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Abstract. We review and model the experimental parameters which characterize elastic properties of mi-
crotubules. Three macroscopic estimates are made of the anisotropic elastic moduli, accounting for the
molecular forces between tubulin dimers: for a longitudinal compression of a microtubule, for a lateral
force and for a shearing force. These estimates reflect the anisotropies in these parameters observed in
several recent experiments.

PACS. 36.20.-r Macromolecules and polymer molecules – 87.16.Ka Filaments, microtubules, their net-
works, and supramolecular assemblies

1 Introduction

The cytoskeleton is composed of three different types of
filaments organized in networks: microfilaments (MF), in-
termediate filaments (IF) and microtubules (MT). Each
of them has specific physical properties and structures
suitable for their role in the cell. For example, the two-
dimensional arrangement of MFs in contractile fibers, so-
called stress fibers, appears to form cable-like structures
involved in the maintenance of the cell shape and trans-
duction pathways. F-actin can support large stresses with-
out a great deal of deformation and it ruptures at approxi-
matively 3.5N/m

2
[1]. IFs have a rope-like structure com-

posed of fibrous proteins consisting of two coiled coils and
are mainly involved in the maintenance of cell shape and
integrity. Ma et al. [2] shows that IFs resist high applied
pressures by increasing their stiffness. They can withstand
higher stresses than the other two components without
damage [1].

MTs are long hollow cylindrical objects made up of
12 to 17 protofilaments under in vitro conditions, and
typically of 13 protofilaments in vivo. Protofilaments con-
sist of α-, β-tubulin heterodimers longitudinally arranged.
Each protofilament is shifted lengthwise with respect to its
neighbor describing left-handed helical pathways around
the MT. MTs are involved in a number of functions of the
cell such as cell shape maintenance, mitosis and they play
an important role in intracellular transport. By biological
standards, MTs are rigid polymers with a large persis-
tence length of 6mm [3]. From Jamney’s experiments [1],
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MTs suffer a larger strain for a small stress compared to
either MFs or IFs. The rupture stress for MTs is very
small and typically is about 0.4–0.5N/m2 [1]. The lateral
contacts between tubulin dimers in neighboring protofil-
aments have a decisive role for MT stability, rigidity and
architecture [4]. Tubulin dimers are relatively strongly
bound in the longitudinal direction (along protofilaments),
while the lateral interaction between protofilaments is
much weaker [5].

There have been a number of experimental studies in
recent years dealing with the various aspects of the elas-
ticity of MTs. Section 2 summarizes in detail the results
of experimental investigations. On the other hand, theo-
retical effort in this area has been much more limited. For
example Jánosi et al. [6] have studied the elastic prop-
erties of MT tips and walls and the various shapes ob-
served from electron micrographs have been shown to be
consistent with their simple mechanical model. However,
their model deals chiefly with the geometrical character-
istics of MTs and not with their anisotropic properties
which is the focus of our effort. The limited flexibility of
inter-protofilament bonds in MTs, assembled from pure
tubulin, has also been investigated by Chrétien et al. [7]
via moiré patterns in cytoskeletal micrographs. The posi-
tion of tubulin subunits and their arrangement on the MT
surface enables the moiré period to be predicted.

In this paper we discuss the elastic properties of MTs.
In particular we try to utilize the experimental data found
in the literature for our theoretical estimations. Our start-
ing point is a review of the information found in the liter-
ature regarding the results of experiment and theoretical
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models of elastic properties of MTs. Using recently pub-
lished information regarding dimer-dimer interactions and
the molecular geometry of the MT, we provide estimates
of the elastic moduli accounting for the anisotropy of the
MT filament.

2 Elastic parameter review

The response of a cylinder of length L and cross-sectional
area A, to an extensional force (stretching), F , is described
by Young’s modulus, Y, and the relationship between these
physical quantities is given by Hooke’s law,

F

A
= Y

∆L

L
, (1)

where ∆L is the small length change and the relative ex-
tension, ∆L

L
, is the unidirectional strain along the direc-

tion of the force applied to the cylinder.
Another elastic property is characterized by the shear

or twisting modulus, G, that is expressed, for a homoge-
neous isotropic material, by [5]

G =
Y

2(1 + ν)
, (2)

where ν is Poisson’s ratio, representing the relative mag-
nitude of transverse-to-longitudinal strain and its value
typically lies in the range 0 < ν < 0.5.

Another indicator of the elastic property of a solid is
the parameter called flexural rigidity, κf , that determines
the resistance of a filament to a bending force. The higher
the flexural rigidity, the greater the resistance to bending.
The flexural rigidity is completely determined by the prop-
erties of the bonds between the atoms within each protein
subunit and the properties of the bonds that hold the
subunits together in MTs. For isotropic and homogeneous
materials, the flexural rigidity, κf , can be represented as
the product of two terms (characterizing material proper-
ties and their shape), by

κf = YIy , (3)

where Iy is a shape-dependent parameter called the sec-
ond moment of inertia. For a hollow cylinder [8,3] it is
given by Iy = π(R4

o − R4

i )/4, where Ro and Ri are the
outer and the inner radii, respectively. However, for a
hollow cylinder made up of n cylindrical protofilaments,
where each protofilament has radius r, Iy is given by
Iy =

(

2

π2n
3 + n

)

π
4
r4 [8].

The persistence length, ξp, is another index which de-
scribes the filament’s resistance to thermal forces. Roughly
speaking this length is the distance over which a filament
appears straight and can be expressed by

ξp =
κf
kBT

=
YIy

kBT
, (4)

where kB is Boltzmann’s constant and T is the tem-
perature in Kelvin. The more flexible the filament, the

Table 1. Experimental data for elastic properties of MTs (and
other proteins) from the literature.

Young’s
modulus, Y

(1.2–2.7) ×109 N/m2 [8–11]

(1–5) ×108 N/m2 [5,12]

Shear mod-
ulus, G

1.4N/m2 [13]

103 N/m2 betweenMTs [10]

34N/m2 gel (concentr.-
dependent)

[1]

1.4×106 N/m2 at 25 ◦C
(temp.-dependent)

[5]

Flexural
rigidity, κf

(16–45) ×10−24 Nm2 [14–17,8,18–20]

(2.9–5.1) ×10−24 Nm2 [21]

Poisson’s
ratio, ν

0.3 for macromolecules [22,12]

0.4 for MFs [11]

Persistence
length, ξp

(1–6.3) ×10−3 m [3,15,16]

smaller the persistence length. Polymers for which per-
sistence length and contour length are similar are called
semiflexible polymers.

In Table 1 we list the different values found in the
literature for the above-defined parameters for MTs. From
Table 1 we observe that the shear and Young’s moduli
are significantly different. This observation describes an
anisotropic material. Hence, MTs are inhomogeneous and
anisotropic. The bending deformation and stretching of
filaments are governed by Young’s modulus and the sliding
between filaments is governed by the shear modulus [5].
Note that the values of the shear modulus, G, seem to be
strongly dependent on the experimental conditions and
show little consistency, as we will attempt to elucidate in
Section 4.

3 Estimation of tubulin-tubulin interactions

Tubulin was first imaged to atomic resolution in 1998 [23],
following 30 years of difficult work by a number of labs
with this protein. Nogales et al. published the structure
of α- and β-tubulin which were co-crystallized in the het-
erodimeric form [23]. Electron diffraction was performed
for tubulin assemblies in the form of zinc sheets. The work
establishes that the structures of α- and β-tubulin are
nearly identical and confirms the consensus speculation. A
detailed examination shows that each monomer is formed
by a core of two β-sheets that are surrounded by α-helices.
The monomer structure is very compact, but can be di-
vided into three functional domains: the amino-terminal
domain containing the nucleotide-binding region, an in-
termediate domain containing the taxol-binding site, and
the flexible carboxy-terminal domain.

Using the refined tubulin crystal structure produced
by Löwe et al. [24], Sept et al. [25,26] calculated the
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Fig. 1. MT protofilament. α and β monomers are colored gray and white, respectively. Image created with VMD [27].

protofilament-protofilament energy as a function of the
shift along the protofilament axis. Two protofilaments
were constructed similar to Figure 1 and translated rel-
ative to each other along the MT axis. Using Poisson-
Boltzmann calculations and a surface area term the in-
teraction energy was computed over a 80 Å translation in
2 Å steps. The data published in this work indicate the
presence of two stable equilibrium positions that clearly
correspond to the known MT lattice types A and B.

In fact, a recent paper by VanBuren et al. [28] esti-
mated the values of lateral and longitudinal bond energies
in an MT structure using a stochastic model of assembly
dynamics. Their analysis predicts the lateral bond energy
to be in the range from −2.2 to −5.7 kT (which translates
to −9.1× 10−21 to −2.4× 10−20 J) while the longitudinal
bond energy is given from −6.8 to −9.4 kT (−2.8× 10−20

to −3.9×10−20 J). However, without the knowledge of the
potential’s positional dependence these values cannot pro-
vide information on the corresponding elastic coefficients.

Using this potential map (Sept et al., Fig. 1 [26]) we
have evaluated the corresponding elastic coefficient in a
harmonic approximation around the potential minimum.
We found the value k ≈ 4N/m which will be used in
the next section. Note that an early phenomenological es-
timate of the spring constant k [19] was approximately
40 times smaller and predicted incorrectly that the rigid-
ity of MTs is 100 times lower than that of actin. Unfor-
tunately, still no results are available at present which
would give the values of the elastic coefficients along differ-
ent directions and not just as the result of protofilament-
protofilament shifting along the MT axis as demonstrated
in Sept et al. [25,26]. While this calculation imposes a
computational challenge, it is only a matter of time be-
fore these values are obtained in a subsequent calculation
of MTs anisotropic elastic properties.

Recently, De Pablo et al. have estimated experimen-
tally by radial indentation of MTs with a scanning force
microscope tip a spring constant value related to radial
interactions between neighboring protofilaments [29]. In-
dentations, induced by the nanometer-sized tip positioned
on the top of an MT, result in a linear elastic response
with the spring constant k̃ = 0.1N/m. Clearly, k̃ ¿ k.
Tubulin dimers are relatively strongly bound in the longi-
tudinal direction (along protofilaments), while the lateral
interaction between protofilaments is much weaker [5,30,

0

F

F

F

F

κ

r

Fig. 2. A cubic lattice of particles separated by r0 when in
equilibrium, connected by elastic springs with spring constants
κ and subjected to a force F [8].

26]. Hence, if we define κp as the elastic constant between
the two dimers along a protofilament, and κl as the elas-
tic constant between the two dimers belonging to adjacent
protofilaments, then κp > κl = k.

An order of magnitude estimate of this particular elas-
tic constant, κl, can be found in [19] which, when units
are converted, results in κl = 0.1N/m. This compares very
well with the value given above based on the experiment
reported in [29].

4 Estimate of anisotropic elastic properties
from molecular forces

In this section we will make estimates of the anisotropic
elastic moduli measured for individual MTs based on the
internal geometry of the MT and the molecular forces act-
ing between individual dimers. To give a simple conceptual
example we follow [8] and imagine a perfect cubic lattice
connected by springs, see Figure 2.

Suppose a force F is applied along the line of springs
as indicated in Figure 2. Each bond experiences this force
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which is perpendicular to one side of the lattice. Each
spring will be extended by a small distance ∆r, from
its equilibrium state r0, according to the application of
Hooke’s law to a spring i.e. F = κ∆r. Dividing this rela-
tion through by r2

0
we obtain

F

r2

0

=
κ

r0

∆r

r0
. (5)

The left-hand side of equation (5) represents the force per
unit area or stress whereas ∆r

r0
on the right-hand side, de-

formation per unit length, describes the strain involved.
From equation (1), we therefore obtain Young’s modulus
of this material as Y = κ

r0
. In essence the value of Young’s

modulus is proportional to the spring constant which de-
pends on the strength of the intermolecular forces. It is
inversely proportional to the equilibrium separation be-
tween neighboring molecules.

Although the above estimate appears to be rather
crude at first sight, it compares quite well to earlier work
on polymer elasticity [31] which gives a formula for the
Young’s modulus of a filamentous polymer

Y = κ
r0
πa2

(6)

with r0 denoting the centre-to-centre distance between
neighboring monomers and a representing the radius of
the filament.

Using the same method, we estimate below the effec-
tive elastic moduli for a longitudinal, a lateral and a shear
deformation (Fig. 3).

4.1 Effective Young’s modulus due to longitudinal
compression (directed parallel to the protofilament of
an MT)

When a compressive force, F , is applied as shown in 1) of
Figure 3, there will be a small displacement, ∆rp, of the
distance between two dimers of a particular protofilament
given by

F = κ‖∆rp , (7)

where κ‖ is the elastic constant between the two dimers
along a protofilament (this was referred to earlier as κp).
Dividing both sides of equation (7) by the area, A, over
which the force is applied we obtain

F

A
=

κ‖

A
∆rp. (8)

Suppose N is the number of protofilaments around the
MT, then

A =
1

N
π(R2

o −R2

i ) (9)

where Ro and Ri are the outer and the inner radii of the
MT, respectively.

Hence, from equations (7–9) we obtain

(

F

A

)

=
Nκ‖ l

π(R2
o −R2

i )

(

∆rp
l

)

. (10)

F

F

F

F

F

F

F

1)
Longitudinal

compressive force

2)
Lateral compressive

force

4)
Lateral shearing

force

3)
Longitudinal

shearing force

Fig. 3. Different types of forces applied to a cylinder and re-
sulting deformations. 1) A compressive force applied longitudi-
nally to the tip of the filament. 2) A compressive force applied
laterally to the wall of a filament. 3) A longitudinal shearing
force. 4) A lateral shearing force.

The left-hand side of equation (10) is the stress applied
and the term in the brackets on the right, assuming l is the
equilibrium distance between dimers, is the strain or incre-
mental displacement per unit length. Hence, from equa-
tion (1) the effective Young’s modulus, Y‖, is given by

Y‖ =
Nκ‖ l

π(R2
o −R2

i )
. (11)

We estimate the value of κ‖ to be 4 N/m which is obtained
from the harmonic approximation of the interaction en-
ergy profile published by Sept et al. (see Fig. 1 in [26]).
Further, taking N = 13, l = 8nm, Ro = 12.5 nm, and
Ri = 7.5 nm, and from equation (11) we find that our

estimate of Y‖ is 1.32 × 109 N/m
2
[26] which is in very

good agreement with the experimental data found in the
literature (see Tab. 1).

4.2 Effective elastic modulus due to a lateral force
(perpendicular to the protofilament)

In this case (namely, entry 2) of Fig. 3)

F = κ⊥∆r, (12)

where ∆r is the displacement of dimers in two adjacent
protofilaments and κ⊥ is the elastic constant for the com-
pressive force (see Fig. 4(b)), the experimental value anal-
ogous to κ⊥ has been measured by De Pablo et al. [29].

Since there are two adjacent dimers and we need to
project the force along the line joining the two dimers, we
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R
0

F

F

Ro

θ

(a) (b)

Fig. 4. (a) Side elevation of an MT showing the area in grey
to which the force F is applied. (b) Cross-section of an MT
showing the direction of the applied force.

multiply both sides of equation (12) by 2 sin θ, where θ is
the angle subtended by 2 adjacent dimers at the center of
the MT (see Fig. 4(b)). We then divide the result by an
appropriate area (see Fig. 4(a)), A, given by

A = πRol, (13)

l being the distance between two neighboring layers
(Fig. 4(a)) calculated as a center-to-center distance. Thus,

2F sin θ

A
=

2κ⊥ sin θ

πl

(

∆r

Ro

)

. (14)

The part on the left-hand side of equation (14), 2F/A,
represents the applied stress, and putting the left-hand
sin θ to the right-hand side gives (∆r/Ro sin θ) as the re-
sultant strain, where Ro sin θ is the equilibrium separation
of one pair of dimers. Hence, the effective lateral elastic
modulus, Y⊥, is estimated to be given by

Y⊥ =
2κ⊥ sin θ

πl
. (15)

If we use the value of κ⊥ as the currently available es-
timate for the elastic coefficient [29], i.e. κ⊥ = 0.1N/m,
θ = π

6
, and l = 8nm then the corresponding value of the

Young’s modulus is found to be Y⊥ = 4 × 106 N/m
2
. At

any rate, due to the presence of the sin θ factor in equa-
tion (15) and a small value of θ (θ = 2π

N−1
, where N is the

number of protofilaments) we expect the Young’s modulus
to be anisotropic for the parallel and perpendicular direc-
tions along which it may differ by as much as an order of
magnitude.

4.3 Effective elastic modulus due to a lateral shearing
force (see entry 4) in Fig. 3)

The cross-sectional area of the MT is πR2

o, whereas the
length of the section of an MT (see Fig. 5(a)) is L = nl
where n is the number of layers of dimers and l the dis-
tance between two neighboring layers. The net macro-
scopic displacement, ∆x (see Fig. 5(a)) is obviously given
by ∆x = nδx, where δx (see Fig. 5(b)) is the microscopic

α

x∆

L

F

F

After

f

f

r

rh

δx

A

’

’ ’

’

α

Before

l l

C

B

(a) (b)

Fig. 5. (a) Section of an MT of length L, subjected to a lateral
shearing force, F . (b) Movement of a single dimer as a result
of the force F indicating the undisturbed position (before, B′)
and the position following displacement (after, A′).

lateral displacement due to the shearing force. With fr
denoting the inter-dimer force (see Fig. 5(b)) between a
displaced dimer, A′, and a relatively stationary one, C ′,
we have

fr = κs(l
′
− l) , (16)

where κs is the microscopic elastic constant and l′ − l
denotes the change in the interdimer distance (i.e. the
difference in length between B′C ′ = l and A′C ′ = l′).

We denote the restoring force across the section of the
MT by frh (see Fig. 5(b)) which, by vectorial addition, is
related to the restoring force between dimers A′ and C ′,
fr, by

frh = fr sinα. (17)

If N is the number of protofilaments around the perimeter
of the MT we have

F = Nfrh = Nfr sinα , from equation (17)
= Nκs(l

′ − l) sinα , from equation (16)
= Nκsl(

1

cosα
− 1) sinα ,

(18)
since it follows from Figure 5b that l = l′ cosα. Rearrang-
ing equation (18),

F = Nκsl(1− cosα) tanα (19)

and, using the fact that the cross-sectional area is A =
πR2

o and tanα = δx
l
= ∆x

L
, we have

F

A
=

N

πR2
o

κsl(1− cosα)
∆x

L
= G

(

∆x

L

)

, (20)

where G is the shearing modulus. Hence, we deduce that
the shearing modulus can be finally expressed by

G =
N

πR2
o

κsl(1− cosα) '
N

πR2
o

κsl
α2

2
, (21)

where α is the angle of deformation in radians. We have
used the fact that α is small by expanding the cosine. The
angle α can lie between the following limits:

0.001 ≤ α in radians ≤ 0.1 . (22)
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From equation (21) we see that the shear modulus, G,
varies greatly with possible values of α and hence also with
the size and magnitude of the displacement. Taking typical
values, for example N = 13, l = 8nm, Ro = 12.5 nm and
κs ≈ 0.5N/m, we find G may vary between the following
estimated limits:

53Nm−2
≤ G ≤ 0.5× 106 Nm−2 . (23)

Note that the large variation in the value of G found in
equation (23) reflects the large differences seen in the var-
ious experimental data (see Tab. 1) and may provide an
explanation for this diversity. The crucial point to make
here is that the deformation angle, α, enters into the shear
modulus formula. Combining equations (20) and (21) al-
lows us to calculate the force required for the shearing
action as a function of the angle, α. For example, with
the use of typical structural parameters and for α = 0.1
the shearing force amounts to more than 20 pN which is
quite significant. While the computer simulations of Sept
et al. [26] addressed the problem of longitudinal shearing
forces (see entry 3) in Fig. 3) and the resulting strain, the
currently available experimental techniques are unable to
measure these effects. On the other hand, lateral shearing
forces and their effects can be tested experimentally with
no major difficulties.

5 Discussion

The objective of this paper was to analyze, describe and
theoretically estimate the anisotropic elastic properties of
MTs. This has been possible due to a recently obtained ex-
perimental body of data coming from several groups and
describing a number of physical and structural properties
of MTs. In order to synthesize the data we reviewed the
literature taking into account the geometry of MTs, exper-
imental data, and their extrapolation. The most marked
aspect of MTs observed was the anisotropy of the elas-
tic coefficients. This led us to propose a molecular model
that explains the bulk values in terms of the molecular
protein-protein interactions. By and large the agreement
between theory and experiment is satisfactory. An inter-
esting by-product of this calculation was that the shear
modulus depends on the magnitude of the deformation
whereas Young’s moduli due to a longitudinal or lateral
force are only dependent on the structure of MTs. Hence
the diversity of experimental data may be explained as
arising due to different magnitudes of the forces applied.
It should be noted that the calculation of the shear mod-
ulus, G, defined in equation (21), refers to a completely
different physical situation than the one involved in flexu-
ral rigidity which is commonly measured experimentally,
e.g., using optical tweezers [32]. In the latter case a can-
tilevered beam is subjected to a force, F , applied to its free
tip while the other end is clamped. Take the length of the
rod to be L and the free tip to be deflected from the rest-
ing configuration by a distance y(L). The basic formula
for small-angle deflection is given by F = κ · y(L), where
the cantilever spring constant κ is given by κ = 3κf/L

3

and κf , defined in equation (3), is the flexural rigidity
of the rod [8]. With the flexural rigidity of an MT esti-
mated as κf = 30 × 10−24 Nm2, Gittes et al. [17] found
that the spring constant of an MT with L = 10 µm is
approximately κ ' 10−7 N/m. Consequently a force of
only 1 pN is able to deflect an MT by up to 1µm which is
supported by measurements using laser tweezers [8]. How-
ever, such large deflections are not produced by shearing
forces as calculated above. The difference in the physi-
cal mechanisms is that shearing forces lead to stacking
displacements at right angles to the stack while flexural
forces cause a small-angle bending between dimers in ad-
jacent stacks. Clearly, it is easier to bend a filament than
to exert a shearing force.

All the theoretical estimates of the molecular spring
constants required a knowledge of the tubulin dimer-dimer
interaction potential. In Section 3 we discussed in some
detail how the estimate of the spring constant was made
based on molecular-dynamics simulations or experiments.
This is still a major computational challenge that mer-
its an independent study in its own right. Fortunately,
the published atomic resolution structure of tubulin af-
forded us with an opportunity to carry out preliminary
molecular-dynamics simulations for this problem that pro-
vided only order of magnitude estimates with some degree
of confidence. With the knowledge of one particular inter-
action strength between two neighboring dimers [25,26] as
guidance, we have obtained rough estimates of the molec-
ular spring constants along three different directions on
the MT surface.

An objection may be raised that due to the fact that
an MT is an anisotropic elastic structure, it posesses many
more deformation tensor components than those intro-
duced in the present article. In particular elastic coef-
ficients corresponding to the various off-diagonal effects
linking forces applied in one direction and deformations in
another have not been exhaustively analysed here. This is
true and the deformation tensor would in general contain
21 components [33,34]. However, both experimentally and
theoretically we are not yet at the stage of being able to
estimate many of these off-diagonal components. An MTs’
structure is highly anisotropic elastically and hence we ex-
pect the direct effects of the application of compressional
and tensional forces to be dominant. In our estimates of
the continuum elastic coefficients the link was made to the
molecular structure and protein-protein interactions. We
have used, in addition to geometrical properties of MTs,
approximate values for the handful of spring constants
describing the dimer-dimer interactions in an MT. Once
more detailed molecular-dynamics simulations reveal ad-
ditional interaction constants we will be able to extend the
model to include the remaining tensor components. Alter-
natively, experimental techniques may be utilized to do
measurements of the dispersion relations for the various
phonon modes, e.g. through Brillouin scattering, which
would provide the required information indirectly as is
done in the studies of ferroelasticity.

In conclusion, while the gross elastic anisotropic fea-
tures of MTs are quite well explained with the existing
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models and parameter values, still more work is required
to obtain a higher level of confidence and excellent quan-
titative agreement.
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