
Proof Copy

Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Management — 281

Proof Copy

Proof Copy

17

281

Management of a Server-Based
Bioinformatics Resource

Brian Fristensky

Introduction

The strategies for managing a server-based molecular biology software resource,
accessed by a diverse user community will be discussed. It assumes that the reader
is familiar with basic UNIX commands and concepts. The approaches discussed here are
implemented in the BIRCH system (see Website: http://home.cc.umanitoba.ca/~psgendb)
but are generally applicable to any centralized multiuser software installation.

Most major UNIX distributions now come with graphic tools that simplify many
administration tasks. It is therefore realistic to act as your own sysadmin. In fact many
of the principles discussed are valid in the larger context of a general purpose multiuser
system. Although general system administration is a broad field, particular attention
should be paid to: daily and weekly backups, both onsite and offsite; security, includ-
ing rapid installation of security patches; management of user accounts; and disk space
to minimize the work and know-how needed on the part of the user. These topics are
beyond the scope of this chapter, and are covered extensively in books on system
administration, on USENET newsgroups in the comp.* section, and at various
HOWTO websites.

The key factors and considerations when implementing the system are:

1. A user base with a diverse set of needs and usually minimal informatics training.
2. A diverse software base, comprised of programs from many authors, in many

languages, and in many styles.
3. Documentation written in many formats and styles.
4. A complex networked server system.
5. Limitations of disk space and computing resources.

This chapter builds on the organizational scheme described in the previous chapter.
To summarize, the resource is located in a world-readable directory tree referenced by
the $DB environment variable. Program binaries, documentation, and ancillary
datafiles are located in $DB/bin, $DB/doc, and $DB/dat, respectively. To use the
resource, user accounts are set up by running the newuser script. This adds lines to
their .login and .cshrc files, which read configuration commands from $DB/admin/
login.source and $DB/admin/cshrc.source. The commands in these files are executed
when a user logs in or starts a new shell. Thus, as the central configuration is updated,

WWW

Proof Copy
Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 8 2 — Fristensky

Proof Copy

Proof Copy

all users have immediate access to the updates. The means to implement this structure
are described in the previous chapter.

Managing Documentation

Documentation is the user’s entry point into the system. Keeping documentation
organized, accessible, and updated accomplishes several tasks. First, it helps to bring
out difficulties that users may face in running programs. Second, it forces the Bioadmin
to see the software base from the user’s perspective. Third, well-organized documen-
tation works to the Bioadmin’s advantage, making it easy to refer users to the appro-
priate documentation, rather than having to answer the same question over and over.
While installation of documentation should be straightforward, there are a few con-
siderations for providing a consistent web-accessible documentation library.

HTML
HTML is rapidly becoming the most common format for documentation because

of its dynamic capabilities and universal availability. However, it is probably best to
keep a local copy of program documentation on your website, rather than simply
linking to the author’s website. An author’s website will probably describe the most
recent version of the software, which may not be installed on your system. As well,
if the author stops supporting a software package, he or she may no longer keep
documentation on a website. Thus making sure a local copy of the documentation
that was obtained at the time the package was installed is guaranteed to accurately
describe the version of the software currently installed.

UNIX Manual Pages
BIRCH has a directory for manual pages called $DB/manl. All files in this direc-

tory should be in the form name.l (where l stands for local). In login.source, the line

setenv MANPATH $MANPATH\:$DB

tells UNIX to look for the manual pages in this directory, as well as in any other
directory specified in the system’s $MANPATH. For example, to read the docu-
mentation for align, the user types man align, and the file $DB/manl/align.l will be
displayed. For display on the web, UNIX manual pages can be converted to ASCII
text by redirecting output from the man command to an ASCII file, e.g.,

man fasta > fasta.asc

Postscript and PDF
Although PostScript viewers are usually available on most UNIX workstations,

acroread, the Adobe Acrobat Reader, has been universally adopted. Therefore, it is
probably safest to convert postscript files to PDF for web accessibility using ps2pdf,
e.g., ps2pdf primer3.ps, will create a file called primer3.pdf. ps2pdf is included with
most UNIX distributions.

ASCII Text
All web browsers can display ASCII text. It should be noted that file extensions

such as .txt or .asc are probably best to use, becuase these are not commonly used by

Proof Copy

Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Management — 283

Proof Copy

Proof Copy

application software. ASCII files with .doc extensions should be changed to some
other extension to avoid confusion with Microsoft WORD files.

Word Processor Documents
Import filters are often less than satisfactory. Therefore, when documentation is in

a format specific to a word processor such as WordPerfect, StarOffice Writer, Applix
Words, or Microsoft Word, it is best to convert it to the PDF format. Some programs
can directly save or print to PDF, while others can only print to PostScript. For the
latter, convert to PDF using ps2pdf as noted earlier.

Communicating with the User Base

Login Messages
Brief announcements can be printed at the user’s terminal by including in

login.source a statement such as cat ~psgendb/admin/Login_Message, where
Login_Message contains a few lines of text with the current announcements. This
message is printed in each terminal window.

Web Site Organization
The BIRCH website provides a number of views to the system (see Fig. 1). The

New User section provides documents that describe BIRCH, how to set up account,
and how to learn the system. The Documentation section provides tutorials and other
resources for users to develop their informatics skills while getting useful work done.
Finally, the complete online documentation is available in the Software and Database
sections, describing the full functionality of the system.

All login messages are archived in the file WHATSNEW.html, which can be viewed
in a scrolling window entitled BIRCH ANNOUNCEMENTS. This file provides links to
more detailed information than appears in login messages, so that even users who have
been away from the system for a while won’t miss important changes.

Discussion Groups
Although online discussions can be conducted through a mailing list, these often

become an annoyance as the number of users increase and the number of lists one is
subscribed to increases. Most web browsers such as Netscape and Internet Explorer/
Outlook Express, as well as third-party applications, can be used to read and partici-
pate in discussions on USENET newsgroups. Many users are familiar with world-
wide groups, including the bionet.* groups (e.g., bionet.software, bionet.molbio.
genearrays). However, it is also possible to have local newsgroups on any system that
operates a newsserver, as do most campus UNIX systems. The local news Bioadmin
can easily create a group such as local.bioinformatics or local.genomics that will be
accessible to the local user community.

Remote Consultation Using VNC
Remote consultation on UNIX platforms is now greatly enhanced by Virtual Net-

work Computing (VNC). VNC is a package of programs freely distributed by AT&T
(see Website: http://www.uk.research.att.com/vnc/). In essence, vncserver creates an
X11 desktop session on a remote login host, which keeps an image of the screen in

See
companion CD
for color Fig. 1

WWW

Proof Copy
Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 8 4 — Fristensky

Proof Copy

Proof Copy

memory. A copy of vncviewer, running on a PC or workstation anywhere in the world
with a high-speed Internet connection, can display and control the screen as if it were
running locally. Figure 2 shows a screen in which a vncviewer window is displayed.
VNC is available for MS-Windows, Macintosh, and UNIX. The vncviewer can also
run as a Java applet in a web browser, so that vncviewer does not have to be installed
on the local machine. Thus, regardless of where you are, your UNIX desktop looks
and acts the same.

For remote consultation, assume that a user has phoned the Bioadmin with a prob-
lem. If it cannot be easily described over the phone, the user changes their VNC pass-
word using vncpw, and tells the Bioadmin the new password. Next the user starts up a
copy of vncserver:

vncserver -alwaysshared
New ‘X’ desktop is mira:8

Fig. 1. Organization of web-based documentation on the BIRCH home page (see Website: http://
home.cc.umanitoba.ca/~psgendb).

See
companion CD
for color Fig. 2

Proof Copy

Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Management — 285

Proof Copy

Proof Copy

The -alwaysshared option makes it possible for more than one user to simulta-
neously display the same desktop. The message tells the user that vncserver has cre-
ated desktop 8 on host mira.

Next, the user and Bioadmin each type: vncviewer mira:8 followed by the
password, and the same vncviewer window will appear on both of their screens (see
Fig. 2). If connecting via a browser, vncviewer would be launched for this screen by
setting the URL to http://mira.cc.umanitoba.ca:5808, where the last two digits in 5808
indicate the screen number.

Now, both the user and Bioadmin can see and control the same desktop while dis-
cussing the various operations over the phone. The user can run a program that is
causing difficulty, and the Bioadmin can see everything that happens. The Bioadmin
can demonstrate in real time what the user should be doing, and if necessary, datafiles
or configuration files such as .cshrc can be examined.

Fig. 2. Screenshot of a VNC session. The vncviewer VNC: frist’s X desktop (mira:8) displays in a
window (solid light background) on the local desktop (dark brick background). The VNC window
encompasses 1024 × 768 pixels, against a screen at a resolution of 1600 × 1200. The background for
the mira:8 desktop has been changed to solid, requiring less network bandwidth for refreshing the
screen across a network.

Note: VNC needs to be configured to display the user’s regular X11 desktop. On our Solaris sys-
tem, the file $HOME/.vnc/xstartup should contain the line Xsession & to run the standard X11 session
using vncserver. For the GNOME desktop, this line would read gnome-session &.

Proof Copy
Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 8 6 — Fristensky

Proof Copy

Proof Copy

At the end of the session, the Bioadmin reminds the user to kill the VNC session by
typing vncserver -kill :8 and to change their VNC password.

The real value of VNC becomes apparent when traveling. For example, applica-
tions such as Powerpoint produce static presentations, and most people travel with
their own laptop to ensure that it will work. Over the last 2 years, I have given real-
time presentations across North America using VNC on any computer at hand. As
long as a fast Internet connection is available, the full functionality of the desktop can
be demonstrated anywhere where there is a computer and a data projector.

Detecting, Handling and Preventing Problems
 A multiuser system poses challenges in terms of managing shared resources, such

as CPU time, memory, disk space, and network bandwidth. Usually it is possible to
design a system that will minimize user errors, and in most cases UNIX is intrinsically
protected from most catastrophes. For example, unless permissions are explicitly set
otherwise, a user can only read or modify files belonging to him, and usually these can
only reside in the $HOME directory.

Disk Space
$HOME directories should always reside in a separate file system, and user quotas

should be set, regardless of how much disk space exists. The one filesystem that is
potentially troublesome is /tmp, which is writeable by all users. In the event that /tmp
becomes full, programs that need to write temporary files may hang, resulting in a
filesystem full error. The best way to avoid this problem is to have applications write
temporary files to the current working directory, so that in the worst case, only the
user is affected.

CPU Time
Monitoring CPU Usage

Keeping track of CPU usage is critically important. The top command gives you a
real-time picture of the most CPU intensive jobs currently running on the host you are
logged into. If you type top at the command line, your system will generate similar
information to the following:
last pid: 13912; load averages: 2.61, 1.64, 1.31 13:48:41
504 processes: 488 sleeping, 1 running, 6 zombie, 7 stopped, 2 on cpu
CPU states: 16.4% idle, 65.7% user, 17.9% kernel, 0.0% iowait, 0.0% swap
Memory: 640M real, 17M free, 846M swap in use, 3407M swap free

 PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
11371 umamyks 13 10 0 77M 71M cpu/0 23:19 64.27% matlab
27668 frist 10 58 0 97M 56M sleep 3:06 3.49% soffice.bin
13894 frist 1 33 0 3344K 1672K cpu/1 0:01 1.65% top
13898 umnorthv 1 58 0 6424K 4352K sleep 0:00 0.82% pine.exe
 1629 mills 7 0 0 9992K 7840K sleep 0:24 0.42% dtwm
13704 mhbasri 1 38 0 1464K 1360K sleep 0:01 0.31% elm.exe
 9797 syeung 1 58 0 1000K 816K sleep 267:53 0.28% newmail
 6914 umtirzit 8 58 0 13M 3992K sleep 26:38 0.23% dtmail
26524 mgarlich 1 58 0 9376K 6960K sleep 0:10 0.23% dtterm
29993 simosko 1 58 0 6824K 4528K sleep 0:21 0.23% pine.exe
 7937 jayasin 1 58 0 6112K 3816K sleep 6:55 0.22% Xvnc
 4483 francey 7 48 0 9904K 7920K sleep 0:24 0.21% dtwm
 206 root 6 58 0 76M 8024K sleep 458:13 0.20% automountd
27272 frist 7 58 0 11M 8376K sleep 0:35 0.20% dtwm
 580 syeung 1 48 0 2376K 1976K sleep 2:56 0.19% irc-2.6

Proof Copy

Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Management — 287

Proof Copy

Proof Copy

This display is updated every few seconds in the terminal window. To quit, type q.
The top command has many options. For example, you can sort jobs by memory used,
or list only jobs under a given userid. The owner of a job can also kill that job using
top. Type man top for full documentation.

The ps command with no arguments tells which jobs are running in the current
shell (the current window):

 ps
 PID TTY TIME CMD
 2122 pts/104 0:00 dsdm
 27401 pts/104 2:18 mozilla-
 27376 pts/104 0:00 netscape
 2082 pts/104 0:00 zwgc
 27384 pts/104 0:00 netscape
 27396 pts/104 0:00 run-mozi
 2024 pts/104 0:18 Xvnc
 2041 pts/104 0:00 Xsession
 27305 pts/104 0:01 csh
 27381 pts/104 0:00 netscape
 27457 pts/104 0:14 java_vm

while

ps -u userid

tells which jobs are running under a given userid on the host you are logged into.
The following list summarizes the types of tasks that tend to require a lot of pro-

cessing time:

JOBS THAT TEND TO BE CPU-INTENSIVE:
1. Phylogenetic Analysis

a. Distance matrix methods (e.g., Neighbor Joining, FITCH): Usually require
negligible time, the amount of time increases in a linear fashion with the num-
ber of sequences.

b. Parsimony (e.g., DNAPARS, PROTPARS): Moderately efficient, the amount
of time increases exponentially with the number of sequences

c. Maximum likelihood (e.g., DNAML, PROTML, fastDNAML): Very slow,
the amount of time increases according to a FACTORIAL function of the num-
ber of sequences.

2. Sequence database searches: The amount of time that is required is proportional
to product of sequence length and database size; use high k values to speed up
search; protein searches faster than DNA.

3. Multiple sequence alignments (e.g., CLUSTAL): Cluster type alignments scale
linearly in proportion to the number of sequences.

4. Retrievals of large numbers of sequences: The time required is linear, related to
number of sequences.

5. The efficiency of any sorting operation with a large number of items depends on
the sort algorithm used.

6. Statistical and mathematical packages (e.g., SAS, MATLAB).

JOBS THAT SHOULD NEVER BE CPU INTENSIVE

If the following applications are using significant percentages of CPU time, they
are not functioning normally, and are probably runaway jobs.

Proof Copy
Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 8 8 — Fristensky

Proof Copy

Proof Copy

1. Graphic front ends: Programs such as GDE, SeqLab, or SeqPup by themselves
do almost nothing. If you see one using a substantial amount of CPU time, it is
probably a runaway job. One exception is when reading large sequence files,
e.g., large numbers of sequences or very long sequences that are placed in
memory for analysis.

2. Most user apps (e.g., word processors, mailers, spread sheets, drawing programs).

3. Desktop tools (e.g., text editors, filemanagers).

4. Most UNIX commands.

5. Web browsers: For short bursts browsers can be very CPU-intensive, but this
should not persist for more than a minute or two.

Managing Long-Running Jobs

On any multitasking system, all jobs are assigned priorities that govern the
amount of CPU time allocated to them. In UNIX, the nice command determines the
priority. Most user commands default to a nice value of 0. This is especially impor-
tant for applications run through a graphic interface, which need to work in real
time. The higher the nice value, the less CPU time a job will be allocated, and the
less of a load it puts on the system. Programs known to be CPU intensive can there-
fore be set to run at low priority. A higher nice value prevents the program from
taking large amounts of time at high loads, but does not prevent it from utilizing
CPU resources when the load on the system is light.

CPU-intensive tasks such as database searches or phylogenetic analysis should be
run from wrappers, i.e., scripts that set parameters before running the program. The
name of the program is preceded by the nice command. For example, to run
fastDNAml at the default priority, a wrapper might contain the line:

nice fastDNAml arguments... &

The default priority for nice varies from system to system. In the BIRCH system,
most sequence programs are launched from the GDE interface by calling wrappers that
run programs using nice. As well, termination of the command line with an ampersand
(&) tells the shell to run the task in the background. Thus, a user can launch a long-
running job, quit GDE, and logout without terminating the job. When the program is
completed, the output is written to the file, which the user can access when logging in
for the next session.

In some cases, programs that use a graphic interface will perform analyses that
require very long execution times. The problem with this design is that the user must
remain logged in to the terminal from which the program was launched, because quit-
ting the program would terminate the analysis. One can circumvent this problem by
running jobs of this type from a vncviewer window. Killing a vncviewer window has
no effect on the applications currently running, and the user can open up the same
screen at any time from anywhere. This has the added benefit of making it easy to
remotely monitor the progress of long-running jobs.

Killing Runaway Jobs

Sometimes a program will not correctly handle an error, and will begin using up
large amounts of CPU time. Unless the Bioadmin has root permissions, it is neces-

Proof Copy

Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

Bioinformatics Software Management — 289

Proof Copy

Proof Copy

sary to ask either the owner of the job or a sysadmin to kill it. For example, a run-
away netscape job might show up thus when running the top command:
 PID USERNAME THR PRI NICE SIZE RES STATE TIME CPU COMMAND
 25779 frist 13 22 0 24M 11M cpu/0 23:19 64.27% netscape

To kill the job, root or the owner would type: kill -9 25779.
Applications that do not normally use a lot of CPU time, but may be prone to run-

away execution, could be contained by running them from a wrapper, in which the
ulimit command is issued prior to running the program, e.g., ulimit -t 900, limiting
CPU time in the current shell to 900 seconds (15 min).

Acknowledgments

Thanks to the Academic Computing and Networking staff at the University of
Manitoba for UNIX system support. This work was made possible in part through
hardware provided by the Sun Academic Equipment Grants Program.

Suggested Readings

Introduction
Fristensky, B. (1999) Building a multiuser sequence analysis facility using freeware,

in: Bioinformatics Methods and Protocols, (Misener, S. and Krawetz, S., eds.),
Humana Press, Totowa, NJ, pp. 131–145.

Fristensky, B. (1999) Network computing: Restructuring how scientists use comput-
ers and what we get out of them, in: Bioinformatics Methods and Protocols,
(Misener, S. and Krawetz, S., eds.), Humana Press, Totowa, NJ, pp. 401–412.

Sobell, M. G. (1995) A Practical Guide to the UNIX System, Addison-Wesley Pub-
lishing, Reading, MA.

Detecting, Handling and Preventing Problems
Felsenstein, J. (1989) PHYLIP Phylogeny Inference Package, Cladistics 5, 164–166.
Olsen, G. J., Matsuda, H., Hagstrom, R., and Overbeek, R. (1994) FastDNAml: a tool

for construction of phylogenetic trees of DNA sequences using maximum likeli-
hood, Comp. Appl. Biosci. 10, 41–48.

Smith, S., Overbeek, R., Woese, C. R., Gilbert, W., and Gillevet, P. M. (1994) The
Genetic Data Environment: an expandable GUI for multiple sequence analysis,
Comp. Appl. Biosci. 10, 671–675.
(see Website: http://megasun.bch.umontreal.ca/pub/gde/)

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G.
(1997) The CLUSTAL X windows interface: flexible strategies for multiple
sequence alignment aided by quality analysis tools, Nucleic Acids Res. 25,
4876–4882.

< Au:
location
correct?

WWW

Au: Please provide “Glossary”

Proof Copy
Job: Operator: NF
Chapter: 17/Fris Date: 7.25.02
Pub Date: Revision: Corrections/Paging
Template:Krawitz7x10

2 9 0 — Fristensky

Proof Copy

Proof Copy

