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Abstract

Pattern classification methodologies are present in mastgs)\s that we depend on daily. In these
systems, classes are created based on human perceptiendifjéicts being classified. Thus, it is im-
portant to have systems that accurately model human p@neptear set theory provides a framework
for measuring the similarity of objects based on featuras diescribe them in much the same way that
humans perceive objects. In this paper, we show that these¢@pproach can be used to classify im-
ages. Further, the results presented here suggest thatdheset approach can be used in any image
classification system. The contribution of this article jgeaception based classification of images using
near sets.

1 Introduction

The problem addressed in this article is one of reconciling human perceytlothat of image processing
and pattern recognition systems. The tgrenceptionappears in the literature in many different places with
respect to the processing of images. For instance, the term is oftenarsihionstrating that the perfor-
mance of methods are similar to results obtained by human subjects (as i [ii§,.sed when the system
is trained from data generated by human subjects (as in [2]). Thus, ia é&xasnples, a system is consid
ered perceptual if it mimics human behaviour. Another illustration of the ugeeption is in the area
of semantics with respect to queries [3,4]. For instance, [4] focusegleries for 3-D environmentse.,
performing searches of an online virtual environment. Here the quedtiperception is one of semantics
and conceptualization with regard to language and queries. For exanugk, might want to search for the
tall tree they remembered seeing on one of their visits to a virtual city.
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Engineering Research Council of Canada (NSERC) grant 1859BBRCT Postgraduate Doctoral Fellowship PGS-D3, University
of Manitoba Faculty of Engineering grant, and Canadian Arthritis NetwoakigSRI-BIO-05.



Other interpretations gberceptionare tightly coupled to psychophysidss. perception based on the
relationship between stimuli and sensation. For example, [5] introducesuaggrerception model. The
texture perception model uses the antagonistic view of the Human Visuah{diéS) in which our brain
processes differences in signals received from rods and cahes than sense signals, directly. An image-
feature model of perception has been suggested by Mojsitt\at. [6], where it is suggested that humans
view/recall an image by its dominant colours only, and areas containing sroaldominant colours are
averaged by the HVS. Other examples of the term perception defined inntextof psychophysics have
also been given [7-13].

Perception as explained by psychologists [14, 15] is similar to the undéns¢aof perception in psy-
chophysics. In a psychologist’s view of perception, the focus is moteemental processes involved rather
than interpreting external stimuli. For example, [15] presents an algorithoetecting the differences be-
tween two images based on the representation of the image in the humanemgindolours, shapes, and
sizes of regions and objects) rather than on interpreting the stimuli prdduoen looking at an image. In
other words, the stimuli from two images have been perceived and the minichavusletermine the degree
of similarity.

The view of perception presented in this article combines the basic und#irgjani perception in psy-
chophysics with a view of perception found in Merleau-Ponty’s worK.[T®at is, perception of an object
(i.e. in effect, our knowledge about an object) depends on information igaths/ our senses. The pro-
posed approach to perception is feature-based and is similar to the ongséidin the introduction of [17].
In this view, our senses are likened to probe functiores, (mappings of sensations to values assimilated
by the mind). A human sense modelled as a probe measures the physieatetistics of objects in our
environment. The sensed phyical characteristics of an object are iddniifth object features. It is our
mind that identifies relationships between object feature values to forreperas of sensed objects [16].
In this article, we show that perceptidre. human perception, can be quantified through the use of near sets
by providing a framework for comparing objects based on object deierip Objects that have the same
appearance.g., objects with matching descriptions) are considgrecteptually near each otheBets are
considered near each other when they have “things” (perceivedtepje common. Specifically, near sets
facilitate measurement of similarity between objects based on feature vahieméal by probe functions)
that describe the objects. This approach is similar to the way human peotgadts (seeg.g [18]) and as
such facilitates pattern classification systems. Much work has been r@potie area of near sets [19-21],
which are an outgrowth of the rough set approach to obtaining approxknateedge of objects that are
known imprecisely [22—26)].

Pattern classification methodologies can be found in many systems, rangmgfroto radar to as-
sembly line manufacturing. In each case, feature vectors are gen&@teéach unknown object being
classified. Many of these systems use a supervised learning apprbach atraining set is employed to
learn a decision function for classifying unknown patterns [27]. THislarintroduces a Nearness Measure
(NM) based on near set theory that measures the similarity of pairs of imagekermore, the NM is used
in a supervised learning environment to classify an unknown image anedhkésrare compared with results
obtained using Support Vector Machines (SVMs) [27-29]. The cartidb of this article is a perception
based classification of images using near sets.

This article is organized as follows: Sectidgives a brief introduction to near sets with an emphasis on
indiscernibility and tolerance relations. Sectlboutlines the steps for combining near set theory with image
processing for use in pattern classification. Secfigmovides an overview of SVM and Sectiérpresents
a comparison of results using using near sets and SVMs for image clagsificehe work presented in this
article is a continuation of recent applications of near set theory repiori8@—34], and the contribution of
this work is a step toward perception-based pattern classification.
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2 Near sets

Near set theory focuses on sets of perceptual objects with matchimiptiess. Specifically, leD represent
the set of all objects. The description of an object O is given by

¢(x) = (d1(x), P2(2), .-, ¢i(), . .., di()),

where! is the length of the description and eagl{x) is a probe function that describes the object
Furthermore, we can define a dethat represents all the probe functions used to describe an abject
Next, a perceptual information systeshcan be defined aS = (O, F, {Valy, },cr), WhereF is the set
of all possible probe functions that take as the domain objects, iand{V aly, }4,cr is the value range
of a functiong; € F. For simplicity, a perceptual system is abbreviated@sF) when the range of the
probe functions is understood. It is the notion of a perceptual systenisthathe heart of the following
definitions.

Definition 1 Indiscernibility Relation Let(O,F) be a perceptual system. For eve#yC F the indiscerni-
bility relation ~ is defined as follows:

~p={(z,9) € O x O : || ¢(z) = ¢(y) ||= 0},
where||-|| represents thé* norm. If 3 = {¢} for somep € F, instead of+ ) we write~g,.

Defn. 1 is a refinement of the original indiscernibility relation given by Pawlak in 1p&]. Using the
indiscernibility relation, objects with matching descriptions can be groupedhegérming granules of
highest object resolution determined by the probe functiois ihhis gives rise to an elementary set

T/, ={2' € X | 2" ~px},

defined as a set where all objects have the same description. Similarlytiangieet is the set of all
elementary sets defined as
O = {7y | © € O}.

Defn. 1 provides the framework for comparisons of sets of objects by introdweceuncept of nearness
within a perceptual system. Sets can be considered near each othetheyéave “things” in common. In
the context of near sets, the “things” can be quantified by granulesastaptual system.e., the elementary
sets. For practical reasons, the absolute characteidbads to a weakened relation between s€13%
where one can find at least one pair of objects X, y € Y that have matching descriptions. Then we say
that X, Y are weakly near each other.

Definition 2 Weak Nearness Relation [35).et (O, F) be a perceptual system and [§tY C O. A setX

is weakly near to a sét within the perceptual systet®, F) (XipY) iff there arez € X andy € Y and
there isB C IF such thatr ~3 y. In the case where sef§, Y are defined within the context of a perceptual
system as in Deff, thenX, Y are weakly near each other

Let the setsX andY be near each other ifO,F), i.e, there existss € X,y € Y,B C F such that
x ~g 1. Then, as reported in [32], a NM betwedhandY  is given in (L).

NM _ Zx/"‘Be‘XV/NB Zy/"’BEYV/"‘B n(x/NB7y/NB> (1)
o max (| X, |, [Y)s]) ’

LA comparison on the difference between a nearness relation and avammaiess relation is outside the scope of this paper. For
further discussion see [35].
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where

(L s Y/rog) =
{min(!w/NB\, W/msl) I 0(2) = (y) [[= 0,

0 , otherwise

As an example of the degree of nearness between two sets, consideirRighich each image consists
of two sets of objectsX andY’, that are subsets of the universe of objegtsEach colour in the figures
corresponds to an elementary set where all the objects in the class sha@rth description. The idea
behind Eq.1 is that the nearness of sets in a perceptual system is based on thelitardirequivalence
classes that they share. Thus, the sets in Hig) are closer (more near) to each other in terms of their
descriptions than the sets in Fifb).

(@) (b)

Figure 1: Example of degree of nearness between two sets: (a) Higkedefghearness, and (b) low degree
of nearness.

2.1 Tolerance relation

When dealing with perceptual objects (especially, components in imagespihstimes necessary to relax
the equivalence condition of Defi.to facilitate observation of associations in a perceptual system. This
variation is called a tolerance relation and is given in D&fn.

Definition 3 Tolerance RelationLet (O, F) be a perceptual system and tet R (set of all real numbers).
For every5 C I the tolerance relatio® is defined as follows:

g = {(z,y) € Ox O :| ¢(x) — d(y) ||< €}

If B = {¢} for somesp € F, instead of=,, we write=,. Further, for notational convince, we will write
=5 instead o3 . with the understanding thatis inherent to the definition of the tolerance relation.

As in the case with the indiscernibility relation, a tolerance class can be defined
Tjmy ={y € X |y =pa}. 2)

Note, Defn.3 does not uniquely partitio® (i.e. an object can belong to more than one class) which is
why Eq.2 is called a tolerance class instead of an elementary set. In addition, eadh phajectsx, y in

a tolerance class,~,, must satisfy the conditiofi ¢(z) — ¢(y) [|< e. Next, a quotient set for a given a
tolerance relation is the set of all tolerance classes and is defined as

O/%B = {.’I}/EB ’ x e O}

Cl Laboratory TR-2009-016 4



As was the case with the equivalence relation, tolerance classes refa@nships in perceptual systems
leading to the definition of a tolerance nearness relation.

Definition 4 Weak Tolerance Nearness Relatiofi36]

Let (O, F) be a perceptual system and &Y C O, ¢ € R. The setX is perceptually near to the séf
within the perceptual systefi®, F) (X . Y) iff there existse € X,y € Y and thereis & € F,e € R
such thatr =5 y. If a perceptual system is understood, then we say shortly that’d seperceptually near
to a setY” in a weak tolerance sense of nearness.

Similar to Eqg.1, a NM under the tolerance relation is given as

NMgB _ Z Z 5 (x/EB ) y/%B) (3)

’
$/EB€X/§B y/EBGY/gB maX(‘Z’/%B” ’y/NB’)

where

§($/g57y/f:vg) =
{min(lx/egla yy=sl) I ([ o(2) — oY) I< e,

0 , otherwise

Notice the subtle difference between the two nearness measures. Sjacks can belong to more than
one tolerance class, the denominator of Ehas moved inside the summation. Similarly, EG.& 3 are
equivalent when = 0.

The following simple example highlights the need for a tolerance relation as svdkmonstrates the
construction of tolerance classes from real data. Consider Tdhkt contains 20 objects witkh(x;)| = 1.
Letting e = 0.1 gives the following tolerance classes:

X~y = @1, 28,710, 711}, {71, T9, 710, 711, 714},
{72, 27,718, 719},
{w3, 212, 217},
{w4, 213, 220}, {24, 718},
{25, 26, 715, 216}, {25, ¥6, T15, T20},
{w6, w13, 720} }
Observe that each object in a tolerance class satisfies the conitian — ¢(y) ||< ¢, and that almost all

of the objects appear in more than one class. Moreover, there would by wlasses if the indiscernibility
relation was used since there are no two objects with matching descriptions.

3 Near Sets and Image Classification

Near set theory can be used to determine the nearness between two inihgasearness measure can
be considered a feature value as defined in pattern classification litefseare.g, [27]). The following
sections describe an approach for applying near set theory to images.

3.1 Image processing

Briefly, this section defines some image processing notationdLeY € N respectively denote the quanti-
ties width and height, and let the mathematical representation of an image usgrgykeale colour model

Cl Laboratory TR-2009-016 5



Table 1: Tolerance Class Example
z, ¢(x) xm Plx) w ) o H(w)
ry .4518 x4 .6943 217 .4002 x4 .6079
xro 9166 x7 .9246 x1o .1910 217 .1869
xs 1398 =xg .3537 x13 .7476 x15 .8489
ry 1972 xz9 4722 w14 .4990 219 .9170
x5 .6281 x19 .4523 x15 .6289 x99 .7143

be defined ag : {1,...,M} x {1,..., N} — [0,255]. Similarly, let a subimag¢; of f be defined as
fs :Ap,..., P} x{q,...,Q} — [0,255] wherep < P < M andq < @ < N. Furthermore, given an
image f, the probabilityp; of a pixel taking on a valué € [0, 255] is given byp; = T;/T, whereT; is the
count of grey level in f,andT = M x N.

3.2 Information content

Shannon introduced entropy as a measure of the amount of informatieddaimeceiving a message from
a finite codebook of messages [37]. The idea was that the gain of infomfadim a single message is
proportional to the probability of receiving the message. Thus, regeavimessage that is highly unlikely
gives more information about the system than a message with a high probafditapsmission. Formally,

let the probability of receiving a messagef n messages be, then the information gain of a message can
be written as

Al =log(1/p;) = —log(pi), 4
and the entropy of the system is the expected value of the gain and is calasate

n

H= - pilog(p).

i=1

However, as reported in [37], Shannon’s definition of entropy ssiffem three things: it is undefined when
p; = 0; that in practise the information gain (whether probable or un-probabta)ld lie in the interval
[0, 1] and not at the limits (which is the case when using £gand that a statistically better measure of

ignorance is 1 p; rather thanl /p;. As a result, [37] lists the following desirable properties of an entropic
function:

P1: AI(p;) is defined at all points ifD, 1].

P2: limy,, .o AI(p;) = AI(p; = 0) = k1, k; > 0 and finite.
P3: limp, 1 AI(p;) = Al(p; = 1) = ko, k2 > 0 and finite.
P4: ko < kq.

P5: With increase ip;, AI(p;) decreases exponentially.
P6: Al(p) andH, the entropy, are continuous for< p < 1.

P7: H is maximum when alp;’s are equali.e. H(p1,...,pn) < H(1/n,...,1/n).

Cl Laboratory TR-2009-016 6



Keeping these properties in mind, [37] defines the gain in information froevant as
AlI(p;) = P,

which gives the entropy as
H = Zpie(l_p")-

i=1

3.3 Example of near images

The nearness of two images can be discovered by partitioning each of thesiinég subimages and letting
these represent objects in a perceptual systanlet the setsX andY represent the two images to be
compared where each set consists of the subimages obtained by partittomingages. Then, the set of
all objects in the perceptual system is given®y= X U Y. Objects in this system can be described by
probe functions that operate on images. Simple examples include avetage oo maximum intensity
(see,e.q, [38] for other examples of image probe functions). The results preden this article use the
probe functiond3 = {H(fs), Avg(fs)}, whereH(f) is Pal's entropy of a subimage, and Ayqg) is the
average grayscale of a subimage. Average grayscale is used in addiffat's entropy to differentiate
between areas in an image that have the same information content. For exasyidénage that consists
of all black pixels produces the same value of entropy as a subimage ttainsoall white pixels (or rather
any subimage of uniform intensity).

Our first example of near images is given in R2gvhere Fig.2(a)is being compared first to itself and
then to Fig.'s2(b)-2(e). Each image is a Bitmap of sizZ0 x 200, each coloured square has dimensions
100 x 100, and the size of each subimagéis< 10. The NMs were calculated using both the indiscernibility
relation (Eq.1) and the tolerance relation (E8). Notice that in both cases the NMs are the same due to
a small choice ot. In this case¢ would have to be much larger than 1 to produce a different NM since
the grey levels are not close to each other. Also note, the values ramge frthe case of the image being
compared to itself, to 0, the case of the images being completely different.

Our next example provides a visual representation of both equivakmtéolerance classes. Fig).
consists of images from the Berkeley Segmentation Dataset [39] and thed_Pataset [40], which are
also used to obtain the results presented in Se®ext, Fig.4 consists of images depicting the equivalence
and tolerance classes created from Bfg) Fig. 4(a)was created using Eq. with B = Avg(fs) and a
window size of 5 pixels, and each grey level represents a differess.cl8imilarly, Fig.4(b) shows the
number of classes each subimage belongs to, and was created ustgiffge = 0.1 and a window size
of 10 pixels. Notice that it is difficult to display the different classes urtlertolerance relation, since
each object can belong to more than one class; however, it would look stmiég. 4(a) except that each
subimage would have multiple colours designating class membership.

Finally, Fig.5is a plot of N M values comparing the nearness of Fig(a)& 3(b)and Fig.’'s3(a)& 3(c)
for e = 0,0.01,0.05,0.1 (note, the indiscernibility relation is used fer= 0). Observe that the two leaf
images produce a higher NM than Fg&f{a)and the Berkeley image because the leaf images produce objects
that have more in common in terms of their descriptions (using the probe fusdtid®). These results
match our perception of the similarity between these three images.

3.4 Algorithms

This section outlines the steps required to calculate the nearness of imaggethesrelations outlined in
Sect.2. Starting with the indiscernibility relation, the first step is to calculate the quotetr{eguivalence
classes) of each image. This process is given in Algnd is accomplished by assigning a label, to

each object (subimage) and calculatiig:.). Then the subimages are grouped together based on their

Cl Laboratory TR-2009-016 7



@ (b)
(© (d)

(e)

Figure 2: Example of NM comparing first image to the remaining three: (a)paastrn for comparison
(note, NM., = NM=~, = 1 when compared to itself), (AN M., = NM=~, = 0.75, (C) NM., =
NMex, =0.5,(d)NM., = NM=~, = 0.25, and (e)NM., = NM=~, = 0.

Figure 3: Samples from image databases: (a), (b) Leaves DatasetfD]c) Berkeley Segmentation
Dataset [39].

descriptions using the indiscernibility relation. This creates a new partitioreofithge (called the quotient
set) based on object descriptions. Once the quotient set of each immgedradetermined, the degree of
nearness between two sets can be calculated by comparing their elemetgaiyhss process is described
by Alg. 2

The creation of a quotient set under the tolerance relation requiresnfaiartasks. The first step (given
in Alg. 3) simply creates a set of objeck from an input image. The next step (given in Afh.is a “first
pass” over the set of objects, where the goal is to find for @aehX, a setX’ consisting of all the objects in
X for which the conditior]| ¢(x) — ¢(2’) || < eis satisfied. In other words{’ consists of objects where the
only constraint is that all elements must satisfy the tolerance relationng@hd not the rest). The output of

Cl Laboratory TR-2009-016 8



(@) (b)

Figure 4. Examples showing visualization of equivalence and toleranssedaobtained from image
Fig 3(a) (a) Equivalence classes created usthg: Avg(fs), and (b) plot showing the number of classes a
subimage belongs to under the tolerance relation.

0.45

—O— Fig.'s 3a & 3b
L| =O="Fig.'s 3a & 3¢

0.35F

0.4

0.3F

0.25F

0.2r

0.15F

0.1F

0.05F

Figure 5: Plot showingV M values comparing Fig.'8(a) & 3(b) and Fig.'s3(a) & 3(c) for ¢ =
0,0.01,0.05,0.1

the algorithm is a collection of all the se¥s, i.e. X, = [J{X'}. The next step involves going through the
classes in the séf. and creating tolerance classes. Thus, for dach € X, the goal is to create tolerance
classes under which the tolerance relation holds for each unorddresf peements in the class. This step
is shown in Alg.5. Finally, the last step is to remove any duplicate classes in the quotient sieieabftam
Alg. 5.

As an example, of Alg.'9 & 5, consider again the sample data given in TabléJsing this data, the
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Algorithm 1: Algorithm for calculating equivalence classes

Input : f (image),M (image width),N (image height);? (area of subimage)3 (set of probe
functions for object description)

Output: X,z (set of equivalence classes for imafe
X/NB — 0
c+—0;
for (¢ =1,9¢ < N; ¢+ =1)do
for (p =1, p < M; p+ =) do
Q — min(q+~v — 1, M);
P — min(p+~y—1,N);
Define subimag¢g; over domain{{p,..., P} x {q,...,Q}};
Assign f the object labek,;
found < false
for (m/NB € X/NB ) do

if z.~p x,.5then

found « true;
Z/B < T /B U x¢;

end
end
if Ifoundthen

‘ X/NB — X/NB U {l’c},

end
c+—c+1;
end
end

Algorithm 2 : Algorithm for calculating the degree of nearness between two sets

Input : X, ., Y,., (quotient set of each image)
Output: NM.,,
NM., « 0;
for (a:/NB S X/NB) do
for (y/~p € Y/p) do
if T/uB ~BY/~B then
| NM., — NM., +min(|z,gl, |y/~5]);
end
end
end
NMNB <_ NMNB/maX(’X/NB’ﬂ ’Y/NBD;

output of Alg.4 is
Xe = {{z1, 28,29, 210, 211, 714},
{x2, 27,218, 219},
{9637 €12, 1'17}7

{x4, 213, 218, 220},

{720, 74, 75, 76, T13, T15} }
Cl Laboratory TR-2009-016
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Algorithm 3: Tolerance class creation step 1
Input : f (image),M (image width),NV (image height);? (area of subimage)
Output: X (set of objects)
X —0;
c+0;
for (4 =1, ¢ < N; ¢+ =~) do
for(p=1;p < M; p+=+)do
Q « min(q +v — 1, M);
P — min(p+~y—1,N);
Define subimag¢g, over domain{{p, ..., P} x {q,...,Q}};
Assign f, the object labek,;
X — XUz
c—c+1;
end
end

Algorithm 4 : Tolerance class creation step 2
Input : X (set of objects)e
Output: X, (consisting of sets where the all elements satisfy the tolerance relation withsthe fi
element)
Xe—0;
for (z € X) do

Te — X,
for (' € X) do
if x # 2" and|| ¢(z) — ¢(2’) ||< e then
‘ Te — e U (L‘/;
end
end
Xe — X U{ze}s
end

Similarly, the output of Alg5is

X~y = {8, 21,710,711}, {®9, 21, 710, 711, 714},
{27, 22, 718, 719},
{712, 73, 217},

{13, 24, 220}, {218, T4},

{z4, 20, 213},

{x57 L2076, $15}}

Notice that the order of the elements is the order they are placed in the cléss &lgorithm. In addition,
the output of Alg.5 will intentionally always produce duplicate classes in order to identify et@eyance
class.

Cl Laboratory TR-2009-016 11



Algorithm 5: Tolerance class creation step 3
Input : X, e
Output: X/~ (a quotient set o' containing duplicates classes)
X/gB —0;
for ({z.} € X.) do
xc «— z. (used for comparison of objects);
xy « first element ofr;
z. — x.\xy (remove the first element from.);
while (|z.| > 0) do
x s « first element ofr,;
Leja2 < Ty,

Te — T\TF,

for (x € x¢) do
Add z to z/~,, if it is within € of all members ofr, /-~ ,;
Remover from z. if it was added tac, /-~ .;

end

X/%B - X/EB UZeja;

end

end

4 Support Vector Machines

Support vector machine (SVMs) map input vectors into a high-dimensieaélife space via a non-linear
mapping chosen a priori [28]. SVMs are an instance of a popular kare#hod for deterministic pattern
classification (seee.g, [27, 29]). In practice, SVMs provide a supervised learning tecteigaguiring
training data where the central concept is to find the widest marginfidienensional space between the
data belonging to two classes. The data lying on the edge of this margin aktballsupport vectors and
are used to classify the test data.

Formally, the set of training data is givenBs = {x;,y;}, i = 1, ..., n, wherey; is the class label and
is given byy; € {—1,1}, andx; € R?. Assuming that the training data is lineraly seperable, there exists
a hyperplane that seperates the data such that the polyitsy on the hyperplane safisfy”x + wg = 0,
and allz; € T, satisfy

yi(wh'x; +wp) > 0, (5)

wherew is the normal vector of the separating hyperplane. Again using the assantipdibthe data is
linearly seperable, a margin can always be found around the sepengpegplane representing a “dead
zone” in which no training data can be found. As a result,3=cpn be redefined as

yi(wlx; +wo) > b,
= yi(wa,- + wp) > 1.

Next, let us define the support vectors as those points which lie on theoédige dead zone,e., {z; |
yi(wl'x; + wg) = 1}. Further, recall that the distance between a pgind a hyperplane is given as
|lwlx +wp| / ||w]. Consequently, the distance from the support vectors on either side seperating
hyper plane id / || w ||, which gives a margin of / || w||. Moreover, the maximum margin can be found
by minimizing0.5 ||w||? subject to the constraint(w’x; + wp) > 1.

Cl Laboratory TR-2009-016 12
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Figure 6: Samples from image databases: (a), (b) Leaves DatasgtfiD]d) Berkeley Segmentation
Dataset [39].

This problem can be reformulated in terms of Lagrange multipliers written as

1 n
L, = §WTW — Z a{yi(wTWj +wo — 1},
j=1

where now we are minimizing.,, with respect tow, wg, while also requiring the derivatives @f, with
respect tay; vanish subject tay; > 0 [29]. However, we can solve the dual formulation of this problem and
instead maximize

n n n
Lp=>) - > aiagyiyyx] x;, (6)
j=1 i=1j=1

N |

subject toy_7'_; vy, = 0, anda; > 0 [29]. Similarly, Eq.6 is also maximized in the case of non-linearly
seperable data, except that the constraints arew a;y, = 0, and0 < «; < v, wherey is a penalty
assigned to errors. Lastly, it is important to note that@gg.written in terms of an inner product that allows
the definition of a kernel function (this is important for non-linear decisiooralaries). For example, a
linear kernel could be defined #§(x;, x;) = x! x;. The two kernels used in this paper are:
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e Polynomial: K (x;,x;) = (x!x; + 1), and

H . 112 2
o Gaussiank (x;,x;) = e~ lki=xill"/207,

5 Results
Table 2: Tolerance Class Example
# of # of Alg. %correctly Alg. % correctly  Alg. % correctly
training images testimages classified classified classified
4 196 NM 93.4 SVM 88.3 SVM 37.8
10 190 90.0 (Poly.) 87.9 (Gaus.) 44.7
14 186 90.9 88.2 57.5
20 180 92.2 87.8 60.6
24 176 92.6 86.9 65.9

This section presents results obtained using the NM to observe similarity ingb@nsiges. First, we
present evidence that demonstrates the NM is up to the task of classifyingamisigxt, the NM is used
to classify images and the results are compared to those obtained from a@\AMraditional two class
classification problem.

5.1 NM for classification

The plot given in Figh suggests that the NM would be useful in classification of images. To investiga
this property further, we have used the NM measure to compare the sgsafienages from the Berkeley
Segmentation Dataset [39] and from the Leaves Dataset [40] (boti &ealable online). Specifically, the
image in Fig.3(a)is compared to 200 images (100 from both the leaves and Berkeley dataspestively).
The results of these comparisons are given in BigNote, the number of pixels in the leaf images were
decimated by a factor of 4 to be closer in size to the Berkeley imagestheir dimension was reduced
from 896 x 592 to 448 x 296. Further, the measures presented in Ef& 3 were weighted by the size
of the indiscernibility/tolerance class. Thus, larger classes contribute tmdhe NM than smaller ones.
Lastly, as was mentioned above, the probe functions selectedBverd H( fs), Avg( fs)}, and the size of
the subimage in all tests was x 10.

Notice in each plot, the NM nearness measure associated with comparis@ebdéaf images is (for
the most part) larger than that of the NMs associated with comparison beBigeed{a) and the Berkeley
images. These results match our perception of the images in both dataseggyen only the ability to
describe the images using Pal’s entropy and average grayscale, Wkagsaciate the first leaf image with
the rest of the images in the leaf database rather than those in the Berkelsgtddiowever, there are
exceptions. For example, image 76 (see Fjgoroduces a very low NM for = 0.01. In this case, it is clear
that (using average grayscale and entropy) these two images are not sirailethough they both contain
leaves. Likewise, there are also images in the Berkeley dataset thaiochrcera high NM giver8. Lastly,
observe that NM values increase withAgain, this matches our intuition inasmuch as more similarities will
be observed between images if the standard for comparison is relaxtxtt,Ithis is a desirable property
because it can provide better results, which is the case when comparipipthée Fig.6(a)to any of the
others.
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Figure 7: Example showing low NM when compared to Bi@)using3 = { H(fs), Avg(fs)} ande = 0.01

5.2 Supervised learning

Based on the results of the previous section, the NM measure was testedperaised learning environ-
ment where different sizes of training sets were used as a basis foma@tey which of the two datasets
an unlabelled image came from. In particular, each training set consistedeatfusal number of images
from both collections. The tests consisted of calculating the NM between thientege and each element
in the training set. Then, an average NM was calculated from the meadw@ashoclass in the training set.
Finally, the unknown image was labelled as coming from the class with the hiaNverstge.

SVM were also used to classify the unknown test images. In order to grevishsis for comparison,
the same features were used as for the NM. However, a window sife>0f 0 would provide vectors with
extremely large dimensionalitg,g.the dimensionality would be approximately equalto M /10 x N/10.
Thus, in order to avoid the curse of dimensionality (where the number ofleamgguired increases expo-
nentially with the dimensionality of the feature space [27]), the test image wakediinto four quadrants
and the average grayscale and Pal’s entropy were calculated fogeadtant. This produced vectors with
eight dimensions for each image. Once the vectors were created, the tgesimeare classified using the
Matlab SVM and Kernel Methods Toolbox [41]. The results for both thesés are reported in Tabk
Observe that the NM measure outperforms the SVM for all sizes of traieisg s

6 Conclusion

This article presents a practical application of near sets in discovering simdges and in measuring the
degree of similarity between images. Near sets themselves reflect humaptmerg.e., emulating how
humans go about perceiving and, possibly, recognizing objects intireement. Although a consideration
of human perception itself is outside the scope of this article, it should be ti@ied rather common sense
view of perception underlies the basic understanding of near sets éict,gfferceiving means identifying
objects with common descriptions). And perception itself can be understdddunice Merleau-Ponty’s
sense [16], where perceptual objects are those objects capturegisgnites. In presenting this application,
this article has presented details on how to apply near set theory to therprobtgassification of images
by way of calculating the nearness of images. The results presenteddmomstrate that the NM measure
can be used effectively to create pattern classification systems. Moréadgehe case that the choice of
probe functions is very important. The results obtained so far in compagimignass measures and SVM are
promising. Future work in this research includes further comparisonseket®8VMs and NMs relative to
selections of features and corresponding probe functions. For éxaitnmay be that probe functions that
are invariant with respect to scale, rotation, and translations would peoclaser results. What is certain
is that the results presented in this article demonstrate that near set thedrg eauseful tool in image
recognition systems and that perception based classification is possible.
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