#include "config.h" #include "Kmer.h" #include "Common/Options.h" #include "HashFunction.h" #include #include using namespace std; /** The size of a k-mer. This variable is static and is shared by all * instances. */ unsigned Kmer::s_length; /** The size of a k-mer in bytes. */ unsigned Kmer::s_bytes; static unsigned seqIndexToByteNumber(unsigned seqIndex); static unsigned seqIndexToBaseIndex(unsigned seqIndex); static uint8_t getBaseCode(const char* pSeq, unsigned byteNum, unsigned index); static void setBaseCode(char* pSeq, unsigned byteNum, unsigned index, uint8_t base); /** Construct a k-mer from a string. */ Kmer::Kmer(const Sequence& seq) { assert(seq.length() == s_length); memset(m_seq, 0, NUM_BYTES); const char* p = seq.data(); for (unsigned i = 0; i < s_length; i++) set(i, baseToCode(*p++)); } /** Compare two k-mer. */ int Kmer::compare(const Kmer& other) const { return memcmp(m_seq, other.m_seq, bytes()); } /** Compute a hash-like value of the packed sequence over the first 16 * bases and the reverse complement of the last 16 bases * The reverse complement of the last 16 bases is used so that a * sequence and its reverse complement will hash to the same value. * @todo make this faster */ unsigned Kmer::getCode() const { /* At k=19, this hash function always returns an even number due * to the sequence and its reverse complement overlapping when the * xor is calculated. A more general solution is needed. */ const unsigned NUM_BYTES = s_length < 8 ? 1 : s_length < 20 ? s_length/8 : 4; Kmer rc = *this; rc.reverseComplement(); const unsigned prime = 101; unsigned sum = 0; for (unsigned i = 0; i < NUM_BYTES; i++) sum = prime * sum + (m_seq[i] ^ rc.m_seq[i]); return sum; } size_t Kmer::getHashCode() const { // Hash numbytes - 1 to avoid getting different hash values for // the same sequence for n % 4 != 0 sequences. return hashmem(m_seq, bytes() - 1); } /** Return the string representation of this sequence. */ Sequence Kmer::str() const { Sequence s; s.reserve(s_length); for (unsigned i = 0; i < s_length; i++) s.push_back(codeToBase(at(i))); return s; } /** Swap the positions of four bases. */ static const uint8_t swapBases[256] = { 0x00, 0x40, 0x80, 0xc0, 0x10, 0x50, 0x90, 0xd0, 0x20, 0x60, 0xa0, 0xe0, 0x30, 0x70, 0xb0, 0xf0, 0x04, 0x44, 0x84, 0xc4, 0x14, 0x54, 0x94, 0xd4, 0x24, 0x64, 0xa4, 0xe4, 0x34, 0x74, 0xb4, 0xf4, 0x08, 0x48, 0x88, 0xc8, 0x18, 0x58, 0x98, 0xd8, 0x28, 0x68, 0xa8, 0xe8, 0x38, 0x78, 0xb8, 0xf8, 0x0c, 0x4c, 0x8c, 0xcc, 0x1c, 0x5c, 0x9c, 0xdc, 0x2c, 0x6c, 0xac, 0xec, 0x3c, 0x7c, 0xbc, 0xfc, 0x01, 0x41, 0x81, 0xc1, 0x11, 0x51, 0x91, 0xd1, 0x21, 0x61, 0xa1, 0xe1, 0x31, 0x71, 0xb1, 0xf1, 0x05, 0x45, 0x85, 0xc5, 0x15, 0x55, 0x95, 0xd5, 0x25, 0x65, 0xa5, 0xe5, 0x35, 0x75, 0xb5, 0xf5, 0x09, 0x49, 0x89, 0xc9, 0x19, 0x59, 0x99, 0xd9, 0x29, 0x69, 0xa9, 0xe9, 0x39, 0x79, 0xb9, 0xf9, 0x0d, 0x4d, 0x8d, 0xcd, 0x1d, 0x5d, 0x9d, 0xdd, 0x2d, 0x6d, 0xad, 0xed, 0x3d, 0x7d, 0xbd, 0xfd, 0x02, 0x42, 0x82, 0xc2, 0x12, 0x52, 0x92, 0xd2, 0x22, 0x62, 0xa2, 0xe2, 0x32, 0x72, 0xb2, 0xf2, 0x06, 0x46, 0x86, 0xc6, 0x16, 0x56, 0x96, 0xd6, 0x26, 0x66, 0xa6, 0xe6, 0x36, 0x76, 0xb6, 0xf6, 0x0a, 0x4a, 0x8a, 0xca, 0x1a, 0x5a, 0x9a, 0xda, 0x2a, 0x6a, 0xaa, 0xea, 0x3a, 0x7a, 0xba, 0xfa, 0x0e, 0x4e, 0x8e, 0xce, 0x1e, 0x5e, 0x9e, 0xde, 0x2e, 0x6e, 0xae, 0xee, 0x3e, 0x7e, 0xbe, 0xfe, 0x03, 0x43, 0x83, 0xc3, 0x13, 0x53, 0x93, 0xd3, 0x23, 0x63, 0xa3, 0xe3, 0x33, 0x73, 0xb3, 0xf3, 0x07, 0x47, 0x87, 0xc7, 0x17, 0x57, 0x97, 0xd7, 0x27, 0x67, 0xa7, 0xe7, 0x37, 0x77, 0xb7, 0xf7, 0x0b, 0x4b, 0x8b, 0xcb, 0x1b, 0x5b, 0x9b, 0xdb, 0x2b, 0x6b, 0xab, 0xeb, 0x3b, 0x7b, 0xbb, 0xfb, 0x0f, 0x4f, 0x8f, 0xcf, 0x1f, 0x5f, 0x9f, 0xdf, 0x2f, 0x6f, 0xaf, 0xef, 0x3f, 0x7f, 0xbf, 0xff }; #if MAX_KMER > 96 # include typedef bitset<2 * MAX_KMER> Seq; #else # define SEQ_WORDS ((Kmer::NUM_BYTES + 7)/8) # define SEQ_BITS (64 * SEQ_WORDS) # define SEQ_FULL_WORDS ((int)Kmer::NUM_BYTES/8) # define SEQ_ODD_BYTES (Kmer::NUM_BYTES - 8*SEQ_FULL_WORDS) /** A sequence of bits of length SEQ_BITS. */ struct Seq { uint64_t x[SEQ_WORDS]; /** Return the number of bits in this sequence. */ static unsigned size() { return SEQ_BITS; } /** Flip all the bits. */ void flip() { for (unsigned i = 0; i < SEQ_WORDS; i++) x[i] = ~x[i]; } /** Shift right by the specified number of bits. */ void operator>>=(uint8_t n) { if (n == 0) return; #if MAX_KMER <= 32 x[0] >>= n; #elif MAX_KMER <= 64 uint64_t x0 = x[0], x1 = x[1]; if (n < 64) { x[0] = x0 >> n; x[1] = x1 >> n | x0 << (64 - n); } else { x[0] = 0; x[1] = x0 >> (n - 64); } #elif MAX_KMER <= 96 uint64_t x0 = x[0], x1 = x[1], x2 = x[2]; if (n < 64) { x[0] = x0 >> n; x[1] = x1 >> n | x0 << (64 - n); x[2] = x2 >> n | x1 << (64 - n); } else if (n == 64) { x[0] = 0; x[1] = x0; x[2] = x1; } else if (n < 128) { n -= 64; x[0] = 0; x[1] = x0 >> n; x[2] = x1 >> n | x0 << (64 - n); } else { n -= 128; x[0] = 0; x[1] = 0; x[2] = x0 >> n; } #else # error #endif } }; #endif /** Load with appropriate endianness for shifting. */ static Seq load(const uint8_t *src) { Seq seq; #if MAX_KMER > 96 # if WORDS_BIGENDIAN const size_t *s = reinterpret_cast(src); size_t *d = reinterpret_cast(&seq + 1); copy(s, s + Kmer::NUM_BYTES/sizeof(size_t), reverse_iterator(d)); # else uint8_t *d = reinterpret_cast(&seq); memcpy(d, src, sizeof seq); reverse(d, d + sizeof seq); # endif #else uint64_t *px = seq.x; const uint8_t *p = src; for (int i = 0; i < SEQ_FULL_WORDS; i++) { *px++ = (uint64_t)p[0] << 56 | (uint64_t)p[1] << 48 | (uint64_t)p[2] << 40 | (uint64_t)p[3] << 32 | (uint64_t)p[4] << 24 | (uint64_t)p[5] << 16 | (uint64_t)p[6] << 8 | (uint64_t)p[7] << 0; p += 8; } if (SEQ_ODD_BYTES > 0) { uint64_t x = 0; if (SEQ_ODD_BYTES > 0) x |= (uint64_t)p[0] << 56; if (SEQ_ODD_BYTES > 1) x |= (uint64_t)p[1] << 48; if (SEQ_ODD_BYTES > 2) x |= (uint64_t)p[2] << 40; if (SEQ_ODD_BYTES > 3) x |= (uint64_t)p[3] << 32; if (SEQ_ODD_BYTES > 4) x |= (uint64_t)p[4] << 24; if (SEQ_ODD_BYTES > 5) x |= (uint64_t)p[5] << 16; if (SEQ_ODD_BYTES > 6) x |= (uint64_t)p[6] << 8; if (SEQ_ODD_BYTES > 7) x |= (uint64_t)p[7] << 0; *px = x; } #endif return seq; } /** * Reverse the bytes by storing them in the reverse order of * loading, and reverse the words in the same fashion. */ static void storeReverse(uint8_t *dest, const Seq seq) { #if MAX_KMER > 96 # if WORDS_BIGENDIAN const size_t *s = reinterpret_cast(&seq); size_t *d = reinterpret_cast(dest); copy(s, s + Kmer::NUM_BYTES/sizeof(size_t), reverse_iterator(d + Kmer::NUM_BYTES/sizeof(size_t))); reverse(dest, dest + Kmer::NUM_BYTES); # else memcpy(dest, &seq, Kmer::NUM_BYTES); # endif #else const uint64_t *px = &seq.x[SEQ_WORDS-1]; # if WORDS_BIGENDIAN for (int i = 0; i < SEQ_FULL_WORDS; i++) { dest[0] = *px >> 0; dest[1] = *px >> 8; dest[2] = *px >> 16; dest[3] = *px >> 24; dest[4] = *px >> 32; dest[5] = *px >> 40; dest[6] = *px >> 48; dest[7] = *px >> 56; dest += 8; px--; } # else uint64_t *d = (uint64_t*)dest; for (int i = 0; i < SEQ_FULL_WORDS; i++) *d++ = *px--; dest = (uint8_t*)d; # endif if (SEQ_ODD_BYTES > 0) dest[0] = *px >> 0; if (SEQ_ODD_BYTES > 1) dest[1] = *px >> 8; if (SEQ_ODD_BYTES > 2) dest[2] = *px >> 16; if (SEQ_ODD_BYTES > 3) dest[3] = *px >> 24; if (SEQ_ODD_BYTES > 4) dest[4] = *px >> 32; if (SEQ_ODD_BYTES > 5) dest[5] = *px >> 40; if (SEQ_ODD_BYTES > 6) dest[6] = *px >> 48; if (SEQ_ODD_BYTES > 7) dest[7] = *px >> 56; #endif } /** Reverse-complement this sequence. */ void Kmer::reverseComplement() { Seq seq = load((uint8_t*)m_seq); // Complement the bits. if (!opt::colourSpace) seq.flip(); // Shift the bits flush to the right of the double word. seq >>= seq.size() - 2*s_length; storeReverse((uint8_t*)m_seq, seq); // Reverse the pairs of bits withing a byte. unsigned numBytes = bytes(); for (unsigned i = 0; i < numBytes; i++) m_seq[i] = swapBases[(uint8_t)m_seq[i]]; } bool Kmer::isCanonical() const { for (unsigned i = 0, j = s_length - 1; i < s_length / 2 + s_length % 2; i++, j--) { uint8_t base = getBaseCode(m_seq, seqIndexToByteNumber(i), seqIndexToBaseIndex(i)); uint8_t rcBase = 0x3 & ~getBaseCode(m_seq, seqIndexToByteNumber(j), seqIndexToBaseIndex(j)); if (base == rcBase) continue; return rcBase > base; } return true; } void Kmer::canonicalize() { if (!isCanonical()) reverseComplement(); } void Kmer::setLastBase(extDirection dir, uint8_t base) { set(dir == SENSE ? s_length - 1 : 0, base); } /** Shift the sequence left and append a new base to the end. * @return the base shifted out */ uint8_t Kmer::shiftAppend(uint8_t base) { unsigned numBytes = bytes(); uint8_t shiftIn = base; for(int i = numBytes - 1; i >= 0; i--) { unsigned index = (unsigned)i == numBytes - 1 ? seqIndexToBaseIndex(s_length - 1) : 3; shiftIn = leftShiftByte(m_seq, i, index, shiftIn); } return shiftIn; } /** Shift the sequence right and prepend a new base at the front. * @return the base shifted out */ uint8_t Kmer::shiftPrepend(uint8_t base) { unsigned numBytes = bytes(); unsigned lastBaseByte = seqIndexToByteNumber(s_length - 1); unsigned lastBaseIndex = seqIndexToBaseIndex(s_length - 1); // save the last base (which gets shifted out) uint8_t lastBase = getBaseCode(m_seq, lastBaseByte, lastBaseIndex); // Zero the last base, which is required by compare. setBaseCode(m_seq, lastBaseByte, lastBaseIndex, 0); uint8_t shiftIn = base; for(unsigned i = 0; i <= numBytes - 1; i++) { // index is always zero unsigned index = 0; shiftIn = rightShiftByte(m_seq, i, index, shiftIn); } return lastBase; } uint8_t Kmer::leftShiftByte(char* pSeq, unsigned byteNum, unsigned index, uint8_t base) { // save the first base uint8_t outBase = (pSeq[byteNum] >> 6) & 0x3; // shift left one position pSeq[byteNum] <<= 2; // Set the new base setBaseCode(pSeq, byteNum, index, base); return outBase; } uint8_t Kmer::rightShiftByte(char* pSeq, unsigned byteNum, unsigned index, uint8_t base) { // save the last base uint8_t outBase = pSeq[byteNum] & 0x3; // shift right one position pSeq[byteNum] >>= 2; // add the new base setBaseCode(pSeq, byteNum, index, base); return outBase; } //Set a base by byte number/ sub index // beware, this does not check for out of bounds access static void setBaseCode(char* pSeq, unsigned byteNum, unsigned index, uint8_t base) { // shift the value into position unsigned shiftValue = 2*(3 - index); base <<= shiftValue; // clear the value uint8_t mask = 0x3; mask <<= shiftValue; mask = ~mask; pSeq[byteNum] &= mask; // set the appropriate value with an OR pSeq[byteNum] |= base; } /** Return the base at the specified index. */ uint8_t Kmer::at(unsigned i) const { assert(i < s_length); return getBaseCode(m_seq, seqIndexToByteNumber(i), seqIndexToBaseIndex(i)); } /** Set the base at the specified index. */ void Kmer::set(unsigned i, uint8_t base) { assert(i < s_length); setBaseCode(m_seq, seqIndexToByteNumber(i), seqIndexToBaseIndex(i), base); } // get a base code by the byte number and sub index static uint8_t getBaseCode(const char* pSeq, unsigned byteNum, unsigned index) { unsigned shiftLen = 2 * (3 - index); return (pSeq[byteNum] >> shiftLen) & 0x3; } static unsigned seqIndexToByteNumber(unsigned seqIndex) { return seqIndex / 4; } static unsigned seqIndexToBaseIndex(unsigned seqIndex) { return seqIndex % 4; } /** Return true if this sequence is a palindrome. */ bool Kmer::isPalindrome() const { return s_length % 2 == 1 && !opt::colourSpace ? false : *this == ::reverseComplement(*this); } /** Return true if the length k-1 subsequence is a palindrome. */ bool Kmer::isPalindrome(extDirection dir) const { if (s_length % 2 == 0 && !opt::colourSpace) return false; Kmer seq(*this); if (dir == SENSE) seq.shiftAppend(0); else seq.setLastBase(SENSE, 0); Kmer rc(*this); rc.reverseComplement(); if (dir == SENSE) rc.setLastBase(SENSE, 0); else rc.shiftAppend(0); return seq == rc; }