ALICE II:
PIC Microcontroller for aLine-Crawling Robot
Designed for Manitoba Hydro

Macig Borkowski
Christopher Henry
Dan Lockery
Peter Schilling
James F. Peters, Supervisor
{maciey,dlockery,chenry,jfpeters} @ee.umanitoba.ca
University of Manitoba
Computational Intelligence Laboratory
ENGR E3-576 Engineering & Information Technology Complex
75A Chancellor’s Circle
Winnipeg, Manitoba R3T 5V6
Tel.: 204.474.9603
Fax.: 204.261.4639
Submitted 3 July 2005, revised 30 March 2006

UM CI Laboratory Technical Report

Number TR-2006-010
April 8, 2006

University of Manitoba ALICE Il

Computational Intelligence Laboratory
URL.: http://www.ee.umanitoba.ca/research/cilab.html

Copyright © CI Laboratory, University of Manitoba 2006.

Project no. 2006-010

ALICE Il
P1C Microcontroller for a Line-Crawling Robot
Designed for Manitoba Hydro

Maciej Borkowski
Christopher Henry
Dan Lockery
Peter Schilling
James F. Peters, Supervisor
{maciey,dlockery,chenry,jfpeté@ee.umanitoba.ca
University of Manitoba
Computational Intelligence Laboratory
ENGR E3-576 Engineering & Information Technology Complex
75A Chancellor’s Circle
Winnipeg, Manitoba R3T 5V6
Tel.: 204.474.9603
Fax.: 204.261.4639
Submitted 3 July 2005, revised 30 March 2006

Cl Laboratory TR-2006-010
April 8, 2006

Abstract

The is the first of a series of research reports that were bieg2@05, and are how being completed
in preparation for the completion of the first phase of the @&.ill project. This report focuses on in-
troduction of a Peripheral Interface Controller (PIC) romontroller in the design of the line-crawling
robot affectionately named ALICE Il. PIC was originally acranym for Programmable Intelligent Com-
puter introduced by General Instruments in connection Wstf1C1650. ALICE Il is an acronym for
Autonomous Line-Crawling Equipment I, a second generatiersion of a new family of autonomous
line-crawling robotic devices using swarm intelligencestsyn engineering design principles introduced
during the past 3 years. ALICE Il represents the combineattsfiof Maciej Borkowski, Dan Lockery,
Christopher Henry (alpha order) with some help from PetdiilBtg during the summer of 2005. The
main architect of ALICE Il has been Dan Lockery. ALICE | wasiagie line-crawling robot designed
by Vitaliy Degetyarov in 1999 as part of his M.Sc. project,igthwas also funded by Manitoba Hydro.

This research work has been funded by Manitoba Hydro.

Contents

1 Introduction

2 Serial Communication

3 PWM Setup

4 Motor Control viathe PIC
5 Construction of Alicell

6 What happens next

A Appendix: CC5X Code
Al minid.c . . . L e e e
A.2 PICControl.c e e
A.3 PICCoNtrol2.c e
Ad PWM.C . . . e e e e e
AL RXTest.C e e e e e e
AB SEBIVO.C. e e e

List of Figures

RS232 8-N-1 Protocol Diagram CMOS logiclev&] [.
PIC 16F871 UART TX-Sectior3] o e e e e e e
PIC 16F871 UART RX-SectiorB] et e e e e
Texas Instruments TPIC0108b IntelligentH-Briddé€][.
Added tractionto linegripwheels L
TS-5500 mounted inplatform e
Camera mounted underneath Alice Il platform
Construction drawing for simple mounting bracket for dc motor e
PIC Controller board and peripherals
0 Alicellpayload e e

P OO ~NOOOTA,WDNER

1 Introduction

This research report focuses on discoveries made recently andbsorg done on the design of a line
crawler robot. By contrast with our original controller design, we havenged our approach for serial
communication, specified and implemented control of a dc motor, and set trpldon the servo motors.
Each of these steps has been researched, built (as required)renthgmugh the verification steps to ensure
proper operation. In addition to the control aspects of the line crawlethave continued on with the
physical construction of the robot and encountered some interestibtgpre which will also be discussed
in this report.

2 Serial Communication

The first area discussed in this report is to address the serial communittakiavith the PIC microcon-
troller, the problems encountered and the steps taken to resolve thoapsoBeveral different approaches
were attempted, including different compilers, software and hardwareat®f the serial link. The final
solution is discussed in detail and it has been tested and verified to emspes pperation and interfacing
with a variety of devices.

Initially, we were having great difficulty in getting the serial communication linkragional. One of
the main problems encountered was that after some preliminary reseasshdebided to make use of a
compiler that provided 'canned’ routines for serial communication. Afpexcgying several bit values in
key registers, it should have operated the onboard hardware UARE &fIC 16F871 that we are currently
using. This appeared to be a nice reliable and conveniently easy to use imtdéorefor a serial communi-
cation link. Unfortunately, when using code provided by other individutis necessary to reproduce their
exact situation or often the code will not work properly. This was diseVén our setup since we were
unable to get the serial link working properly using the code generatPidigasic PRO§]. After spending
time examining the link parameters and what is required for preliminary setuplbasamaintaining com-
munication, we decided to abandon PICBasic PRO. The reason why is¢haiths not enough flexibility
provided and at that stage we were unsure of some of the individudteatents for proper communication
since we had been unable to get things working up to that point.

The first major change that was employed when looking at the serial comationitink was to switch
to a compiler that allows greater flexibility and doesn’t require a substantiatig leash commitment to
start with. After spending a bit of time researching some of the PIC enthusidisites, | came across the
CC5X compiler by B. Knudsen Dat2]] The two most important points that were attractive about this
compiler were the facts that it is a free compiler to use and it offers a geadibre flexibility than some
of the 'Basic’ language compilers. In addition to these points, it also adféesl much more like traditional
'C’ programming. Since a large portion of the project’s interfacing softwarwritten in C or C++, it is
also helpful in keeping things on a similar platform. The CC5X compiler provédggort for most of the
common 14-bit core devices, including the 16F871, which is the deviceaveuarently using.

The next major step in getting the serial communication link to work properly wastect the re-
guirements for establishing a software controlled serial communication linke S#e were working on a
software communication link, we had to decide on a set of parameters for kh&\inen | was examining
the error rates with varying baud rates, it turned out that using a 960@lg provided one of the best error
rates based on throughput. We decided to use a standard RS232 conmimnmicztocol of 8-N-1, or eight
data bits, no parity bit and one stop bit. To set up software control for tigcplar scheme, the first place
to start is to examine the data rate and how it has to be harnessed to eg@regemmunication. Using a
9600bps data rate, this implies that each bit must be approximatehSliddength. The length of each bit
is of extreme importance as without proper control over the timing, communicatilorever work properly

(as experienced with the previous attempts).

The RS232 serial communication link is bi-directional, the first attempt at edtaigis serial link
was to have the PIC send a byte pattern out to any possible device. Thisids ®adetermine if it is
working properly since we will immediately be able to receive the byte pattdra.alternative of using an
incoming byte to the PIC would require some means to indicate a successfpidigm was received. As
a result, a single direction was used initially to establish a uni-directional semamunication link. The

Logic 1’ +5V
Tsmrto 112/304]5]6]7 s

Logic "0 ov

Figure 1: RS232 8-N-1 Protocol Diagram CMOS logic levgl |

diagram in figure 1 shows RS232 communication using the 8-N-1 protoca. didgram is shown using
the CMOS/TTL logic levels. A logic '0’ or 'space’ corresponds to positizdtage and a logic "1’ or 'mark’
corresponds to negative voltage. As can be seen in figure 1, the isteotriesponds to a ‘'mark’ or logic
"1’. As aresult, the serial software interface begins with generatingralstand then the byte patterns are
forwarded and finally a stop bit is provided (a logic '0’ or 'space’).isThattern repeats for each byte that
is pushed out on the serial connection and so long as it obeys thes1filength rule, the receiving end
will see the expected resultd]] To achieve the appropriate bit lengths from this software, delaysekeed
to be inserted and tested. The delays were added via NOP() command8 as l@eping for extended
delays. The means to test the length of the delays was to use MPLAB Si¥Mdedoin the MPLAB IDE
from Microchip [6]. MPLAB SIM allowed us to simulate the 4MHz oscillator controlled PIC and how it
would respond to the code that was implemented. Once the appropriat® teday was perfected, code
provided from the Spark Fun Electronics tutorial was modified for ouesy$o implement the serial control
software. The code that was used is provided in the appendix at thd drelreport.

Using the software controlled approach as discussed in the previoagraph, we were able to get
information out from the PIC. | sent out the 'Hi’ pattern and after engugroper wired connections, we
managed to see the expected values from the PIC, receiving the informsitigra serially connected laptop
running hyper-terminal in windows XP. Once the transmit section of the RI€wsrified, the next step was
to attempt to have it receive information from the serial link and then indicatattheceived the correct
information. This was one of the most important steps in developing the intetdaibie micro controller
since without a serial link in, we cannot control devices externally. Emesmethod was attempted for
receiving data through a standard 1/O port pin. With the receive bits thdaugyas important to remember
that once a start bit (logic '1’, or 'mark) has been detected, we needttedeh bit in the approximate middle
of the allowed time for each bit (since each bit lasts approximately. $0Half of that would be 52S). The
same piece of code from the Spark Fun Tutorials was modified for 9600itipsa 4MHz oscillator #].
Testing the serial link input proved it to be somewhat unstable, the firsafismpts provided no results and
it wasn’t until a few changes were made and the level converter IC meationthe previous set of notes
(Linear Technologies Level Converter IC LTC1383) fhat we were able to see some sign of input present.

Since the serial link was not particularly stable using the software conttetided at this stage that
it was important to investigate the use of the PIC’s onboard UART. InitiallyRtE&Basic PRO compiler
attempted to make use of the onboard UART but something was not quite wqmiapgrly in the setup
and since we were only using a demonstration version of PICBasic PR@sitleemed better to drop that
attempt. Regardless, the idea of having the timing or 'bit-bashing’ taken ¢arehardware was quite
appealing since it was a bit of a headache to make sure that everythingetivaoperly. The UART has
several registers associated with it for transmit and receive capabilftesy pertain to both the receive

(RX) and transmit (TX) operations.

First, similar to the previous software control of the serial link, we startedtiwétiransmit section where
the PIC is responsible for sending a simple bit pattern. The protocol sgtliscséll the same as discussed
earlier (8-N-1 at 9600bps). The RCSTA register contains 8 bits farifyfpeg the receive settings3[. The
most significant bit, B7 is the enable (1 = enable, 0 = disable), we need lbecth@ serial link, so B7 =
1[3]. Next, B6 is referred to as RX9, or the bit to set for 9-bit communicatiedg bits and 1 parity bit),
since we are not using 9-bit communication, B6 3D Next, B5 is referred to as SREN which is important
for synchronous communication only, we are using an asynchrondaslsg so B5 = 0 B]. B4 is CREN,
which means continuous receive, as a result, this is enabled, or B8}= B3 is referred to as ADDEN
or address detect enable enables the interrupts when bytes aredeBeivSince we are not interested in
having an interrupt driven system, B3 is cleared (B3 = 0). B2 is raddweas FERR, or framing erro8].
The suggested setting for asynchronous communication was to clear b B2sanot necessary (B2 =
0) [3]. Bl is referred to as OERR or overrun error, this can be a bit of aanaes depending upon how the
serial link is used3]. Since we want to have a seamless one-way serial link from exterriZ8 R@evices
to the PIC controlled devices, we chose to disable the overrun error (B1 Ehis ensures that the device
will not stop receiving bytes until the error is cleared (this is what hapjfe®l = 1) [3]. Since we are not
planning on issuing long streams of commands (byte after byte of data), thisewdl be a problem for us.
Finally, BO, referred to as RX9D refers to the 9th bit of data that can beé fos a parity bit, we cleared this
bit since we are not using 9-bit communication (BO =8]) As a result of the associated bit status for each
of the bits discussed, the value of RCSTA corresponds to 90 hex. This &etting required to operate the
PIC 16F871’s onboard UART properly.

In addition to the RCSTA register, there is a TXSTA register for the TX settifige most significant bit,
B7 is referred to as CSRC, which refers to as the clock source s8le&ifice we are using asynchronous
communication, this is a don't care bit and we chose to clear this bit (B7 = &xt,86 is referred to as
TX9, this selects 9-bit transmission, since we are using 8-bit transmisstois, @eared (B6 = 0)3]. B5,
or TXEN (transmission enable) is set (B5 = 1) to enable UART transmissg&nd\fext is B4, or SYNC
(selects UART mode), we chose asynchronous or clearing B4 (B4 3].0J e bit corresponding to B3 is
unused in the TXSTA register so we clear it (B3 = 8). [B2, or BRGH is the high baud rate select .|
We set B2 so that we were using the high speed baud rate generatoit prmades better error rate (less
than one percent error) when the UART operates at 9600bps (BZ3}.1Next, bit B1 is referred to as
TRMT which is the transmit shift register status bit, this is a read-only bit soigdrétdother setting it (left
B1 = 0) [3]. Finally, BO or TX9D allows for thed*” bit of data to be transmitted, since we are not using 9-bit
transmissions, B0 is cleared (BO = @].[The resulting bit pattern for the TXSTA register corresponds to
24 hex.

There are a couple of other settings required to make the PIC’s onbd& hlappy and have it working
at the appropriate baud rate and protocol. The TXIE bit must be either stgared, since we do not want
to use interrupts to begin with, TXIE is cleared (TXIE = 0). Interrupts camépful in some cases, but for
our purposes, there is no need to use interrupts with the PIC, it is betteiittavtek on controlling all the
devices and poll for information on a regular schedule. Commands willex@soed rapidly enough to fill
the 2-byte FIFO in the receive section of the onboard UABT [Last, but not least, the SPBRG byte must
be set, this specifies the specified baud rate generator to generateryariapp baud rate. We want to use
9600bps, and with BRGH set to high (as mentioned in the previous palgadghepmeans that SPBRG will
be set to 253]. This corresponds to 9600bps, and with the other settings for the psevégisters, that
takes care of all of the different requirements for the PIC hardware.

After setting all of the respective registers and bits to the desired spéoificthe next step was to write
a simple program to make use of the hardware UART. The operation of ti i\as shown in figure 2.
To transmit out bytes on the serial port (PORTC, pin 6), simply transmit atbytee TXREG and it will go
through the TSR, or transmit shift register (shifted out serially, bit by Bjt) [

3

l: Data Bus

TXREG Register |

0 : Fin Buffer | .
B and Control E
ISRBegster __ RCEMX/CK pin
!
e

Figure 2: PIC 16F871 UART TX-Sectio3]

The software control required to send out bytes on the serial link to artg/qminal window are ex-
tremely simplified now that all the timing is taken care of in hardware. Simply pas$sites in to the
TXREG will have them shifted out serially. We connected a laptop runnipghgrminal in WindowsXP
and were able to see the serial bytes without any difficulty. The importarg thinote is that the RS232
level converter was required to obtain proper communication. This is thatLifechnologies device men-
tioned earlier (the LTC1383).

The next logical step in working on the serial link for the PIC was to move degting the RX part of
the UART. Previous tests proved that this was a little bit more difficult with thevsmé controlled version,
but | suspect that it was due to the requirement to specify all of the péesnéncluding overrun error.
When the overrun error bit is not cleared, no further information careteived and that is likely what was
happening and why we were not seeing any information coming in on the lkekiaThe registers were
already set up as well as the baud rate generator, all that remained wadeistand the RX half of the
UART, which is shown in figure 3. The main difference is that when datacisived and the RCIF bit goes
high, that indicates that a byte has been received. Once the RCRE@,ifre&CIF bit clears and the next
byte can be read when it is received. The RX-section has 2-byte Fhit€hwllows the RX section to store
up to two bytes in the FIFO and have a third bit being received before emwwverror occurs. This allows
for most situations that we should experience when controlling devices vatRi& for the line crawler
robot. The projected protocol is going to use a single byte to issue most cala@ad as a result, since we
will be polling the RCIF bit every 20 milli-seconds approximately, we shouldcenexperience an overrun
error.

After implementing some simple code to link the serial input to the serial output tisnbardware
UART system discussed in the previous paragraphs (see RXTest.candipp we successfully managed
to communicate through the serial port. The experimental setup was to tthaétdC, PORTC, pin 6 to
the RX line of the PC’s hyperterminal input, PORTC, pin 7 to the TX line of thes®@perterminal output.
The connection from the PIC to the laptop was interfaced through the LTXI#88I converter as well to
ensure proper RS232 and CMOS logic levels were used. The resudt egamplete, serially connected PIC
that receives bytes from the hyperterminal link and returns whatewetéives to the hyperterminal screen
(essentially results in an echoing terminal). After experimenting with this setumaer of times, we were
able to ensure that the serial link with the UART-based-timing operatedatigramd with excellent stability
and an almost non-existent error rate.

¥54 Baud Rate CLK | OERR | | FERR |

Fosc | CREN
o SPERG P T Y cosmeepeesseelissssssnee b s e
! ! +54 ' MSh RSR Register LSb

_________________ ar
Baud Rate Generator +18 Ll sTop @ 7 vee |1l0lsTRRT]!
1 1
RCT/IRADT 1 Cona e e B et s)
Pin Buffer Diata \
il and Control R;cnvew Rixg

SPEM RAS0| RCREG Register
FIFO

Interrupt RCIF
—_

ECIE [rata Bus

Figure 3: PIC 16F871 UART RX-SectioB][

3 PWM Setup

Further to the previous set of notes where we were specifying a dc magedton the physical models and
the estimated requirements. The next step is to look into PWM control using Ghed™hat we can have
forward and backward motion as well as braking and a quiescent modeehieve this level of control, the
Texas Instruments IC was selected since it is an intelligent h-bridge, gigitigese features in a nice small
packaged IC. The implementation and testing of this chip required a little bit op setd experimental
work. The operation of the chip was not exactly how it was initially perakieebe and as a result we had
to make some minor modifications to achieve the level of control that we weiedhfup. Once we had the
experimental setup in place, we proceeded to test and verify the copeetion of the PWM motor control
via the PIC 16F871.

The first step was to put together a simple test rig for the PWM chip oncéviédifrom Digikey. Figure
4 shows the TI chip mounted on a 'surfboard’ which conveniently fits rigtat a breadboard, allowing us
to wire up the connection interface to the PIC and the DC motor. Once the Wwaarsbldered, the next step
was to wire up all of the power and ground pins as well as the input andtozdptrol pins. After completing
the wiring for the PWM control circuitry, the next step was to investigate hagotabout getting the PIC to
control the motor.

Similar to the onboard UART discussed in the previous section of this reperBIth contains an on-
board PWM module as welB]. Port C, pin 2 is the output for the PWM module for providing a PWM
signal to control a DC motor. The TI chip has two inputs, one logic level iGiN2) and one PWM input
(IN1). To obtain a PWM signal out on Port C pin 2, we need to configuedliC to provide this signal. The
PWM period needs to be decided upon, and the PWM Duty Cycle is then sgeeif well as the resolution
that we are capable of. We have a 10-bit resolution PWM output and liberiiog equations describe how
the PWM period, duty cycle and resolution all play a part in determining wigaPiWvM module sends out
to the respective device.

PW M Period = [(PR2) + 1] x4 « Tosc * (TM R2) (1)

PW M DutyCycle = (CCPR1L : CCP1CON < 5:4>)*Tosc * TMR2 (2)

2005.07.03 22:05

Figure 4: Texas Instruments TPIC0108b Intelligent H-Bridt@ [

Fosc
. og(Fowar).
Maz Resolution = —————=—bits 3)
log(2)

We selected a duty cycle of 50% to begin with since it would provide a largaginchange in velocity
to make a difference from 100%. Keeping this in mind, generating the rebpireattern was fairly simple
to calculate, as shown in (2B]] The necessary bit pattern is 10 0000 0000 in binary. This is equal to
512 decimal, which is exactly half of 1024, which2¥, resulting in a 50% duty cycle. For selecting the
PWM period or frequency (they are the reciprocal of one anotherjlecided to employ the slowest possible
frequency with the 4MHz oscillator. The maximum delay is achieved throughasing the value of PR2 (it
is the only adjustable quantity from (1) above). This means using a valud-&fBex for PR2, the prescale
value for TMR2 was selected as 16 (possible choices were 1, 4 or 161&vigfiving the slowest possible
frequency) and plugging in these values to equation (1), the reciprbtiad resulting period turns out to be
244Hz which is the PWM frequency. The maximum resolution available to ug tisgse parameters and
following (3) provides us with a potential of 14 bits. Keeping these equatiadsparameters in mind, we
went about configuring the appropriate registers and memory locations PI€hto provide the 50% duty
cycle at a rate of 244Hz (see the file pwm.c in the appendix for code listing).

As mentioned in the previous paragraph, there are several registelstanhat need to be set for the
PWM module to produce the desired pulse train at the output on port ¢ pim $pecifically, we need to
set the value for PR2, as discussed already, the value of OXFF hédgsais with the maximum possible
delay or the slowest possible frequency. We were trying to see if we attalith a slow enough frequency to
drive servo motors with the PWM signal as well but unfortunately with ouaillasor speed we were unable
to get anything slower than 244Hz, which is much too fast for the servo satioich require refresh rates
closer to 50Hz. The next value which we needed to set was the valueMB2Twhich is placed in the
T2CON register location. This is the prescale timer value, and we used aofaléefor it. The next step

was to specify the duty cycle, which was done by entering the value folRACRNnd for the two bits in
CCP1CON (bits 4 and 5). This provides ten-bit duty cycle specificatiathaarmentioned in the previous
paragraph, we used a value of 512 to specify a 50% duty cycle. Asith I€EPR1L contained the value of
128 (1000 0000) and CCP1CON, bits 4 and 5 both contained a 0. Thedinalning task was to setup port
c appropriately to operate as an output for the PWM module on pin 2. Thistroleaning the necessary
port ¢ pin, in our case, we cleared the entire port since we weren'tj asin other pins for this part of the
experiment. With these registers configured, the output from the PWM modaitgivated as soon as the
PIC powers up and is operational. The final test to make sure that this@eroperly was to hook up
the PWM output (port c, pin 2) to IN1 on the TI chip and then manually changelirection of the motor
by altering the state of IN2 (connect to ground or power to provide logiel$¢v The OUT1 and OUT2
pins were connected across the dc motor allowing full h-bridge contraive the motor. When the PWM
signal was connected to the motor we discovered that it did not providegprgciable difference whether
we used a PWM signal or solid logic levels. As a result, it appears that tHd Bdtussion in the title of
the TPIC0108b might be a little bit misleading. Providing logic levels coinciding withttiith table on the
data sheet for the Tl device provides ample control and as a result, thisataithe need for using the
PWM module. Instead, two output pins on port c are able to control thetidineand the braking of the dc
motor. The truth table can be seen below in table 1.

Table 1: Intelligent H-Bridge Control Schem&(]

IN1 IN2 OUT1 OoUT2 MODE

0 0 Z Z Quiescent Supply Current Mode
1 LS HS Motor Turns Clockwise

0 HS LS Motor Turns Counter Clockwise
1 HS HS Brake Mode

=

This table demonstrates that through simple 10 control, we can control thetdc amal not even bother
with the PWM module. The downside to this type of control is that we will be rupairmaximum speed
(PWM provides some degree of control over the speed of the motor sigivesta varying DC level to the
motor), however the Texas Instruments IC that was selected appearsetaddifference when the PWM
signal is applied compared to when standard logic levels are applied to the.if®ia result, the control
scheme was simplified using table 1 and two output pins. This renders the PWévlahiameffective for our
motor control. One benefit that we still have working in our favour is thattBemotor is still relatively
straight forward to control and since it is a low speed device (with an al8@fkstl gear ratio), the wheels
won't turn very fast even when it is at full speed.

4 Motor Control viathePIC

The next step in device control was to include the RC servo motors. Thesgsnawe position control
servos and they are responsible for positioning the line crawler grip meschas well as the camera. The
initial approach for control was to use a PICBasic PRO, a 'basic’ laggyoampiler for the PIC provided by
MicroEngineering Labsd]. A demonstration version of PICBasic PRO was made available to us on their
website (as listed in the references) and it provides nice canned rofatirestrolling servo motors as well

as dc motors. We ended up migrating to a different compiler later on, CC5xhwalnovides slightly more
control from the users perspective and it also uses the C languagetismed previously. Another problem
that was encountered ended up being the generation of control sigrsaisdaut to the servos. A general

7

servo motor has a control signal that is centered at approximately 1.5m$aallly has a pulse width of
approximately +/- 0.5mS. The resolution for the step size is much smaller (in tke afrchicroseconds)
and as a result, such short delays required special attention. Aftgrdimain the work, servo control was
verified to ensure proper operation.

The first step that bares mention that we addressed was the problem imighcasned routines for
controlling the motors. We were able to achieve$Qesolution with the 'PULSOUT’ command provided
in PICBasic PRO]. In addition to that, a PWM routine provides a pulse width modulated signatioout
control the dc motor as well. These were both convenient routines feidimg us with a quick fix to control
our devices, however since they are fixed routines in the basic compddrave no control over the specific
details of how they operate. The assembly language file generated vpgis eryough that it became too
much work to sort through to find out how to change the specific details.rasudt, we began looking for
programming alternatives, and it was at that point where we came ac@®s.This compiler makes use
of the C language, and it is a complete version that is free to use (hot jesha like the PBP compiler).
The flexibility in coding and using the C language is more convenient and ctabfe for us since the rest
of the code for our project is written in C as well.

Since we opted to use CC5X, this meant that to control servo motors wechtedevelop our own
routines to provide the control signals (as opposed to PBP which contdieezhnned control routines).
The means to provide control signals is as simple as setting a logical pin highemdt some point later
in time re-setting the same pin low. The most important part of the control is in tigghlerf time that
the pin is held high for. | wrote an additional delay file for generating a kéiamount of delay with an
8.08uS resolution with an error of +/- 0.25%. As a result, we have slightly bettelutsn and a much
better understanding of how the signals are generated since we hadt®tbe operation from scratch (so
to speak). The code written for the delays as well as for the rc servo rootdrol can be found in the
appendix (minid.c, and servo.c).

Once the code was written and compiled successfully, the next step wasaondegrify the new servo
control scheme. We were able to achieve the desired resolution (apptelir@aS) of about 2 degrees of
movement per step. The initial control scheme allowed us to move in single stemieats from 0 degrees
all the way to 180 degrees. We used the Hi-Tec servo that will be useélddarpper grip actuator as a test
subject. A simple routine (servo.c) was generated to position the servoeglr@sd and to step through all
the way to 180 degrees and then to return back to O degrees using thetspraizas. This demonstrated
the delay routine as well as the control method and proved that both appasa¢pected. Future expansion
to this method of control will include providing external control to operatestér®o motor remotely.

The next step was to extend the control to include the dc motor as well. Theeappused was described
in the previous section (as seen in table 1). Since only two inputs wereedgpins on port b of the PIC
were assigned (PB2 & PB3). Simple logic control of these two pins providegith a clockwise, counter-
clockwise, braking, or stopping action of the dc motor. The TPIC IC pexvigs with the h-bridge circuit to
isolate the motor control circuit eliminating problems with back-emf when voltagagds occur with each
transition from state to staté().

Two separate control programs were written to allow single or two byte danteo all of the devices.
We have included support for 4 servos (at present), and one dc.miftere is still room for expansion
should any further devices be required. The reason that two sepgaratel programs were written was
due to the fact that the experimental test setup involved using a serialdimkelaptop to the PIC. To keep
things moving along quickly, simple ASCII codes were used for the prelimipesjocol. For example,
‘U’ indicated moving the servo up, 'D’ down, 'F’ indicates the dc motor ddorotate forward and 'B’
backwards, and 'S’ stop. These are just a few of the commands includeel single byte control program.
The two-byte control program was written specifically for the experimeaastlsetup that included the TS-
5500. The code for both of these can be found in the appendix (Pi@il.onand PICControl2.c). After
working out the last few bugs, both of these control programs allowetd operate each of the devices

8

connected to the PIC, proving that both the control scheme as well agididisk were operating correctly.

5 Construction of Alicell

Now that a number of different aspects of the control scheme and bekiglave been tested and verified,
the next step is to move into a more permanent setup. The areas addreks#etiphysical construction of
Alice Il, moving from breadboarded circuitry to a more permanent proiard solution, adding electronics
and the camera to the structure. Each of the different areas of cdimtrgenerated its own interesting set
of problems to solve that are covered in this section of the report.

One of the first difficulties encountered in the physical construction stegepart of adding traction
to the nylon wheels. The original trial run for testing the line grip showed ttiatylon wheels have a
tendency to slip when the angle of inclination increases above 15-20edeghe a result, some solution
for the traction problem was necessary. Rather than creating a newwbeels made out of a different
material, rubber strips were added to provide much greater traction. ieabdesign of the nylon wheels
left enough room to add approximately 1mm thickness of either some solt@fog rubber to improve
the traction. Figure 5 demonstrates the strips of rubber included to prowédedhired traction for scaling

Figure 5: Added traction to line grip wheels

the incline of the power line. The main problem encountered with adding tratitve wheels involved

using adhesives to attach the rubber to nylon. Several alternativesattempted, including Weldbond,
Krazy Glue, Loc-Tite, Contact Cement, Epoxy, and 2-sided tape. Wettlaad 2-sided tape both proved
to be unsuccessful, Krazy glue on its own also failed, it wasn’t until walfirswitched to Loc-Tite that we

stated wondering about priming the wheels first. In order to get a cyeglatebased glue (Krazy Glue)
to bond properly, we needed to sand the wheels somewhat and makeauggmér. Once the surface was
lightly sanded (emery paper, 240 rating) and the primer (Loc-Tite, Sulper Ativator) applied, the rubber

material adhered nicely to the nylon, providing us with the desired tractioscfaling the gradient of the
sky wire.

Next in the physical construction phase was to update the wiring haisddshe payload for the plat-
form and the new dc motor. The wiring harness had been built alreadyyims meant to interface with the
handyboard (the previous controller used to operate the line grip). Asudtywe needed to extend some
wires and shorten others as well as removing the pin headers that veereéousiterface with the handy-
board. The payload for the platform included the TS-5500, the PIC @tertrthe battery pack and the
voltage regulator. The most important step in setting up the payload was toénbied S-5500, mounted
on .75 inch standoffs. Space was allowed to plug in the wireless card, tRealiie attached to the camera

Figure 6: TS-5500 mounted in platform

and space around and underneath for the remaining components. €ighosvs an image of where the
TS-5500 is mounted and that there is enough space around it to attachtedl mécessary peripherals. In
addition to this, as mentioned already, there is a .75 inch gap underneathtivbdrattery packs will reside
as well as the PIC controller and the voltage regulator.

The final remaining item for the platform payload was to add the camera andritsotmount that
consisted of two servo motors for position control. To eliminate as much wesgldssible, rather than using
some form of mechanical harness, two servo motors were used as modfiteea directly to the underside
of the platform. With our adhesive experience, we selected two-sided timae to fix the camera/servos in
place underneath the platform. Figure 7 shows how the camera and tbs aezvmounted, allowing us a
wide range of vision to acquire images for power line inspection.

The next problem investigated during the construction phase was rentbeingd dc motor and includ-
ing the newly specified replacement motor. The new motor was substantially sthalteits predecessor
even though it is rated with much greater torque (it is a gear-head motor wai:4 gear ratio). Since the
new motor was so much smaller, we required a mounting bracket to mate thevghalte gear train to en-

10

Figure 7: Camera mounted underneath Alice Il platform

sure proper operation of the locomotion stage in the line grip. The besiagpfor developing a mounting
bracket is to have the machine shop manufacture the bracket that wigespgsee figure 8). In the interim
whilst we were waiting for the machine shop to manufacture the part foresiawe been making do with
a wooden shim as a replacement. This allows us to see how everything wildth&r to ensure that the
drive train will work properly.

The next stage in construction involved moving from a breadboardddtppe circuit to a perf-board
based, more permanent solution. This involved planning a board laydumending pin headers to attach
all of the peripherals as well as the communication link to the TS-5500. The malislems encountered
during the fabrication of the prototype board were spacing issues baseldrge soldering iron tip. Besides
that, everything went quite smoothly and after verifying the correct pine g@dered, the board was tested
and the end result operated exactly the same as its bread-boardedgankgure 9 shows the completed
perf board version of the PIC controller. This includes all of the IC’s, RC 16F871, LTC1383 (RS232
level converter), and the TPIC0108B (PWM chip). With the PIC contoalrd tested and verified by running
the PICControl programs and ensuring proper operation, this settasdp all of the devices and the battery
packs to the platform payload to see how everything fits together. The gp#ute platform was sufficient
to house all of the individual devices and there still remains room for @aydoad as required. Figure 10
shows all of the additional components that comprise the payload for Aladedlaced within the platform.

The last step in the current construction was to add the camera to the platfoisrwas accomplished
by using two servo motors connected together to provide 2 degreesedbfre allowing us to rotate into
position to view a wide enough range to cover all of the different positienegsary to acquire the images of
the power grid during the travels of Alice Il. The camera mount consistsmfdwervo motors necessary for
position control as well as 2-sided foam tape. The foam tape is respofmilkeeping everything fastened.

11

Motor Mounting BroackeT

= Noter this brocket Iz speclfled as olunlinum,
05ch In thlckness tor 0197 Ihches thilck

A
= il O [¥]
E
== o o
C
| E |
I F |1 £} I H I
Meosurenerts:
A — 19cm C0.59035') In length o centre.
B - lcwm 03947 In length from centre of hale o centre of haole,
C = 053cm 01977 Ih length from centre of hole to edge
IO - Zcm 1282 v length from edge o edge
E - 3&cm .37 In length from edge to edge
F - 05cm 197 |In length from edge to centre of hole
G - 282cm 1024*) in length from centre of hole 4o centre of haole
H - 05cm 01977 In length from centre of hole to edge

Notes
= all holes need to ke topped for 6-32 machlne screws
- Material recommended iz oluminum 1100 with 0.5cm (01977 fhicknezs

Figure 8: Construction drawing for simple mounting bracket for dc motor

Figure 9: PIC Controller board and peripherals

12

Galed PCCardd
e

Figure 10: Alice Il payload

This reduced the amount of hardware brackets necessary to mouaintiees; reducing the necessary parts
and weight. We were still able to achieve the range of vision required eetiglththe camera is mounted
directly onto the base of the platform.

This is where we are currently at with the construction of Alice Il, therestifiea few items left to be
done before Alice Il is complete. This includes, adding an aluminum motor ntwaoket for the dc motor,
running the wires to the TS-5500 DIO ports once the sockets and wilgs.awith the addition of these
two items, we will have the preliminary physical construction completed and reathterface with the
electronics and software.

6 What happens next

Currently, we are in the process of duplicating Alice Il as well as finishihthe first one. Peter is currently
fabricating an additional PIC controller board as well as working on fimglizonstruction of the second
Alice Il. Once the parts on order have arrived, we will be completing tred Eissembly of the first Alice 11
bot. Chris has been working on setting up a software interface betwe&i$tb800 and the PIC to control
the locomotion and position of Alice Il. Based on the code provided by Mawiekhave been able to verify
the operation of the DIO with the contact switches, we are still in the prodeadding support for the
infra-red sensors to let us know when the grip closes completely. In aglthitibat, a proximity sensor, also
of the infra-red variety is going to be added experimentally to detect obstackedistance since this will
allow us greater flexibility in our obstacle avoidance routines. | am going tedvking on completing the
construction of the first Alice Il and setting up the experimental work to tedtverify the robot for proper
operation. In addition to that, | will be extending the new control protocol &@RKC control programs.
Maciek and | were involved in generating the protocol that makes use iofjke dyte to transmit device

13

selection as well as instruction for operating each device.

14

A Appendix: CC5X Code

A.1 minid.c
/*

These are some simple delay routines so that | can try to achieve variabte dela
times possible with the PIC 16F871 using a 4MHz oscillator. Include this file
when delays are needed since the delay.c include file is not the greatest fo
fine resolution.

Date: June 15,2005
Author: Dan Lockery
Version: 1.0

*/

/INote that this works well with a single pass (input of 1)

/IThe loops require less effort to run multiple times, so the time
[ffor subsequent delays shortens (making it difficult to have
/[consistency). As a result, it has been left as is, call this w/
/linput value of 1 and it provides exactly 100 microseconds.

void delay100us(uns8 inp)
{

int i,l; // establish counter

while(inp > 0)

{
for(1=0; 1 < 4 ; |++); // this is to add time delay (100uS)

_nop();
inp—;
}

}

void delay5us(void)
{

nop(); // try one NOP to see what sort of resolution we get

}

void delayvar(uns8 in)

{

while(in > 0)

15

in—; // decrement until reaches zero before returning

}

A.2 PICControl.c
/*

This is an interface for serial control of all devices linked to the PIC 78F8
that we will be using for the Alice Il robot. The servo motors will have to be
updated at a rate of approximately every 20ms. Whenever a serial byaéror
of bytes is received, it is important to take action and adjust the position of
servos or direction/speed of the DC motor in question. This will be handled
after each of the servo control signals are completed and not durirgtkiisc
would cause unforeseen jerk action and potentially damage the robaise ca
trouble in other ways.

Author: Dan Lockery
Date: June 27, 2005
Version: 1.0

*/

#include c:/Program Files/cc5x/16F871.h // This is the device header file
#include c:/Program Files/cc5x/minid.c // This is the delay file
#include c:/Program Files/cc5x/Delay.c // contains the millisecond delay

void main()

{

/I First, set up the serial communication link.

RCSTA = 144; /] assign RCSTA 90h

TXSTA = 36; // enables 8-bit asynch communication with high speed BRG

SPBRG = 25; // this sets the baud rate to 9600bps since BRG = 1

TXIE = 0; // this keeps the interrupts disabled

PORTC = 0b.0000.0000;

TRISC =0b.1000.0000; //0 = Output, 1 = Input - PORTC.7 is the RX of UARTI&F871

/I Next, set up PortB as outputs since they will run the motors!
PORTB = 0b.0000.0000;
TRISB = 0b.0000.0000; // This configures port B as all outputs

uns8 posl; // this is the variable that holds the position of the servo motor

unsl16 del; // this is the variable that holds the delay for repeating ctrl signals
uns8 device; // this holds the device that we are going to be altering

uns8 pos; // this will hold the position of the servo that we want to changeReanew)
uns8 instr; // this will hold the instruction for what to do based on the device!

16

PORTB.2 = 0; // setting pins 2 and 3 low will init DC motor in quiescent mode
PORTB.3 = 0; // quiescent mode now achieved.

PORTB.4 = 0; // start servo motor ctrl signal low, ready for info

PORTB.5 = 0; // start out servo 2 in low position (ready for when used)
PORTB.6 = 0; // start out servo 3 in low position as well.

PORTB.7 = 0; // start out servo 4 in low position as well

del = 20; // this will correspond to a 20 milli-second delay (always)
posl = 136; // default position, put servos at this angle to start

while(1) { // loop infinitely to run the motors and receive info from rs232

/I To start with, position the servo motors (at the beginning of every loop)
pos = posl; // assign the position bit with pos1

PORTB.7 = 1, // set servo pin high for control pulse

delayvar(pos); // call variable delay for providing the position

PORTB.7 = 0; // after the delay, put control pulse low

/I Repeat for each additional servo. This could mean a potential
/I extra time consumption of up ®@mS for all 4 servos
I/l keep this in mind when working on the delays.

// now that the servo has been positioned, check for an RX byte?
if(RCIF) { // what to do when we get a pair of bytes serially

nop(); // just in case something was immediately received, let it settle.
device = RCREG,; // first byte is the device number

while('RCIF);

nop(); // again, just in case we need settling.

instr = RCREG;

/I Now that we have the device and instruction, decide what to do with them
if(device =="0") { // this means we are controlling the servo

if(instr =="0") { // this means we need to set the motor moving clockwise
PORTB.2 =0; // set'In1’ to 0 for CW motion

PORTB.3 =1, // set’In2’ to 1 for CW motion

} /Il end of inner if for clockwise motor turning

else if(instr == "1") { // this means we need to set the motor moving CCW
PORTB.2 =1;// set’'Inl’ to 1 for CCW motion

PORTB.3 =0; // set 'In2’ to 0 for CCW motion

} 1/ end of inner if for CCW motion

else if(instr == "2") { // this means we need to turn the brakes on!
PORTB.2 = 1;// set’Inl1’ to 1 for braking

PORTB.3 =1, // set’In2’ to 1 for braking

} /1 end of inner if for braking action

else if(instr =='3") { // this means we need to turn the DC motor off
PORTB.2 =0; // set’In1’ to 0 for DC motor off

PORTB.3 =0; // set’'In2’ to 0 for DC motor off

}

17

else;

/ faulty command, don’t do anything

HI end of what to do when the selected device is the DC motor!

else if(device =="1"){ // this means we are controlling the RC servo motor
posl = instr; // second byte w/ servo control is position

HI end of else if for controlling RC servo motor #1

else;

/Il else, do nothing

HI end of what happens when a byte is received serially

delay ms(del); // pause for 20 milliseconds

} Il end of inner while loop

}

A.3 PICControl2.c
/*

This is an interface for serial control of all devices linked to the PIC 78F8

that we will be using for the Alice Il robot. The servo motors will have to be
updated at a rate of approximately every 20ms. This version of the Plgton
program is meant to be operated by a user at a terminal with single byte input
instructions. As a result, the servos can only be moved incrementally, either
positively or negatively (depending on the current position). The DC raoto

will either be turned on CW, or CCW, have the brake set or stop completely.

Author: Dan Lockery
Date: June 29, 2005
Version: 1.0

*/

#include c:/Program Files/cc5x/16F871.h // This is the device header file
#include c:/Program Files/cc5x/minid.c // This is the delay file
#include c:/Program Files/cc5x/Delay.c // contains the millisecond delay

void main()

{

/I First, set up the serial communication link.
RCSTA = 144; // assign RCSTA 90h
TXSTA = 36; // enables 8-bit asynch communication with high speed BRG

18

SPBRG = 25; // this sets the baud rate to 9600bps since BRG = 1

TXIE = 0; // this keeps the interrupts disabled

PORTC = 0b.0000.0000;

TRISC = 0b.1000.0000; //0 = Output, 1 = Input - PORTC.7 is RX of UART

// Next, set up PortB as outputs since they will run the motors!
PORTB = 0b.0000.0000;
TRISB = 0b.0000.0000; // This configures port B as all outputs

uns8 posl; // variable that holds position of the servo motor
unsl6 del; // variable that holds delay for repeating ctrl signals.
uns8 pos; // position of servo that change (can RX new position)
uns8 instr; // instruction for what to do based on selected device

PORTB.2 =0; // pins 2 and 3 low inits DC motor in quiescent mode
PORTB.3 = 0; // quiescent mode now achieved.

PORTB.4 = 0; // start servo motor ctrl signal low, ready for info
PORTB.5 = 0; // start out servo 2 in low position

PORTB.6 = 0; // start out servo 3 in low position as well.

PORTB.7 = 0; // start out servo 4 in low position as well

del = 20; // this will correspond to a 20 milli-second delay
pos = 136; // start out servo at 0 degree mark

while(1) { // loop infinitely

/I position the servo motors (at beginning of every loop)
PORTB.7 = 1; // set servo pin high for control pulse
delayvar(pos); // call variable delay for providing the position
PORTB.7 = 0; // after the delay, put control pulse low

/l The above would be repeated for each servo. This could mean
[/l extra time consumption of up to 8mS for all four servos
I/l keep this in mind when working on the delays.

/I now that the servo has been positioned, check for an RX byte?
if(RCIF) { // what to do when we get a byte serially

nop(); // just in case something was immediately received, let it settle.
instr = RCREG;

/I Now that we have the instruction, decide what to do with them
if(instr =="f" || instr =="F’) { // controlling the DC motor
PORTB.2 =0; // set’'In1’ to 0 for CW motion

PORTB.3 =1; // set’In2" to 1 for CW motion

} /1 end of inner if for clockwise motor turning

else if(instr =="b’|| instr =="B’) { // set motor moving CCW
PORTB.2 =1, // set’In1’ to 1 for CCW motion

PORTB.3 =0; // set'In2’ to 0 for CCW motion

} I end of inner if for CCW motion

19

else if(instr =="h’|| instr =="H’) { // turn the brakes on
PORTB.2 =1; // set’In1’ to 1 for braking

PORTB.3 = 1; // set’In2’ to 1 for braking

} I end of inner if for braking action

else if(instr =="'s’|| instr =="'S’) { // turn the DC motor off
PORTB.2 =0; // set’In1’ to O for DC motor off

PORTB.3 =0; // set'In2’ to 0 for DC motor off

} else if(instr =="u’|| instr =="U’) { // move servo one step up
if(pos < 234)

pos++; // increment only if we haven’t reached end of rotation
} else if(instr =='d’ || instr =="'D’) { // move servo one step down
if(pos > 137)

pos—; // lower servo motor if we are within range of motion

} 1/ end of the else if for moving the servo.

else;

/I faulty command, don’t do anything

HI end of what to do when a serial byte is received

delayms(del); // pause for 20 milliseconds

} 1/ end of inner while loop

}

A4 PWM.c
/*

This is another piece of simple code to experiment with the PWM module
on the PIC 16F871. The idea is to get the PWM pin CCP1 to output the
pulse train that drives the DC motor. We will need to control a couple

of pins on the PWM chip the direction pin (either O for reverse, 1 for
forward), also in2 corresponds to the PWM signal in. As of the initial

run, we don’t quite know what to expect so this piece of code will help

us discover what is going to happen.

Author: Dan Lockery

Date: June 22, 2005

Version: 1.0

*/

#include C:/Program Files/cc5x/16F871.h

void main()

{

20

PR2 = OxFF; // Maximum Delay Possible to keep low frequency

T2CON = 16; // Timer prescale value for setting up 244Hz PWM frequency
CCPRL1L = 0b.1000.0000; // Set Duty Cycle

CCP1X=0;

CCP1Y =0; // LSB Duty Cycle (note: DC = 50%, or 512)

PORTC = 0b.0000.0000;
TRISC = 0b.0000.0000;

while(1); // should drive PWM now that everything has been configured

}

[* After testing this code out, it works well, the only problem is that when
using the PWM signal instead of using straight 1's and 0’s for controéthe

is no difference in output performance. This implies that we might as well
just switch to simple two line control for direction and braking of the DC
motor. That will come once the servo motor problem has been dealt with as
it is part of the interface.

*/

A5 RXTest.c

/*

This is a simple piece of code to test TX function of the PIC 16F871 UART.
The settings that will be used are as follows:

RCSTA = 0x90

TXSTA = 0x24 (high speed BRH and TX enable, 8bit asynch communication)
TXIE = 0 (keep the interrupts off for now, less hassle)

SPBRG = 25 (translates to 9600 bps with BRG = 1 arffdde = 4MHz)

TXREG = data input goes out on TX pin

Author: Dan Lockery
Date: June 21, 2005
Version: 1.0

*/

#include c:/Program Files/cc5x/16F871.h // include device defn

void main()

{

Il First, initialize the UART module to prepare for serial communication

RCSTA = 144; /[assign RCSTA 90h

TXSTA = 36; // enables 8-bit asynch communication with high speed BRG
SPBRG = 25; // this sets the baud rate to 9600bps since BRG =1

TXIE = 0; // this keeps the interrupts disabled

21

PORTC = 0b.0000.0000;
TRISC = 0b.1000.0000; //0 = Output, 1 = Input - PORTC.7 is RX of UART f6Fa71

/I At this stage, the UART has been initialized, send out

/l a simple bit of data (received by hyperterminal perhaps or TS-5500)
while(1) { while('RCIF); // wait for 1 byte in from rs232

nop(); // a little bit of settling time

TXREG = RCREG,; // send back whatever was given to the PIC
while('TXIF);

}

}

A.6 servo.c
[*

This is the first attempt at developing a simple servo control routine

to allow the PIC to control servo motors. Delay routines will be included

to help in the pulse width modulation requirements. The servo that is being
used for preliminary testing is the HiTec HSR-5995TG.

The goal is to setup a simple servo routine to start by positioning the servo
at one extreme and then to increment the servo until it reaches the end of
its positioning capabilities. At which point, it will return to the start

and then begin moving again.

Author: Dan Lockery
Date: June 27, 2005
Version: 1.0

*/
#include c:/Program Files/cc5x/16F871.h // This is the device header file
#include c:/Program Files/cc5x/minid.c // This is the delay file

#include c:/Program Files/cc5x/Delay.c // contains the millisecond delay

void main()

{

/I Use a single output port to control a servo motor. I'm going to use
/[a pin on PORT B since there aren’t any special output pins needes ther

PORTB = 0b.0000.0000;
TRISB = 0b.0000.0000; // This configures port B as all outputs

uns8 pos; // this will hold the servo position (range from 136 - 235)

22

uns16 del; // this is the delay for the 20ms control pulse

/I Set servo pin low to begin with
PORTB.7 =0;
del = 20;// | always want a 20 millisecond delay

/I start servo at 0 degrees and then move at 8.08uS increments
while(1)
{

pos = 83; // this sets the starting position for the servo motor
while(pos< 187){ // do until we reach the end of the position.
PORTB.7 = 1; // set servo pin high for control pulse
delayvar(pos); // call variable delay for providing the position
PORTB.7 = 0; // after the delay, put control pulse low

pos++; // increment the position for the next loop
delayms(del); // pause for 20 milliseconds

} /1l end of inner while loop for moving the servo to 180 degrees
while(pos> 83) { // cycle back to original position

PORTB.7 = 1, // ser servo pin high for control pulse
delayvar(pos); // places servo at position 'pos’

PORTB.7 = 0; // after the delay, put the control pulse low again
pos—; // decrement the position counter

delayms(del); // pause for 20 milliseconds before moving again

} 1/ end of inner while loop for moving the servo back to 0 degrees

} /1 end of exterior while loop

}

23

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

fCoder Group International: Web SitéCoder Group
http : | Jwww.lookrs232.com/rs232/wave forms.htm

CC5X Main Page: C Compiler for PIC Micro® Knudsen Data
http : | Jwww.bknd.com/cchx /index.shtml

Microchip Technology: PIC16F870/871 Data Sheadisrochip Technology
http : | Jwwl.microchip.com/downloads/en/Device Doc/30569b.pdf

Spark Fun Electronics: Website tutorial for PIC Micros:
Spark Fun Electronics http : //www.spark fun.com

Clark D. and Owings, M.Building Robot Drive Trains
McGraw-Hill, New York, NY (2003) pp. 46-49

Microchip Website: MPLAB IDE for PIC$Mlicrochip Electronics
http : | Jwww.microchip.com

Linear Technologies: Level Converter Data Sheets for LTC1883ear Technologies
http : / Jwww.linear.com/

Micro Engineering Labs: PICBasic PRO Compiléticro Engineering Labs
hitp : / Jwww.microengineeringlabs.com

Chuck’s Robotics: WebsiteChuck’s Robotics
http : / Jwww.memanis.com/chuck /robotics/tutorial /h — bridge

Texas Instruments: Websitéexas | nstruments
http : | Jwww.ti.com

24

	Introduction
	Serial Communication
	PWM Setup
	Motor Control via the PIC
	Construction of Alice II
	What happens next
	Appendix: CC5X Code
	minid.c
	PICControl.c
	PICControl2.c
	PWM.c
	RXTest.c
	servo.c

