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Abstract

Pattern classification methodologies are present in many systems that we depend on daily. In these
systems, classes are created based on human perception of the objects being classified. Thus, it is im-
portant to have systems that accurately model human perception. Near set theory provides a framework
for measuring the similarity of objects based on features that describe them in much the same way that
humans perceive objects. In this paper, we show that the nearset approach can be used to classify im-
ages. Further, the results presented here suggest that the near set approach can be used in any image
classification system. The contribution of this article is aperception based classification of images using
near sets.

1 Introduction

The problem addressed in this article is one of reconciling human perceptionwith that of image processing
and pattern recognition systems. The termperceptionappears in the literature in many different places with
respect to the processing of images. For instance, the term is often used for demonstrating that the perfor-
mance of methods are similar to results obtained by human subjects (as in [1]), or it is used when the system
is trained from data generated by human subjects (as in [2]). Thus, in these examples, a system is consid-
ered perceptual if it mimics human behaviour. Another illustration of the use ofperception is in the area
of semantics with respect to queries [3, 4]. For instance, [4] focuses on queries for 3-D environments,i.e.,
performing searches of an online virtual environment. Here the question of perception is one of semantics
and conceptualization with regard to language and queries. For example, auser might want to search for the
tall tree they remembered seeing on one of their visits to a virtual city.

This research work has been funded by Manitoba Hydro grants T137,T247, T260, T270, T277, and by the Natural Sciences &
Engineering Research Council of Canada (NSERC) grant 185986, NSERC Postgraduate Doctoral Fellowship PGS-D3, University
of Manitoba Faculty of Engineering grant, and Canadian Arthritis Network grant SRI-BIO-05.
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Other interpretations ofperceptionare tightly coupled to psychophysics,i.e. perception based on the
relationship between stimuli and sensation. For example, [5] introduces a texture perception model. The
texture perception model uses the antagonistic view of the Human Visual System (HVS) in which our brain
processes differences in signals received from rods and cones rather than sense signals, directly. An image-
feature model of perception has been suggested by Mojsilovicet al. [6], where it is suggested that humans
view/recall an image by its dominant colours only, and areas containing small, non-dominant colours are
averaged by the HVS. Other examples of the term perception defined in the context of psychophysics have
also been given [7–13].

Perception as explained by psychologists [14, 15] is similar to the understanding of perception in psy-
chophysics. In a psychologist’s view of perception, the focus is more onthe mental processes involved rather
than interpreting external stimuli. For example, [15] presents an algorithm for detecting the differences be-
tween two images based on the representation of the image in the human mind (e.g., colours, shapes, and
sizes of regions and objects) rather than on interpreting the stimuli produced when looking at an image. In
other words, the stimuli from two images have been perceived and the mind must now determine the degree
of similarity.

The view of perception presented in this article combines the basic understanding of perception in psy-
chophysics with a view of perception found in Merleau-Ponty’s work [16]. That is, perception of an object
(i.e., in effect, our knowledge about an object) depends on information gathered by our senses. The pro-
posed approach to perception is feature-based and is similar to the one discussed in the introduction of [17].
In this view, our senses are likened to probe functions (i.e., mappings of sensations to values assimilated
by the mind). A human sense modelled as a probe measures the physical characteristics of objects in our
environment. The sensed phyical characteristics of an object are identified with object features. It is our
mind that identifies relationships between object feature values to form perceptions of sensed objects [16].
In this article, we show that perception,i.e. human perception, can be quantified through the use of near sets
by providing a framework for comparing objects based on object descriptions. Objects that have the same
appearance (i.e., objects with matching descriptions) are consideredperceptually near each other. Sets are
considered near each other when they have “things” (perceived objects) in common. Specifically, near sets
facilitate measurement of similarity between objects based on feature values (obtained by probe functions)
that describe the objects. This approach is similar to the way human perceiveobjects (see,e.g, [18]) and as
such facilitates pattern classification systems. Much work has been reported in the area of near sets [19–21],
which are an outgrowth of the rough set approach to obtaining approximateknowledge of objects that are
known imprecisely [22–26].

Pattern classification methodologies can be found in many systems, ranging from photo radar to as-
sembly line manufacturing. In each case, feature vectors are generatedfrom each unknown object being
classified. Many of these systems use a supervised learning approach where a training set is employed to
learn a decision function for classifying unknown patterns [27]. This article introduces a Nearness Measure
(NM) based on near set theory that measures the similarity of pairs of images. Furthermore, the NM is used
in a supervised learning environment to classify an unknown image and the results are compared with results
obtained using Support Vector Machines (SVMs) [27–29]. The contribution of this article is a perception
based classification of images using near sets.

This article is organized as follows: Section2 gives a brief introduction to near sets with an emphasis on
indiscernibility and tolerance relations. Section3 outlines the steps for combining near set theory with image
processing for use in pattern classification. Section4 provides an overview of SVM and Section5 presents
a comparison of results using using near sets and SVMs for image classification. The work presented in this
article is a continuation of recent applications of near set theory reportedin [30–34], and the contribution of
this work is a step toward perception-based pattern classification.
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2 Near sets

Near set theory focuses on sets of perceptual objects with matching descriptions. Specifically, letO represent
the set of all objects. The description of an objectx ∈ O is given by

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the description and eachφi(x) is a probe function that describes the objectx.
Furthermore, we can define a setF that represents all the probe functions used to describe an objectx.
Next, a perceptual information systemS can be defined asS =

〈

O, F, {V alφi}φi∈F

〉

, whereF is the set
of all possible probe functions that take as the domain objects inO, and{V alφi}φi∈F is the value range
of a functionφi ∈ F. For simplicity, a perceptual system is abbreviated as

〈

O, F
〉

when the range of the
probe functions is understood. It is the notion of a perceptual system that is at the heart of the following
definitions.

Definition 1 Indiscernibility Relation Let
〈

O, F
〉

be a perceptual system. For everyB ⊆ F the indiscerni-
bility relation∼B is defined as follows:

∼B= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖= 0},

where‖·‖ represents thel2 norm. IfB = {φ} for someφ ∈ F, instead of∼{φ} we write∼φ.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak in 1981[22]. Using the
indiscernibility relation, objects with matching descriptions can be grouped together forming granules of
highest object resolution determined by the probe functions inB. This gives rise to an elementary set

x/∼B
= {x′ ∈ X | x′ ∼B x},

defined as a set where all objects have the same description. Similarly, a quotient set is the set of all
elementary sets defined as

O/∼B
= {x/∼B

| x ∈ O}.

Defn.1 provides the framework for comparisons of sets of objects by introducinga concept of nearness
within a perceptual system. Sets can be considered near each other whenthey have “things” in common. In
the context of near sets, the “things” can be quantified by granules of a perceptual system,i.e., the elementary
sets. For practical reasons, the absolute character of∼B leads to a weakened relation between setsX, Y
where one can find at least one pair of objectsx ∈ X, y ∈ Y that have matching descriptions. Then we say
thatX, Y are weakly near each other.

Definition 2 Weak Nearness Relation [35]Let
〈

O, F
〉

be a perceptual system and letX, Y ⊆ O. A setX
is weakly near to a setY within the perceptual system

〈

O, F
〉

(X./FY ) iff there arex ∈ X andy ∈ Y and
there isB ⊆ F such thatx ∼B y. In the case where setsX, Y are defined within the context of a perceptual
system as in Defn2, thenX, Y are weakly near each other1.

Let the setsX andY be near each other in
〈

O, F
〉

, i.e., there existsx ∈ X, y ∈ Y,B ⊆ F such that
x ∼B y. Then, as reported in [32], a NM betweenX andY is given in (1).

NM∼B
=

∑

x/∼B
∈X/∼B

∑

y/∼B
∈Y/∼B

η (x/∼B
, y/∼B

)

max(|X/∼B
|, |Y/∼B

|)
, (1)

1A comparison on the difference between a nearness relation and a weaknearness relation is outside the scope of this paper. For
further discussion see [35].

CI Laboratory TR-2009-016 3



where

η (x/∼B
, y/∼B

) =
{

min(|x/∼B
|, |y/∼B

|) , if ‖ φ(x)− φ(y) ‖= 0,

0 , otherwise.

As an example of the degree of nearness between two sets, consider Fig.1 in which each image consists
of two sets of objects,X andY , that are subsets of the universe of objectsO. Each colour in the figures
corresponds to an elementary set where all the objects in the class share the same description. The idea
behind Eq.1 is that the nearness of sets in a perceptual system is based on the cardinality of equivalence
classes that they share. Thus, the sets in Fig.1(a) are closer (more near) to each other in terms of their
descriptions than the sets in Fig.1(b).

O

X

Y

(a)

O

X

Y

(b)

Figure 1: Example of degree of nearness between two sets: (a) High degree of nearness, and (b) low degree
of nearness.

2.1 Tolerance relation

When dealing with perceptual objects (especially, components in images), it issometimes necessary to relax
the equivalence condition of Defn.1 to facilitate observation of associations in a perceptual system. This
variation is called a tolerance relation and is given in Defn.3.

Definition 3 Tolerance RelationLet
〈

O, F
〉

be a perceptual system and letε ∈ R (set of all real numbers).
For everyB ⊆ F the tolerance relation∼=B is defined as follows:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖≤ ε}.

If B = {φ} for someφ ∈ F, instead of∼={φ} we write∼=φ. Further, for notational convince, we will write
∼=B instead of∼=B,ε with the understanding thatε is inherent to the definition of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance class can be definedas

x/∼=B
= {y ∈ X | y ∼=B x}. (2)

Note, Defn.3 does not uniquely partitionO (i.e. an object can belong to more than one class) which is
why Eq.2 is called a tolerance class instead of an elementary set. In addition, each pairof objectsx, y in
a tolerance classx/∼=B

must satisfy the condition‖ φ(x) − φ(y) ‖≤ ε. Next, a quotient set for a given a
tolerance relation is the set of all tolerance classes and is defined as

O/∼=B
= {x/∼=B

| x ∈ O}.

CI Laboratory TR-2009-016 4



As was the case with the equivalence relation, tolerance classes reveal relationships in perceptual systems
leading to the definition of a tolerance nearness relation.

Definition 4 Weak Tolerance Nearness Relation[36]
Let

〈

O, F
〉

be a perceptual system and letX, Y ⊆ O, ε ∈ R. The setX is perceptually near to the setY
within the perceptual system

〈

O, F
〉

(X ./
F

Y ) iff there existsx ∈ X, y ∈ Y and there is aφ ∈ F, ε ∈ R

such thatx ∼=B y. If a perceptual system is understood, then we say shortly that a setX is perceptually near
to a setY in a weak tolerance sense of nearness.

Similar to Eq.1, a NM under the tolerance relation is given as

NM∼=B
=

∑

x/∼=B
∈X/∼=B

∑

y/∼=B
∈Y/∼=B

ξ (x/∼=B
, y/∼=B

)

max(|x/∼=B
|, |y/∼B

|)
, (3)

where

ξ (x/∼=B
, y/∼=B

) =
{

min(|x/∼=B
|, |y/∼=B

|) , if ‖ φ(x)− φ(y) ‖≤ ε,

0 , otherwise.

Notice the subtle difference between the two nearness measures. Since objects can belong to more than
one tolerance class, the denominator of Eq.3 has moved inside the summation. Similarly, Eq.’s1 & 3 are
equivalent whenε = 0.

The following simple example highlights the need for a tolerance relation as well as demonstrates the
construction of tolerance classes from real data. Consider Table1 that contains 20 objects with|φ(xi)| = 1.
Letting ε = 0.1 gives the following tolerance classes:

X/∼=B
= {{x1, x8, x10, x11}, {x1, x9, x10, x11, x14},

{x2, x7, x18, x19},

{x3, x12, x17},

{x4, x13, x20}, {x4, x18},

{x5, x6, x15, x16}, {x5, x6, x15, x20},

{x6, x13, x20}}

Observe that each object in a tolerance class satisfies the condition‖ φ(x)− φ(y) ‖≤ ε, and that almost all
of the objects appear in more than one class. Moreover, there would be twenty classes if the indiscernibility
relation was used since there are no two objects with matching descriptions.

3 Near Sets and Image Classification

Near set theory can be used to determine the nearness between two images.The nearness measure can
be considered a feature value as defined in pattern classification literature(see,e.g., [27]). The following
sections describe an approach for applying near set theory to images.

3.1 Image processing

Briefly, this section defines some image processing notation. LetM, N ∈ N respectively denote the quanti-
ties width and height, and let the mathematical representation of an image using thegrayscale colour model

CI Laboratory TR-2009-016 5



Table 1: Tolerance Class Example

xi φ(x) xi φ(x) xi φ(x) xi φ(x)

x1 .4518 x6 .6943 x11 .4002 x16 .6079

x2 .9166 x7 .9246 x12 .1910 x17 .1869

x3 .1398 x8 .3537 x13 .7476 x18 .8489

x4 .7972 x9 .4722 x14 .4990 x19 .9170

x5 .6281 x10 .4523 x15 .6289 x20 .7143

be defined asf : {1, . . . , M} × {1, . . . , N} −→ [0, 255]. Similarly, let a subimagefs of f be defined as
fs : {p, . . . , P} × {q, . . . , Q} −→ [0, 255] wherep ≤ P ≤ M andq ≤ Q ≤ N . Furthermore, given an
imagef , the probabilitypi of a pixel taking on a valuei ∈ [0, 255] is given bypi = Ti/T , whereTl is the
count of grey levell in f , andT = M ×N .

3.2 Information content

Shannon introduced entropy as a measure of the amount of information gained by receiving a message from
a finite codebook of messages [37]. The idea was that the gain of information from a single message is
proportional to the probability of receiving the message. Thus, receiving a message that is highly unlikely
gives more information about the system than a message with a high probability of transmission. Formally,
let the probability of receiving a messagei of n messages bepi, then the information gain of a message can
be written as

∆I = log(1/pi) = − log(pi), (4)

and the entropy of the system is the expected value of the gain and is calculated as

H = −
n

∑

i=1

pi log(pi).

However, as reported in [37], Shannon’s definition of entropy suffers from three things: it is undefined when
pi = 0; that in practise the information gain (whether probable or un-probable) should lie in the interval
[0, 1] and not at the limits (which is the case when using Eq.4); and that a statistically better measure of
ignorance is 1 -pi rather than1/p1. As a result, [37] lists the following desirable properties of an entropic
function:

P1: ∆I(pi) is defined at all points in[0, 1].

P2: limpi→0 ∆I(pi) = ∆I(pi = 0) = k1, k1 > 0 and finite.

P3: limpi→1 ∆I(pi) = ∆I(pi = 1) = k2, k2 > 0 and finite.

P4: k2 < k1.

P5: With increase inpi, ∆I(pi) decreases exponentially.

P6: ∆I(p) andH, the entropy, are continuous for0 ≤ p ≤ 1.

P7: H is maximum when allpi’s are equal,i.e. H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

CI Laboratory TR-2009-016 6



Keeping these properties in mind, [37] defines the gain in information from anevent as

∆I(pi) = e(1−pi),

which gives the entropy as

H =
n

∑

i=1

pie
(1−pi).

3.3 Example of near images

The nearness of two images can be discovered by partitioning each of the images into subimages and letting
these represent objects in a perceptual system,i.e, let the setsX andY represent the two images to be
compared where each set consists of the subimages obtained by partitioningthe images. Then, the set of
all objects in the perceptual system is given byO = X ∪ Y . Objects in this system can be described by
probe functions that operate on images. Simple examples include average colour, or maximum intensity
(see,e.g., [38] for other examples of image probe functions). The results presented in this article use the
probe functionsB = {H(fs), Avg(fs)}, whereH(fs) is Pal’s entropy of a subimage, and Avg(fs) is the
average grayscale of a subimage. Average grayscale is used in additionto Pal’s entropy to differentiate
between areas in an image that have the same information content. For example,a subimage that consists
of all black pixels produces the same value of entropy as a subimage that contains all white pixels (or rather
any subimage of uniform intensity).

Our first example of near images is given in Fig.2 where Fig.2(a) is being compared first to itself and
then to Fig.’s2(b)-2(e). Each image is a Bitmap of size200 × 200, each coloured square has dimensions
100×100, and the size of each subimage is10×10. The NMs were calculated using both the indiscernibility
relation (Eq.1) and the tolerance relation (Eq.3). Notice that in both cases the NMs are the same due to
a small choice ofε. In this case,ε would have to be much larger than 1 to produce a different NM since
the grey levels are not close to each other. Also note, the values range from 1, the case of the image being
compared to itself, to 0, the case of the images being completely different.

Our next example provides a visual representation of both equivalenceand tolerance classes. Fig.3
consists of images from the Berkeley Segmentation Dataset [39] and the Leaves Dataset [40], which are
also used to obtain the results presented in Sect.5. Next, Fig.4 consists of images depicting the equivalence
and tolerance classes created from Fig3(a). Fig. 4(a) was created using Eq.1 with B = Avg(fs) and a
window size of 5 pixels, and each grey level represents a different class. Similarly, Fig.4(b) shows the
number of classes each subimage belongs to, and was created using Eq.3 with ε = 0.1 and a window size
of 10 pixels. Notice that it is difficult to display the different classes underthe tolerance relation, since
each object can belong to more than one class; however, it would look similarto Fig.4(a)except that each
subimage would have multiple colours designating class membership.

Finally, Fig.5 is a plot ofNM values comparing the nearness of Fig.’s3(a)& 3(b)and Fig.’s3(a)& 3(c)
for ε = 0, 0.01, 0.05, 0.1 (note, the indiscernibility relation is used forε = 0). Observe that the two leaf
images produce a higher NM than Fig.3(a)and the Berkeley image because the leaf images produce objects
that have more in common in terms of their descriptions (using the probe functions in B). These results
match our perception of the similarity between these three images.

3.4 Algorithms

This section outlines the steps required to calculate the nearness of images using the relations outlined in
Sect.2. Starting with the indiscernibility relation, the first step is to calculate the quotient set (equivalence
classes) of each image. This process is given in Alg.1 and is accomplished by assigning a label,xc, to
each object (subimage) and calculatingφ(xc). Then the subimages are grouped together based on their
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(a) (b)

(c) (d)

(e)

Figure 2: Example of NM comparing first image to the remaining three: (a) Testpattern for comparison
(note,NM∼B

= NM∼=B
= 1 when compared to itself), (b)NM∼B

= NM∼=B
= 0.75, (c) NM∼B

=
NM∼=B

= 0.5, (d) NM∼B
= NM∼=B

= 0.25, and (e)NM∼B
= NM∼=B

= 0.

(a) (b) (c)

Figure 3: Samples from image databases: (a), (b) Leaves Dataset [40], and (c) Berkeley Segmentation
Dataset [39].

descriptions using the indiscernibility relation. This creates a new partition of the image (called the quotient
set) based on object descriptions. Once the quotient set of each image has been determined, the degree of
nearness between two sets can be calculated by comparing their elementary sets. This process is described
by Alg. 2

The creation of a quotient set under the tolerance relation requires fourmain tasks. The first step (given
in Alg. 3) simply creates a set of objectsX from an input image. The next step (given in Alg.4) is a “first
pass” over the set of objects, where the goal is to find for eachx ∈ X, a setX ′ consisting of all the objects in
X for which the condition‖ φ(x)−φ(x′) ‖≤ ε is satisfied. In other words,X ′ consists of objects where the
only constraint is that all elements must satisfy the tolerance relation withx (and not the rest). The output of
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(b)

Figure 4: Examples showing visualization of equivalence and tolerance classes obtained from image
Fig 3(a): (a) Equivalence classes created usingB = Avg(fs), and (b) plot showing the number of classes a
subimage belongs to under the tolerance relation.

0 0.02 0.04 0.06 0.08 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
Fig.’s 3a & 3b
Fig.’s 3a & 3c

Figure 5: Plot showingNM values comparing Fig.’s3(a) & 3(b) and Fig.’s 3(a) & 3(c) for ε =
0, 0.01, 0.05, 0.1

the algorithm is a collection of all the setsX ′, i.e. Xc =
⋃

{X ′}. The next step involves going through the
classes in the setXc and creating tolerance classes. Thus, for each{xc} ∈ Xc, the goal is to create tolerance
classes under which the tolerance relation holds for each unordered pair of elements in the class. This step
is shown in Alg.5. Finally, the last step is to remove any duplicate classes in the quotient set obtained from
Alg. 5.

As an example, of Alg.’s4 & 5, consider again the sample data given in Table1. Using this data, the

CI Laboratory TR-2009-016 9



Algorithm 1 : Algorithm for calculating equivalence classes

Input : f (image),M (image width),N (image height),γ2 (area of subimage),B (set of probe
functions for object description)

Output : X/∼B (set of equivalence classes for imagef )
X/∼B ← ∅;
c← 0;
for (q = 1; q ≤ N ; q+ = γ) do

for (p = 1; p ≤M ; p+ = γ) do
Q← min(q + γ − 1, M);
P ← min(p + γ − 1, N);
Define subimagefs over domain{{p, . . . , P} × {q, . . . , Q}};
Assignfs the object labelxc;
found← false;
for (x/∼B ∈ X/∼B ) do

if xc ∼B x/∼B then
found← true;
x/∼B ← x/∼B ∪ xc;

end
end
if !found then

X/∼B ← X/∼B ∪ {xc};
end
c← c + 1;

end
end

Algorithm 2 : Algorithm for calculating the degree of nearness between two sets
Input : X/∼B

, Y/∼B
(quotient set of each image)

Output : NM∼B

NM∼B
← 0;

for (x/∼B ∈ X/∼B) do
for (y/∼B ∈ Y/∼B ) do

if x/∼B ∼B y/∼B then
NM∼B

← NM∼B
+ min(|x/∼B|, |y/∼B|);

end
end

end
NM∼B

← NM∼B
/ max(|X/∼B

|, |Y/∼B
|);

output of Alg.4 is

Xc = {{x1, x8, x9, x10, x11, x14},

{x2, x7, x18, x19},

{x3, x12, x17},

{x4, x13, x18, x20},
...

{x20, x4, x5, x6, x13, x15}}
CI Laboratory TR-2009-016 10



Algorithm 3 : Tolerance class creation step 1

Input : f (image),M (image width),N (image height),γ2 (area of subimage)
Output : X (set of objects)
X ← ∅;
c← 0;
for (q = 1; q ≤ N ; q+ = γ) do

for (p = 1; p ≤M ; p+ = γ) do
Q← min(q + γ − 1, M);
P ← min(p + γ − 1, N);
Define subimagefs over domain{{p, . . . , P} × {q, . . . , Q}};
Assignfs the object labelxc;
X ← X ∪ xc;
c← c + 1;

end
end

Algorithm 4 : Tolerance class creation step 2
Input : X (set of objects),ε
Output : Xc (consisting of sets where the all elements satisfy the tolerance relation with the first

element)
Xc ← ∅;
for (x ∈ X) do

xc ← x;
for (x′ ∈ X) do

if x 6= x′ and‖ φ(x)− φ(x′) ‖≤ ε then
xc ← xc ∪ x′;

end
end
Xc ← Xc ∪ {xc};

end

Similarly, the output of Alg.5 is

X/∼=B
= {{x8, x1, x10, x11}, {x9, x1, x10, x11, x14},

{x7, x2, x18, x19},

{x12, x3, x17},

{x13, x4, x20}, {x18, x4},
...

{x4, x20, x13},

{x5, x20x6, x15}}

Notice that the order of the elements is the order they are placed in the class bythe algorithm. In addition,
the output of Alg.5 will intentionally always produce duplicate classes in order to identify everytolerance
class.

CI Laboratory TR-2009-016 11



Algorithm 5 : Tolerance class creation step 3
Input : Xc, ε
Output : X/∼=B

(a quotient set ofX containing duplicates classes)
X/∼=B

← ∅;
for ({xc} ∈ Xc) do

xC ← xc (used for comparison of objects);
xf ← first element ofxc;
xc ← xc\xf (remove the first element fromxc);
while (|xc| > 0) do

xf ← first element ofxc;
xc/∼=B

← xf ;
xc ← xc\xf ;
for (x ∈ xC) do

Add x to xc/∼=B
if it is within ε of all members ofxc/∼=B

;
Removex from xc if it was added toxc/∼=B

;
end
X/∼=B

← X/∼=B
∪ xc/∼=B

;
end

end

4 Support Vector Machines

Support vector machine (SVMs) map input vectors into a high-dimensional feature space via a non-linear
mapping chosen a priori [28]. SVMs are an instance of a popular kernel method for deterministic pattern
classification (see,e.g., [27, 29]). In practice, SVMs provide a supervised learning technique requiring
training data where the central concept is to find the widest margin in ad-dimensional space between the
data belonging to two classes. The data lying on the edge of this margin are called the support vectors and
are used to classify the test data.

Formally, the set of training data is given asTn = {xi, yi}, i = 1, . . . , n, whereyi is the class label and
is given byyi ∈ {−1, 1}, andxi ∈ R

d. Assuming that the training data is lineraly seperable, there exists
a hyperplane that seperates the data such that the pointsx lying on the hyperplane safisfywT

x + w0 = 0,
and allxi ∈ Tn satisfy

yi(w
T
xi + w0) > 0, (5)

wherew is the normal vector of the separating hyperplane. Again using the assumption that the data is
linearly seperable, a margin can always be found around the seperatinghyperplane representing a “dead
zone” in which no training data can be found. As a result, Eq.5 can be redefined as

yi(w
T
xi + w0) ≥ b,

≡ yi(w
T
xi + w0) ≥ 1.

Next, let us define the support vectors as those points which lie on the edgeof the dead zone,i.e., {xi |
yi(w

T
xi + w0) = 1}. Further, recall that the distance between a pointx and a hyperplane is given as

|wT
x + w0| / ‖w‖. Consequently, the distance from the support vectors on either side of the seperating

hyper plane is1 / ‖w‖, which gives a margin of2 / ‖w‖. Moreover, the maximum margin can be found
by minimizing0.5 ‖w‖2 subject to the constraintyi(w

T
xi + w0) ≥ 1.
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Figure 6: Samples from image databases: (a), (b) Leaves Dataset [40], and (d) Berkeley Segmentation
Dataset [39].

This problem can be reformulated in terms of Lagrange multipliers written as

Lp =
1

2
w

T
w −

n
∑

j=1

α
{

yi(w
T
wj + w0 − 1

}

,

where now we are minimizingLp with respect tow, w0, while also requiring the derivatives ofLp with
respect toαi vanish subject toαi ≥ 0 [29]. However, we can solve the dual formulation of this problem and
instead maximize

LD =
n

∑

j=1

−
1

2

n
∑

i=1

n
∑

j=1

αiαjyiyyx
T
i xj , (6)

subject to
∑n

j=1 αjyy = 0, andαi ≥ 0 [29]. Similarly, Eq.6 is also maximized in the case of non-linearly
seperable data, except that the constraints are now

∑n
j=1 αjyy = 0, and0 ≤ αi ≤ γ, whereγ is a penalty

assigned to errors. Lastly, it is important to note that Eq.6 is written in terms of an inner product that allows
the definition of a kernel function (this is important for non-linear decision boundaries). For example, a
linear kernel could be defined asK(xi,xj) = x

T
i xj . The two kernels used in this paper are:
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• Polynomial:K(xi,xj) = (xT
i xj + 1)p, and

• Gaussian:K(xi,xj) = e−‖xi−xj‖
2/2σ2

.

5 Results

Table 2: Tolerance Class Example

# of # of Alg. % correctly Alg. % correctly Alg. % correctly

training images test images classified classified classified

4 196 NM 93.4 SVM 88.3 SVM 37.8

10 190 90.0 (Poly.) 87.9 (Gaus.) 44.7

14 186 90.9 88.2 57.5

20 180 92.2 87.8 60.6

24 176 92.6 86.9 65.9

This section presents results obtained using the NM to observe similarity in pairsof images. First, we
present evidence that demonstrates the NM is up to the task of classifying images. Next, the NM is used
to classify images and the results are compared to those obtained from a SVM for a traditional two class
classification problem.

5.1 NM for classification

The plot given in Fig.5 suggests that the NM would be useful in classification of images. To investigate
this property further, we have used the NM measure to compare the nearness of images from the Berkeley
Segmentation Dataset [39] and from the Leaves Dataset [40] (both freely available online). Specifically, the
image in Fig.3(a)is compared to 200 images (100 from both the leaves and Berkeley datasets,respectively).
The results of these comparisons are given in Fig.6. Note, the number of pixels in the leaf images were
decimated by a factor of 4 to be closer in size to the Berkeley images,i.e., their dimension was reduced
from 896 × 592 to 448 × 296. Further, the measures presented in Eq.’s1 & 3 were weighted by the size
of the indiscernibility/tolerance class. Thus, larger classes contribute moreto the NM than smaller ones.
Lastly, as was mentioned above, the probe functions selected wereB = {H(fs), Avg(fs)}, and the size of
the subimage in all tests was10× 10.

Notice in each plot, the NM nearness measure associated with comparison between leaf images is (for
the most part) larger than that of the NMs associated with comparison betweenFig. 3(a)and the Berkeley
images. These results match our perception of the images in both datasets,i.e., given only the ability to
describe the images using Pal’s entropy and average grayscale, we would associate the first leaf image with
the rest of the images in the leaf database rather than those in the Berkeley dataset. However, there are
exceptions. For example, image 76 (see Fig.7) produces a very low NM forε = 0.01. In this case, it is clear
that (using average grayscale and entropy) these two images are not similar even though they both contain
leaves. Likewise, there are also images in the Berkeley dataset that can produce a high NM givenB. Lastly,
observe that NM values increase withε. Again, this matches our intuition inasmuch as more similarities will
be observed between images if the standard for comparison is relaxed. Infact, this is a desirable property
because it can provide better results, which is the case when comparing theplots in Fig.6(a) to any of the
others.
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Figure 7: Example showing low NM when compared to Fig.3(a)usingB = {H(fs), Avg(fs)} andε = 0.01

5.2 Supervised learning

Based on the results of the previous section, the NM measure was tested in a supervised learning environ-
ment where different sizes of training sets were used as a basis for determining which of the two datasets
an unlabelled image came from. In particular, each training set consisted of an equal number of images
from both collections. The tests consisted of calculating the NM between the test image and each element
in the training set. Then, an average NM was calculated from the measures of each class in the training set.
Finally, the unknown image was labelled as coming from the class with the highestaverage.

SVM were also used to classify the unknown test images. In order to provide a basis for comparison,
the same features were used as for the NM. However, a window size of10× 10 would provide vectors with
extremely large dimensionality,e.g.the dimensionality would be approximately equal to2×M/10×N/10.
Thus, in order to avoid the curse of dimensionality (where the number of samples required increases expo-
nentially with the dimensionality of the feature space [27]), the test image was divided into four quadrants
and the average grayscale and Pal’s entropy were calculated for eachquadrant. This produced vectors with
eight dimensions for each image. Once the vectors were created, the test images were classified using the
Matlab SVM and Kernel Methods Toolbox [41]. The results for both thesetests are reported in Table2.
Observe that the NM measure outperforms the SVM for all sizes of training sets.

6 Conclusion

This article presents a practical application of near sets in discovering similarimages and in measuring the
degree of similarity between images. Near sets themselves reflect human perception, i.e., emulating how
humans go about perceiving and, possibly, recognizing objects in the environment. Although a consideration
of human perception itself is outside the scope of this article, it should be notedthat a rather common sense
view of perception underlies the basic understanding of near sets (in effect, perceiving means identifying
objects with common descriptions). And perception itself can be understood inMaurice Merleau-Ponty’s
sense [16], where perceptual objects are those objects captured by the senses. In presenting this application,
this article has presented details on how to apply near set theory to the problem of classification of images
by way of calculating the nearness of images. The results presented heredemonstrate that the NM measure
can be used effectively to create pattern classification systems. Moreover, it is the case that the choice of
probe functions is very important. The results obtained so far in comparing nearness measures and SVM are
promising. Future work in this research includes further comparisons between SVMs and NMs relative to
selections of features and corresponding probe functions. For example, it may be that probe functions that
are invariant with respect to scale, rotation, and translations would produce closer results. What is certain
is that the results presented in this article demonstrate that near set theory can be a useful tool in image
recognition systems and that perception based classification is possible.
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