# Hopcroft-Karp bipartite max-cardinality matching and max independent set # David Eppstein, UC Irvine, 27 Apr 2002 # http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/123641 #Example from Cormen, Leiserson, and Rivest, section 27.3: #a = bipartiteMatch({ 0:[0], 1:[0,2], 2:[1,2,3], 3:[2], 4:[2] }) def bipartiteMatch(graph): '''Find maximum cardinality matching of a bipartite graph (U,V,E). The input format is a dictionary mapping members of U to a list of their neighbors in V. The output is a triple (M,A,B) where M is a dictionary mapping members of V to their matches in U, A is the part of the maximum independent set in U, and B is the part of the MIS in V. The same object may occur in both U and V, and is treated as two distinct vertices if this happens.''' # initialize greedy matching (redundant, but faster than full search) matching = {} for u in graph: for v in graph[u]: if v not in matching: matching[v] = u break while 1: # structure residual graph into layers # pred[u] gives the neighbor in the previous layer for u in U # preds[v] gives a list of neighbors in the previous layer for v in V # unmatched gives a list of unmatched vertices in final layer of V, # and is also used as a flag value for pred[u] when u is in the first layer preds = {} unmatched = [] pred = dict([(u,unmatched) for u in graph]) for v in matching: del pred[matching[v]] layer = list(pred) # repeatedly extend layering structure by another pair of layers while layer and not unmatched: newLayer = {} for u in layer: for v in graph[u]: if v not in preds: newLayer.setdefault(v,[]).append(u) layer = [] for v in newLayer: preds[v] = newLayer[v] if v in matching: layer.append(matching[v]) pred[matching[v]] = v else: unmatched.append(v) # did we finish layering without finding any alternating paths? if not unmatched: unlayered = {} for u in graph: for v in graph[u]: if v not in preds: unlayered[v] = None return (matching,list(pred),list(unlayered)) # recursively search backward through layers to find alternating paths # recursion returns true if found path, false otherwise def recurse(v): if v in preds: L = preds[v] del preds[v] for u in L: if u in pred: pu = pred[u] del pred[u] if pu is unmatched or recurse(pu): matching[v] = u return 1 return 0 for v in unmatched: recurse(v)