of image segment pairs that constitute a perfect match. However,
this is a bit unrealistic and not flexible. To allow for some tolerance in conclud-
ing that an image segment pair constitutes a match, an interval interpretation of
the attribute values of image segment pairs is introduced. That is, the attribute
values associated with image segment pairs in the set Z are parametrized by a
parameter δ, which denotes the optimal value for each attribute. In effect, each
attribute value of each image segment pair x ∈ Z belongs to a small interval
containing δ. Using this approach, Z is defined as in Eq. 15.



Fig. 9: Voting results. ◦ good match, + the closest match.

Fig. 10: Voting results: ◦ good match, + the closest match.



Z =







x ∈ U × U |
color(x) ∈ (0, δ) ,
overlap(x) ∈ (1 − δ, 1) .







. (15)

where the attribute values for each image segment pair x in Z belong to intervals
for color and overlap specified in Eq. 15.

For experiments, the parameter δ was set to 0.1. The results for different
δ values did not differ significantly from the ones shown here. The formula for
calculating the lower approximation is given in 16.

B∗(Z) = {x | B(x) ⊆ Z}. (16)

The new matching algorithm is essentially the same as Alg. 5, except that a
Find B∗(Z) operation has been added.

As can be seen from Fig. 12, the best results are obtained for the ‘single point
standard’. The notation circle ◦ in Fig. 12 denotes a good match made by visual
inspection of the two images, and a cross + indicates a segment pair which is
the closest to Z. The ‘interval standard’ method fails to yield one segment pair
as a good match. Instead, it yields several segments with equally high votes.
This means that this method cannot be used by itself as the deciding method
for solving the matching problem. However, the interval standard method can
be used as an aid, since the correct solution is usually among the segment pairs
with the highest votes.

Example 2. The figure 11 shows two images used to explain in more detail the
idea of the standard Z. Left part of the figure 11 shows the first image. It consists
of twelve segments created from the letters of a word ”Matching”. Notice, there
are only eight letters in a word ”Matching”. The remaining four segments are:
white area in the letter ’a’ (denoted by a.), a dot in ’i’ letter (denoted by i.),
upper white area in the letter ’g’ (denoted by g.) and lower white area in the
letter ’g’ (denoted by g.).

The right part of the image 11 shows the same letters as the first image.
Only, for the second image, they underwent geometrical transformations: image
warping, rescaling and rotation. In addition, brightness of each letter from the
second image was randomly altered.

In order to construct the standard Z the color difference and overlap para-
meters were calculated. The color difference values are shown in the table 3 and
overlap values are shown in the table 4. Values corresponding to proper matches
are denoted by bold face font in both tables. For example, the pair of segments
’M’ from both images is characterized by the pair (0.070,0.614), where the first
number denotes the color difference and the second number denotes the overlap
value for these two segments.

The creation of standard Z for given parameter δ is straight forward. From
the equation 15, standard is a set of all segment pairs for which the color dif-
ference and the overlap values are in some interval, e.g. color difference is less
than δ and overlap is greater than 1 − δ. For example, for δ = 0.1 there are



Fig. 11: Segments for example 2

Table 3: Color table

M a t c h i i. n g a. g. g.

M 0.070 0.574 0.671 0.066 0.572 0.532 0.532 0.639 0.068 0.784 0.784 0.784
a 0.579 0.064 0.707 0.549 0.606 0.492 0.492 0.213 0.647 0.778 0.778 0.778
t 0.654 0.693 0.048 0.595 0.091 0.875 0.875 0.528 0.657 0.773 0.773 0.773
c 0.118 0.539 0.628 0.011 0.532 0.545 0.545 0.596 0.126 0.792 0.792 0.792
h 0.571 0.608 0.179 0.531 0.045 0.753 0.753 0.449 0.585 0.647 0.647 0.647
i 0.481 0.452 0.898 0.564 0.760 0.069 0.069 0.554 0.558 0.483 0.483 0.483
i. 0.482 0.454 0.894 0.565 0.756 0.075 0.075 0.552 0.559 0.477 0.477 0.477
n 0.649 0.305 0.556 0.636 0.449 0.551 0.551 0.108 0.710 0.579 0.579 0.579
g. 0.082 0.617 0.679 0.171 0.573 0.507 0.507 0.666 0.078 0.705 0.705 0.705
a. 0.719 0.727 0.800 0.790 0.679 0.542 0.542 0.657 0.768 0.014 0.014 0.014
g. 0.715 0.726 0.799 0.786 0.677 0.540 0.540 0.657 0.764 0.017 0.017 0.017
g. 0.718 0.728 0.800 0.790 0.679 0.542 0.542 0.659 0.767 0.014 0.014 0.014

Table 4: Overlap table

M a t c h i i. n g a. g. g.

M 0.614 0.084 0.019 0.058 0.372 0.040 0.001 0.242 0.210 0.001 0.001 0.002
a 0.367 0.383 0.143 0.206 0.221 0.165 0.010 0.497 0.276 0.003 0.005 0.010
t 0.141 0.330 0.832 0.292 0.249 0.001 0.001 0.151 0.153 0.016 0.142 0.203
c 0.181 0.266 0.202 0.722 0.228 0.250 0.043 0.316 0.220 0.069 0.081 0.121
h 0.052 0.411 0.331 0.139 0.714 0.247 0.002 0.549 0.251 0.008 0.004 0.021
i 0.301 0.275 0.001 0.306 0.134 0.716 0.133 0.230 0.166 0.267 0.508 0.423
i. 0.003 0.256 0.001 0.113 0.032 0.216 0.913 0.033 0.018 0.421 0.675 0.807
n 0.333 0.390 0.116 0.368 0.239 0.149 0.012 0.847 0.280 0.001 0.002 0.024
g. 0.234 0.268 0.118 0.109 0.155 0.115 0.001 0.091 0.713 0.001 0.001 0.010
a. 0.001 0.045 0.320 0.102 0.028 0.185 0.726 0.001 0.007 0.861 0.818 0.721
g. 0.001 0.060 0.152 0.054 0.015 0.274 0.730 0.003 0.002 0.675 0.931 0.873
g. 0.001 0.108 0.251 0.130 0.042 0.425 0.618 0.337 0.039 0.726 0.865 0.860



only two segments satisfying the above requirements. These pairs are (i.,i.) for
which color(i.,i.)= 0.075 < 0.1, overlap(i.,i.)= 0.913 > 0.9, and (g.,g.) for which
color(g.,g.)= 0.017 < 0.1, overlap(g.,g.)= 0.931 > 0.9, see tables 3 and 4. There-
fore, for δ = 0.1 the standard Z = {(i.,i.), (g.,g.)}. This means that the segments
i. and g. are the most similar segments in both images. The matching of the re-
maining segments is performed relative to this match.

Table 5: Z table vs. δ parameter

δ Z (color, overlap)

0.05 ∅
0.1 {(i.,i.), (g.,g.)} {(0.075,0.913), (0.017,0.931)}
0.15 {(i.,i.), (a.,a.), (g.,g.), {(0.075,0.913), (0.014,0.861), (0.017,0.931),

(g.,g
.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}

0.2 {(t,t), (i.,i.), (n,n), {(0.048,0.832), (0.075,0.913), (0.108,0.847),
(a.,a.), (a.,g.), (g.,g.), (0.014,0.861), (0.014,0.818), (0.017,0.931),
(g.,g

.), (g.,g.), (g.,g.)} (0.014,0.865), (0.017,0.873), (0.014,0.860)}
0.3 {(t,t), (c,c), (h,h), {(0.048,0.832), (0.011,0.722), (0.045,0.714),

(i,i), (i.,i.), (n,n), (0.069,0.716), (0.075,0.913), (0.108,0.847),
(g,g), (a.,a.), (g.,a.), (0.078,0.713), (0.014,0.861), (0.014,0.726),
(a.,g.), (g.,g.), (g.,g

.), (0.014,0.818), (0.017,0.931), (0.014,0.865),
(a.,g.), (g.,g.), (g.,g.)} (0.014,0.721), (0.017,0.873), (0.014,0.860)}

The table 5 shows several sets Z for different values of parameter δ. The
bigger the parameter δ the more matches are included in the standard Z. This
is the core of the rough set approach, where the definition of an ’ideal match’ is
not fixed, but can be adjusted based on available information and data. Notice,
for smaller δ values the standard Z is an empty set, which means that the
identical segments are not present in both images. On the other hand, bigger
δ values produce a standard, which contains incorrect matches. Nevertheless,
at this stage, the matching correctness is not crucial, in fact, segments (g.,g

.)
form better match than (g.,g.), since (color, overlap) values for the first pair
are (0.014, 0.865) and for the second pair (0.014, 0.860). The correctness of this
match cannot be determined using only color difference and overlap values, but
other parameters must be used as well.

As shown in this example, the δ parameter allows for adjusting how strict the
definition of an ideal match is. This was not possible in the Upper Approximation
based approach, see equation 13.

8 Genetic Approach for Matching

The genetic approach for segment matching creates a framework for the search
based on any set of features extracted from images. Features can be extracted
using segments, lines or Harris corners [15]. In addition, because the genetic



Fig. 12: Voting results: ‘interval standard’ (left) and ‘single point standard’
(right).



algorithm is used, the search space can be very large. This allows for selection
of matches from large set of pixels from both images.

The central notion of a classical, Darwinian form of genetic algorithm is the
chromosome. It consists of genes. A gene represents a pair of matched features for
two images. There are many types of features that can be used in the algorithm.
More abstract forms (called also shapes) are source of features. Three methods of
deriving features have been considered so far, and are summarized in the table 6.
One of the functions of the gene is to hide the differences between the features for
the genetic algorithm. The genetic algorithm does not discern between the genes
and processes them the same way. The set of features creates a chromosome (or
hypothesis as described in Sect. 5.4). A genetic algorithm tries to select the best
hypothesis, which consists of only correct matches. The term hypothesis is used
in the context of matching features from the images, since a hypothesis identifies
possible matches of features. The term chromosome is used in the context of the
genetic algorithm, since the chromosome is the member of the population.

Abstract Form Complexity Features

point simple cross-correlation

line moderate cross-correlation, angle, RC

segment complex color, overlap, angle, RC

Table 6: Features and their corresponding abstract forms.

The overview of the structures used in the algorithm is given in the figure 13.
Three kinds of feature generators are denoted by three paths at the bottom of
the image. The tasks of image processing blocks are generation of points, lines
and segments. After this step, the identified shapes are passed to the feature ex-
traction blocks. These blocks use selected shapes to generate features. The term
‘feature’ needs more explanation. Usually, the term feature means a mapping
of observed object in the universe to an attribute value. In this case, a feature
is not an attribute or aspect of a single image segment or pixel, but a result of
a comparison of a pair of image segments or pixels. In the case of the color of
a pair of image segments, a feature is the difference in the average colors of the
two segments. In general, a feature F(x, y) for a pair of observed objects x and
y is a scalar from some pre-defined range [a, b] as defined in (17).

F : (x, y) −→ c ∈ R a ≤ c ≤ b. (17)

In addition, there is one point κ ∈ [a, b], which denotes the value for which a
pair of objects are not discernible with respect to the given feature. For example,
for colors of image segment pairs, the possible range of color differences can be
defined as [0, 1], where 0 denotes two identical colors and 1 denotes the maximum
difference of colors allowed by an image’s color depth. In this case, κ = 0.



Fig. 13: The overview of matching algorithm.

The fact that the features are calculated as the difference between attributes
for pairs of digital images is denoted by the ‘fusion’ box in the figure 13. The
procedure represented by the fusion box combines the information from pairs of
images to generate feature values.

Next, the description of the chromosome is given (see figure 14). A gene
represents a match between two shapes from a pair of images. This is indicated
by a pair of indices of two corresponding shapes. Genes in each chromosome
are divided into three blocks: point block, line block and segment block. Each
block contains indices of matched shapes of a given type, namely point, line or
segment.

The number of genes in each group can be zero. The genetic algorithm does
not discern between different types of genes as long as both halves of the gene
are of the same type. The order of the chromosome is the sum of lengths of all
blocks, e.g. np + nl + ns.

The current version of the genetic algorithm has only image segment genes
implemented. Therefore, point and line blocks are always empty. The creation of
the genes is constrained by the rules, which assure that only reasonable matches
are considered. These rules control the color difference, overlap and the ratio
of cardinalities. Let color−th, overlap−th, rc−th denote the maximum values
allowed for the color difference, overlap and the ratio of cardinalities for a pair
of image segments, respectively. For the ratio of cardinalities parameter the
threshold denotes the the maximum difference of the areas of a pair of segments,



Fig. 14: The chromosome. Each block contains indices of matched shapes.

e.g. for rc−th = 2 it means that 1
2 ≤ RC ≤ 2. Table 7 gives constraints for

feature values during the creation of genes.

Feature Condition

Color ≤ color th

Overlap ≥ overlap th

RC ≥ 1/rc th ∧ ≤ rc th

Table 7: Rules for creating genes.

Let Ch denote a chromosome from a population evaluated by a genetic algo-
rithm. Further, let ang, ang, rc th, ang th denote angle of rotation, average an-
gle of rotation, ratio of cardianlities threshold, and angle threshold, respectively.
The RC(ik, jk) parameter was defined in Eq. 11 and the RC symbol denotes
the mean value of ratios of cardinalities for all genes from given chromosome.
The subscript k iterates from 1 to the number of genes in given chromosome
such that subscripts (ik, jk) iterate through all image segments contained in the
chromosome, see figure 14. The fitness of Ch is determined using Eq. 18.

Fitness(Ch) =















1 ∀k (1 − RCth) · RC ≤ RC(ik, jk) ≤ (1 + RCth) · RC
∧ maxk |ang(ik, jk) − ang| < ang th
∧ passes the triangle check,

0 otherwise.
(18)

The fitness function given in Eq. 18 is maximally selective, e.g. it causes
chromosomes to survive and reproduce with equal probability or die and be
removed from the population.
Alg. 6 is based on the standard procedure for genetic algorithms described in [6].
The only genetic operator implemented so far is the crossover operation. New



6: Genetic Algorithm

Input: tables C(i, j), O(i, j), A(i, j), RC(i, j), centroids of all segments
Output: ordered set of matches O

Create the set of genes S using rules from table 7
while (stop condition is not true) do

Apply genetic operator: crossover
Evaluate fitness function
Remove chromosomes with fitness function below some threshold

end
Order all genes into set O using GA based ordering algorithm, see alg. 7

genes are not created by Alg. 6. All unique genes appearing in the population
are created before evolutionary iteration starts. The crossover operation cannot
split halfs of existing genes. Two chromosomes of lengths n1 and n2 can only
be concatenated to form a new chromosome of a length n1 + n2, which contains
all genes from the original two chromosomes. The repetition of left and right
handed parts of the gene within a chromosome is not allowed either. This means
that only two chromosomes with different sets of left and right handed parts can
mate and create an offspring.

After implementing Alg. 6, all genes are scored using the Alg 7. The sym-
bol γ denotes partitioning introduced by the chromosomes. Each chromosome
forms a block of genes. Genes within a block (a chromosome) are considered to
be indiscernible. Since, different chromosomes can contain the same genes this
partitioning forms a tolerance relation.

The genes are sorted by the number of chromosomes they appear into. The
chromosome which contains the most common genes is selected as the output of
the simulation. All sorted genes are returned in the set O.

7: GA based ordering

Input: set of genes G, partitioning of this set γ
Output: ordered set of matches O

Create the set of counters for all genes in the set G
Set initial values of these counters to 0
for (all blocks from γ) do

for (all genes si from given block) do
Increase counter of gene si by 1

end
end
Return sorted in descending order list of genes O = sort(G)



9 2D Matching with Approximation Spaces

This section considers an approach to processing the output from the genetic
algorithm 6 within the context of an approximation space. Let S be a set of n
best genes returned by Alg. 6. Let B(x) be a block of genes equivalent to x, and
let B∗S be the lower approximation of the set S. There is advantage in using
B∗S as a standard, and measuring how well B∗S “covers” each block. In this
way, it is possible to select a block covered to the greatest extent by the standard,
and which represents the set of best image segment matches. The steps of this
approach to finding the set of best matches are given in Alg. 8.

8: The algorithm for selecting best matches using rough coverage

Input: set of all possible matches
Output: ordered set of matches

Run the GA to get the partitioning of the genes
Create and initialize to 0 the rough coverage weights for each gene
Create a set S of top n genes
for (each block B(xi)) do

Evaluate rough inclusion value

Rcover(B(xi), S) =
|B(xi) ∩ B∗S|

|B∗S|

Increase weights of genes from B(xi) by Rcover(B(xi), S)
end

The results are shown in the plot in the figure 15. In the plot from the figure
15, n = 114 is called the pool of genes. The most important thing to observe
in this plot is that rough coverage does better between genes numbers 37 and
49. This means Alg. 8 sorts the genes better than the pure GA represented in
Alg. 6.

9.1 Tolerance Relation vs. Equivalence Relation

The output of the GA in Alg. 6 is a set of hypotheses. In other words, Alg. 6
produces sets containing pairs of image segments. Each such set (hypothesis)
corresponds to one chromosome. The crossover operation in Alg. 6 produces a
chromosome, which is a copy of two input chromosomes. Therefore, the resulting
partitioning is a tolerance relation (see property 1). Alg. 9 converts the tolerance
relation induced by Alg. 6 into an equivalence relation. This is done by removing
the overlapping sets in the partition created by Alg. 6.

Observe that Alg. 9 searches for the chromosomes with the highest weight
(starting from the longest chromosomes) and removes all chromosomes which
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Fig. 15: Rough coverage vs. % correct matches with 2,000,000 chromosomes.

have non-empty intersection with a given chromosome. The resulting partition-
ing of all genes C forms an equivalence relation (see theorem 2).

The down side to converting the tolerance relation induced by Alg. 6 into an
equivalence relation is the reduction of the number of blocks. For example, in
case of the system consisting of ≈818,000 chromosomes with 4920 genes where
the longest chromosome has length 29, the conversion to equivalence relation
decreases the number of blocks with cardinality greater than one to 1229. This
means that the number of blocks after the conversion is less than 0.16% of the
number of tolerance relation blocks.

Experimental results show that the equivalence relation does not have enough
power to improve the ordering produced by the GA in Alg. 6. This is due to the
small number of blocks in the equivalence relation. Fig. 16 shows sample results
for 818,000 chromosomes.

GA 818,000 chromosomes

0.35

0.45

0.55

0.65

0.75

0.85

0.95

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169 175 181 187 193 199

Number of genes

R
a
ti

o
 o

f 
c
o

rr
e
c
t 

m
a
tc

h
e
s

GA sorted weights

Rough inclusion (pool 117)

Lower approx. (pool 117)

Acc.Approx. 1K iterations, pool 117

Rough inclusion (pool 4920), eq. rel

Fig. 16: Ratio of correct matches for tolerance and equivalence relation



9: Conversion of tolerance rel. to equivalence relation

Input: set of genes G, set of chromosomes Ch, partitioning γ of set G
expressed by sets ChI ∈ Ch

Output: partitioning Ind of set G, which is an equivalence relation

Order all genes using GA based ordering, see alg. 71

Set Ind to ∅2

/* starting from the longest chromosomes */
for (all chromosomes’ lengths I) do44

for (all chromosomes ChI of the length I) do5

Find the chromosome chmax ∈ ChI with the highest score and6

move it to Ind
for (all chromosomes chk in Ch) do7

if (chk ∩ chmax 6= ∅) then8

Remove chk from Ch1010

end11

end12

end13

end14

Definition 11. Tolerance Relation (from [21])
A binary relation τ ⊆ X × X is called a tolerance relation if and only if τ is

1. reflexive, an object is in relation with itself xτx,
2. symmetric, if xτy then yτx.

Definition 12. Equivalence Relation (from [21])
A binary relation R ⊆ X × X is called an equivalence relation if and only if
R is a tolerance relation and is

1. transitive, if xRy and yRz then xRz.

Property 1 The crossover operator in the GA in Alg 6 produces a partitioning
of the set of genes G, such that created blocks have non-empty intersection.

Proof. Let Ch denote the set of all chromosomes chk such that Ch =
⋃

k chk. If
L denotes the longest chromosome in Ch, then all chromosomes can be grouped
into subsets of Ch, namely ChL, ChL−1, . . . , ChI , . . . , Ch1, where ChI ⊆ Ch and
index I denotes the length of the chromosome4. The crossover operator crossov
can be defined as follows:

crossov : ChI × ChJ → ChK , chk = crossov(chi, chj)

where chi ∈ ChI , chj ∈ ChJ , chk ∈ ChK , K = I + J , K ≥ 2 and I, J ≥ 1.

4 The index written with a small letter by a chromosome ch does not indicate the
length of the chromosome.



After applying the crossover operator, the chromosomes chi and chj are not
removed from the set of all chromosomes Ch, i.e. chi, chj , chk ∈ Ch. This means
that a gene gt which belongs originally to chi belongs also to the chromosome
chk.

Now, for any chromosome chk of order greater than 1.

∀gt∈chk
∃l 6= k | gt ∈ chl

From the fact that the order of a chromosome chk is greater than 1, we have
chk = crossov(chi, chj). What follows is that l = i or l = j.

�

The above proof shows that for each chromosome chk of order K > 1 there
exists a chromosome of order less than K, which is a part of chk. Therefore, for
each such chromosome chk there exist at least two chromosomes that have non
empty intersection with it.

Theorem 1. The GA in Alg 6 produces a partitioning of the set of all genes,
which corresponds to the tolerance relation γ (and not an equivalence relation).

Proof. Chromosomes chk produced by the GA consist of the genes from the set
G. Each chromosome can be considered as a block of indistinguishable genes.
Thus, they create a partitioning of the set G. This partitioning corresponds to
the tolerance relation if the relation determined by this partitioning is reflexive
and symmetric. The relation γ is based on the fact that two elements belong to
the same chromosome, i.e.

xγy iff ∃i | x ∈ chi and y ∈ chi

where chi ∈ Ch. From the definition, belonging to a set is symmetric and reflex-
ive.

The partitioning Ch covers all genes G because Ch includes the set of chro-
mosomes of order one Ch1, which is identical with the set of all genes G, i.e.
Ch1 = G, Ch1 ∈ Ch therefore G ⊆ Ch.

The relation γ is not an equivalence relation because chromosomes ch may
have non-empty intersections (from property 1). As the result, the transitivity
constraint is not satisfied. If for k 6= l holds x ∈ chk, y ∈ chk, y ∈ chl, z ∈ chl

and x /∈ chl and z /∈ chk then xγy, yγz and x is not in relation with z.

�

Theorem 2. Alg. 9 converts the partition γ produced by the GA in Alg. 6 into
a partition Ind which is an equivalence relation.

Proof. The partitioning Ind is a subset of the partition γ. Thus, there are two
conditions that must be satisfied for the partition Ind to be an equivalence
relation:



– all blocks from Ind must have empty intersection:

The step 9 from algorithm 9 assures that all subsets from Ind have empty
intersection.

– all blocks from Ind must cover the entire space of genes G:

The step 9 from algorithm 9 starts with the longest chromosomes and ends
with the shortest ChL, ChL−1, . . . , ChI , . . . , Ch1, where L is the length of the
longest chromosome in the system. The shortest chromosome is of length
one, i.e. it is a gene. Notice, none of the genes which are not included in
the set Ind will be removed from the set Ch1 because their intersection with
chmax is empty. This means that in the last iteration of loop 9 all missing
genes will be added to the set Ind.

�

9.2 Classical vs. Rough Matching Methods

Classical 2D image segment matching method is usually limited to two features,
namely, color difference and the overlap between two segments (see, e.g., [12,55,24]).
This is a severe limitation because these two features do not yield enough infor-
mation to permit accurate image segment matching. By contrast, in designing
genes in chromosomes used in evolutionary 2D segment matching, the number
of features associated with a gene can be quite large.

In this study, four parameters for each gene and 2,000,000 chromosomes have
been used. Similarly, using the rough coverage methods, the number of features
(parameters) associated with an image segment can be large. In this study,
four features are used, namely, the distance between mean colors of segments,
degree of overlap between segments, the angle of rotation between segments
and ratio of cardinalities of both segments. In addition, rough coverage values
computed within the context of an approximation space, represent a comparison
between each of the blocks containing similar pairs of image segments and a set
representing a norm (e.g., B∗S). In effect, the rough coverage matching method
yields better results because it uses more information about the image segments
being compared. This is one way to explain the plots in Fig. 15.
In Fig. 17, the left upper corner of the plot from Fig. 15 is shown. Fig. 17 il-
lustrates the advantage of the rough coverage approach compared to the other
methods. Recall, that the problem of segment matching is considered in the
context of 2D to 3D conversion. The 2D to 3D conversion algorithm takes as
an input paired pixels, which are generated from paired segments. Any mis-
match at the segment matching stage propagates to the pixel matching stage
and finally into 2D to 3D conversion. Therefore, a crucial requirement for image
segment matching is to generate as little wrong matches as possible. Fig. 17
shows that the rough coverage approach yields the biggest number of correct
matches, i.e. the first wrong match occurs after finding 47 good matches. For
the weights generated by the GA used in in Alg. 8, the first mismatch occurs
after only 36 correct matches. Hence, rough coverage greatly reduces the number
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of mismatches, which improves the robustness of the overall 2D to 3D conversion
process.

10 Conclusion

An approach to using a combination of genetic algorithms and approximation
spaces in solving the image segment matching problem is given in this paper.
Approximation spaces are used as a form of visual perception of pairs of images,
which is step towards 2D image classification in the case where one of the paired
images plays the role of a reference image for matching purposes.
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