HyperSQL Utilities Guide

Edited by , Blaine Simpson, and Fred Toussi

HyperS@L

HyperSQL Utilities Guide
by , Blaine Simpson, and Fred Toussi

$Revision: 6753 $
Publication date 2024-10-25

Copyright 2002-2024 Blaine Simpson, Fred Toussi and The HSQL Development Group. Permission is granted to distribute this document without
any alteration under the terms of the HSQL DB license. Y ou are not allowed to distribute or display this document on the web in an altered form.

HyperS@L

Table of Contents

(= = o PP PPPTTPPPPTTRPPPPIN Vii
Available formats for this dOCUMENTiiiiiiiie e e e e Vii
TS o | I o | TP SPP PR 1
1072 1 TP 1
Purpose, Coverage, Recent Changes in BENAVIOriiiiiiiiiieiiiii e 1
Platforms and SQITOOI VEISIONS COVEIEAcocuuiiiiiiii ettt e 2
Recent FUNCLIONal CRANGES ... ccoiiiiiiiii ettt e e et e s 3

NEOW FEBIUMNES ... iee ittt et et e et et e e e e et e e e eees 3

The Bare IMINIMUIM ..oe ettt ettt ettt e e et et e e ettt e et ettt e e e ea b reeeenbnaeaeenbaaaaee 3
QUOLES 8NGO SPBCESteieeiiie ettt et e et e e ettt e et e e et e et e e e e e e 6
EMDEAUTING .o e ettt 6
NON-0iSPlaYaDIE TYPES ...ttt e et e e e 6
Compound commands or commands With SEMI-COIONSiiiiiiiiiiiiiii e 7
DESKEOD SNOMCULS ..t eeeetti e ettt ettt e ettt e ettt e e ettt e ettt e e et et b s e et e et et e et e st t e e e eab s e eeenb s eeeenbnaeeeens 7
L0BAING SAMPIE QLAeevniiiiit ettt et ettt ettt et e et e naans 8
Satisfying SglTool's CLASSPATH REQUITEMENESouuuiiiiiiiieieeii ettt et e e e e e e eeees 8
Accessing older HSQLDB Databases With SQITOOIcovvviiiiiiiiiei e 8
App-specific Classes, Embedding, and non-HyperSQL Databasescccevovveiiiiiieeiiiiineeiiiinnnnn. 9
Distributing Sl TOOl With YOUr APPSeeiii et e e 9
SOITOON CHENE PCS ..ottt et ettt e ettt e e et et e e et et e e e eet e e eentaneeeens 9

RC File AUNENLICAIION SEIUP .oevtuieiiiit ettt e et ettt e et et e e e et e e e e et e e e eeneaeeees 9
SWItChING DEEA SOUICES ... iiiiti ettt e et e e et e et e et et e e e e eba s 15
Using Inline RC AULNENEICALON ... cieeiieieiii ettt e e e e e s 15
(oo o] 0o H TSP UPPPTTRPPPIN 15
INEEIBCHIVE USBIE ..oetiiiiiiii ettt ettt ettt e ettt e ettt e e et e bt e et e et n e e e e et e e e entnaaees 16
SqITool Command-Line EAItiNGcoeureniiiiiiiei e e 16
16000710020 To B Y/ o= PP SO PP PSPPPTTR 17
Emulating NON-INtEraCtive MOOEcoeeuiieiiii e eeees 17
160007100200 B Y/ o= PSP P PP PSPPPTRRN 17
SPECIAl COMMEANAS ...ttt ettt et e et e e et et e et e e et e b e e e ene s 18
Edit Buffer / History COMMANGScoouuiiiiiiieeiii ettt e e e e 21
ComMEANG HISIOMY ...ttt ettt e e e e e e eaaas 24

PL COMIMBNGAS ... eeeeti ettt ettt ettt ettt ettt e e et et e e et et e e et et e e e e et e e et et e e e e et e e e e eba s 24
[N o g 01 = o A= PRSP UPPPTI 25
Giving SQL 0N the Command LiNEcoeeuuiiiiiiei e 26

SOL FlES ettt ettt et e e e e et bbb e e e e e e e aab s 27
Piping @and Shell SCIIPLING ...oeeveiiiiii et e e e e eneas 30

F U 10 047 (o] E PP P PP PR 30
Optimally Compatible SQL FilES ... e e 31
10701001007 01T PP 31
Special Commands and Edit Buffer Commandsin SQL Fles ... 31
Getting Interactive Functionality with SQL FileS ..o 33
CharaCter ENCOGINGueeeetiieeiii ettt ettt e et e et et e e e et e et et e e e e b eeenea s 33
Generating Text oF HTIML REPOISceuuiieiiiiii ettt ettt e e e e enaens 34
Storing and Retrieving BiNary FilES ... 37
SOITOOI Procedural LANQUATEeeeeiieieiiie ettt ettt et e et e et e e e et eeeana s 37
NUIS aNd EMPLY SEHNGS ..vneeeiiiiiee ettt ettt ettt e e ettt e e e et e e e ent e e e enaaaeeees 38

VL = o =SSOSO PP TR PPPPPTRPPPIN 39
Y=ot o1 PPN 43
SOITOON FUNCLIONS ...ttt et ettt e et et et e et e e e eaa e e ennes 44

L S 111 o PP UPPPT 45

HyperS@L HyperSQL Utilities Guide

(oo Loz e o] === =T o] 1N 45
MathematiCal ASSIGNMENES ...uiiiiiiii e e e e e e e e e et e st e e et e e et e e et e e e eeanns 47

FIOW CONEIOL et et e e et e e e e e e e e et e e e e aan e 48

o I 1 0o = P 48

L0111 01 (1 o [50
L2V 2PS 50

0 50

L T 1Y e [PP 51
SQL/PSM, SQL/IRT, @nd PL/SQL .oeuuiiiiiee ittt e e e e e s e e e e e e e e et s e e e e e e eesanannn s 51
Delimiter-Separated-Value Imports and EXPOItSiiiiiiiiiiiciie e 53
Simple DSV exports and imports using default SEttingsccovveiiiiiiiiicii e, 55

Specifying QUENES aNd OPLIONSiiviiiii e e e e e e e e e e e e e e e e aa s 56

CSV IMPOIS AN EXPOIESiiiiiiiieiiie e e e e e e e e e e e e e e e et e e et e e et e e st e e aan e eatn e erneeenns 58

L Tl =S (g0 RS | 1o 60

b 1= o o o T 1= O 11 TSP 61
I BT = o= s AV o T P 63
2T T=: N1 e L8 o o) o PR 63

F U (RN 1= =0 = =P 63

P 10047 ol @Xe g1 oo o NP 64

O T = P 64
Using the current DatabaseManagers with an older HSQLDB distribution.c..ccooeiiiiiiiieinennnn, 64
DatabaseManagerSWing as an APPIELoiii i 65

R = 10 = oo PSP 67
2T T=: N1 e L8 o o) o PR 67

A. SOITOOl System PL Variablesccouiiiiiiiii e e e e e e e e e e e aa e 68
B. HYPErSQL FIlE LiNKS .uuiiiiiiiiiiiie it e e e e e e e e e e et e et e e et e e et s e e eeaneeeen 71

HyperS@L

List of Tables

1. Available formats of this document

HyperS@L

List of Examples

1.2, SaMPIE RC FlE et e e ettt ettt e e e et e et e bbb e e e e e e e e e nbba s 10
1.2. Default parameter value with optional user-specified OVEITideovveiiiiiiiiiiii e 29
1.3. Piping iNPUL iNtO SOITOOI ...eeeteeieeii ettt et ettt e et e et eeeebe s 30
1.4. Redirecting input iNtO SOITOOIuuiiiiiit ettt e e e e e s 30
1.5, Error-handling TAIOMoouni ettt et e e et ettt e e e e e e e eab e 31
1.6. Sample HTML Report Generation SCIPEueeiettieiiiiieeeeets ettt e e e e e e et e e eeni e eees 36
1.7. Inserting binary data into database from afileoooeiiiiiiii e 37
1.8. Downloading binary data from dataase t0 afile ..o 37
1.9. Example to avoid accidental COMMENTouuuiiiiiii et e e e e e e 38
1.10. Explicit null and empty-String TESESceuuueiiiii ettt e et e e et e e ennans 39
1.11. Special values for ?, and _ (0Or ~) VariableSiiiiiiiiii e 42
1.12. Creating @ SOITOO! FUNCHIONiiiiiieeiei ettt e e e e e e e s 44
1.13. InvoKing @& SOITOOI FUNCLIONiiiieee ettt e et e e et e e eeba e eees 44
1.14. Simple SQL file USING PL ...t e et e e e e et e e e eee 45
115, INMINE I SEBIEMENT ...t e et ettt e et et e e e e et e e e e et e e e e et e e e eenaaeaees 48
1.16. SQL File showing use of MOSt PL fEAIUMNESuiiiiiiiieiiiii et er e eens 49
1.17. Interactive RaW MOOE EXAMPIE ...ttt 51
1.28. PL/SQL EXAMPIE ...ttt ettt oo et ettt e e e e e et e e et tba e e e e e e e eebbaa e e aaaeennae 52
1.19. SQL/IRT EXAMPIE ...uiiieiiiiiiitte et e ettt e ettt et e e e et e e et bbb e e e e e e e e eetbbb e e e e aaeeeesbba e eaaaaeaene 53
1.20. SQL/PSM EXBMPIE ...ttt e e e ettt e e e e et e e e bbb e a e e e e eaer s 53
1.21. DSV EXPOrt EXBMPIE ...ttt 55
1.22. DSV IMPOIt EXBMPIE ...ttt et e 56
1.23. DSV Export of an Arbitrary QUETYeiiiiii ettt e e e e e 57
1.24. Sample DSV headerswitCh SEtliNgSiiiiriiieiiii e 58
1.25. DSV targettall@ SEING ...c.ovuiiiiiie i 58
1.26. Sample CSV export + IMPOIt SCHPLieiviieieeiii e e e e e e e e et eeeeat e e e eat e e e eata e eeeatn s eeaentnnaeaenes 59

Vi

HyperS@L

Preface

If you notice any mistakes in this document, please email the author listed at the beginning of the chapter. If you
have problems with the procedures themselves, please use the HSQL DB support facilitieswhich are listed at http:/
hsgldb.org/support .

Available formats for this document

This document is available in severa formats.

Y ou may be reading this document right now at http://hsgldb.org/doc/2.0, or in adistribution somewhere else. | hereby
call the document distribution from which you are reading this, your current distro.

http://hsgldb.org/doc/2.0 hosts the latest production versions of all available formats. If you want a different format of
the same version of the document you are reading now, then you should try your current distro. If you want the latest
production version, you should try http://hsgldb.org/doc/2.0.

Sometimes, distributions other than http://hsgldb.org/doc/2.0 do not host all available formats. So, if you can't access
the format that you want in your current distro, you have no choice but to use the newest production version at http://
hsgldb.org/doc/2.0.

Table 1. Available for mats of this document

format your distro at http://hsgldb.org/doc/2.0

Chunked HTML index.html http://hsgldb.org/doc/2.0/util-guide/
All-in-oneHTML | util-guide.html http://hsgldb.org/doc/2.0/util-guide/util-guide.html
PDF util-guide.pdf http://hsgldb.org/doc/2.0/util-guide/util -gui de. pdf

If you are reading this document now with a standalone PDF reader, your distro links may not work.

Vii

http://hsqldb.org/support
http://hsqldb.org/support
index.html
http://hsqldb.org/doc/2.0/util-guide/
util-guide.html
http://hsqldb.org/doc/2.0/util-guide/util-guide.html
http://hsqldb.org/doc/2.0/util-guide/util-guide.pdf

HyperS@L

Chapter 1. SqlTool
SqlTool Manual

Blaine Simpson, HSQL Development Group

$Revision: 6787 $
2024-10-25

Try It

If you know how to type in a Java command at your shell command line, and you know at least the most basic
SQL commands, then you know enough to benefit from SglTool. You can play with Java system properties, PL
variables, math, and other things by just executing this sql t ool -2. 7. 4. j ar file [http://search.maven.org/
remotecontent?ilepath=org/hsgldb/sgltool/2.7.3/sqltool-2.7.3.jar]. But SglTool was made for JDBC, so you should
download HyperSQL to have SqlTool automatically connect to a fully functional, pure Java database; or obtain a
JDBC driver for any other SQL database that you have an account in.

If HyperSQL's hsql db. j ar resides in the same directory as the SglTool jar file, then you can connect up to
a HyperSQL instance from SglTool just by specifying the JIDBC URL, root account user name of SA and empty
password, with the\ j command. See the Switching Data Sources section below for details about \ j .

Purpose, Coverage, Recent Changes in Behavior

Note

Due to many important improvements to SglTool, both in terms of stability and features, all users of
SglTool are advised to use the latest version of SglTool, even if your database instances run with an
older HSQLDB version. How to do this is documented in the Accessing older HSQLDB Databases
with SglTool section below.

This document explains how to use SglTool, the main purpose of which is to read your SQL text file or stdin, and
execute the SQL commands therein against a JDBC database. There are also a great number of features to facilitate
both interactive use and automation. The following paragraphs explain in ageneral way why Sgl Tool isbetter than any
existing tool for text-modeinteractive SQL work, and for automated SQL tasks. Two important benefitswhich SglTool
shares with other pure Java JDBC tools is that users can use a consistent interface and syntax to interact with a huge
variety of databases-- any database which supports JDBC; plus the tool itself runs on any Java platform. Instead of
usingi sql for Sybase, psql for Postgresgl, Sql * pl us for Oracle, etc., you canuse Sgl Tool for all of them. Asfar as
| know, SglTool isthe only production-ready, pure Java, command-line, generic JDBC client. Several databases come
with a command-line client with limited JDBC abilities (usually designed for use with just their specific database).

! Usetheln-Program Help!

The SglTool commands and settings areintuitive once you are familiar with the usage idioms. ThisGuide
does not attempt to list every SglTool command and option available. When you want to know what
SglTool commands or options are available for a specific purpose, you need to list the commands of
the appropriate type with the relevant "?' command. For example, as explained below, to see all Special
commands, you would run\ ?; and to see al DSV export options, you run \x?.

SqlTool is purposefully not a Gui tool like Toad or DatabaseManager. There are many use cases where a Gui SQL
tool would be better. Where automation is involved in any way, you really need a text client to at least test things

http://search.maven.org/remotecontent?filepath=org/hsqldb/sqltool/2.7.3/sqltool-2.7.3.jar
http://search.maven.org/remotecontent?filepath=org/hsqldb/sqltool/2.7.3/sqltool-2.7.3.jar
http://search.maven.org/remotecontent?filepath=org/hsqldb/sqltool/2.7.3/sqltool-2.7.3.jar

HyperS@L SqiTool

properly and usually to prototype and try things out. A command-line tool is really better for executing SQL scripts,
any form of automation, direct-to-file fetching, and remote client usage. To clarify thislast, if you haveto do your SQL
client work on awork server on the other side of a VPN connection, you will quickly appreciate the speed difference
between text data transmission and graphical data transmission, even if using VNC or Remote Console. Another case
would be where you are doing some repetitive or very structured work where variables or language features would
be useful. Gui proponents may disagree with me, but scripting (of any sort) is more efficient than repetitive copy &
pasting with a Gui editor. SglTool starts up very quickly, and it takes up a tiny fraction of the RAM required to run
acomparably complex Gui like Toad.

SqlTool is superior for interactive use because over many years it has evolved lots of features proven to be efficient
for day-to-day use. Four concise in-program help commands (\ ?,: ?,*? and/ ?) list al available commands of the
corresponding type. Sql Tool doesn't support up-arrow or other OOB escapes (due to basic Java l/O limitations), but it
more than makes up for this limitation with macros, user variables, command-line history and recall, and command-
line editing with extended Perl/Java regular expressions. The \d commands deliver JIDBC metadata information as
consistently as possible (in several cases, database-specific work-arounds are used to obtain the underlying data even
though the database doesn't provide metadata according to the JDBC specs). Unlike server-side language features, the
samefeature set worksfor any database server. Database access details may be supplied on the command line, but day-
to-day userswill want to centralize JDBC connection details into a single, protected RC file. Y ou can put connection
details (username, password, URL, and other optional settings) for scores of target databases into your RC file, then
connect to any of them whenever you want by just giving SglTool the ID ("urlid") for that database. When you Execute
SqlTool interactively, it behaves by default exactly asyou would want it to. If errors occur, you are given specific error
messages and you can decide whether to roll back your session. Y ou can easily change this behavior to auto-commit,
exit-upon-error, etc., for the current session or for al interactive invocations. You can import or export delimiter-
separated-value files. If you need to run a specific statement repeatedly, perhaps changing the WHERE clause each
time, it is very simple to define amacro.

When you Execute Sgl Tool with a SQL script, it also behaves by default exactly as you would want it to. If any error
is encountered, the connection will be rolled back, then SglTool will exit with an error exit value. If you wish, you
can detect and handle error (or other) conditions yourself. For scripts expected to produce errors (like many scripts
provided by database vendors), you can have SglTool continue-upon-error. For SQL script-writers, you will have
access to portable scripting features which you've had to live without until now. You can use variables set on the
command line or in your script. You can handle specific errors based on the output of SQL commands or of your
variables. Y ou can chain SQL scripts, invoke external programs, dump datato files, use prepared statements, Finaly,
you have a procedural language withi f , f or each, whi | e, cont i nue, and br eak statements.

Platforms and SqlTool versions covered

SglTool runson any Java 1l or later platform. | know that Sgl Tool workswell with Sun and OpenJDK JVMs. | haven't
run other vendors JVMs in years (IBM, JRockit, etc.). As my use with OpenJDK provesthat | don't depend on Sun-
specific classes, | expect it to work well with other Java implementations. A version of the jar compiled with JDK
8 isasoincluded.

SqlTool no longer writes any files without being explicitly instructed to. Therefore, it should work fine on read-only
systems, and you'll never have orphaned temp files left around.

The command-line examples in this chapter work as given on all platforms (if you substitute in a normalized path
in place of $HSQLDB_HOVE), except where noted otherwise. When doing any significant command-line work on
Windows (especially shell scripting), you're better off to completely avoid paths with spaces or funny characters. If
you can't avoid it, use double-quotes and expect problems. As with any Java program, file or directory paths on the
command line after "java' can use forward slashes instead of back slashes (this goes for System properties and the
CLASSPATH variable too). | use forward slashes because they can be used consistently, and | don't have to contort
my fingers to type them :).

If you are using SglTool from a HyperSQL distribution of version 2.2.5 or earlier, you should use the documentation
with that distribution, because this manual documents many new features, several significant changes to interactive-

HyperS@L SqiTool

only commands, and a few changes effecting backwards-compatibility (see next section about that). This document
is now updated for the current versions of SglTool and SqlFile at the time | am writing this (versions 6632 and 6559
correspondingly-- SqlFile is the class which actually processes the SQL content for SglTool). Therefore, if you are
using aversion of SqlTool or SglFile that is more than a couple revisions greater, you should find a newer version of
this document. (Theimprecision is due to content-independent revision increments at build time, and the likelihood of
one or two behavior-independent bug fixes after public releases). The startup banner will report both versions when
you run SglTool interactively. (Dotted version numbers of SglTool and SqlFile definitely indicate ancient versions).

This guide covers SqlTool as bundled with HSQLDB after 2.2.5. 1

Recent Functional Changes

This section lists changes to SglTool since the last major release of HSQLDB which may effect the portability of
SQL scripts. For this revision of this document, this list consists of script-impacting changes made to SglTool after
the 2.3.3 HyperSQL release.

 Leading and trailing white-space of special command arguments are no longer generally ignored. If you don't want
to give a parameter to a special command, then don't include any extra whitespace. This was changed so that \p
commands can output whitespace or strings beginning or ending with whitespace, without having \p parse parameters
differently from every other special command. Whenever you give a parameter to a special command, a single
white-space character isused just to separate command from argument(s) and then the remainder isthe argument(s).
Some specific special commands will then trim the arguments captured this way, but \p commands will not. For
example, a single space or tab is required after \p or \pr, and then the rest of the string is precisely what will be

output. For example, command "\ p one" would output "one"; and™\p two " would output " two ;
and"™\p " would output " ".

» Warnings are only displayed in interactive mode if the message is reporting about intended behavior. For example,
warnings that awork-around is being used to distinguish system objects, or that the database object isn't returning a
meaningful value. Script designers will learn these things when designing their scripts and running the commands
interactively. For automated usage, these scripts clutter output and would have to be filtered out.

New Features
Since HyperSQL 2.3.3

To reduce duplication, new features are listed in the Recent Functional Changes section are not repeated here, so
check that list too.

» RC Datafile'urlid' field values are now comma-delimited list matched against candidate urlids. Thisis downward-
compatible since asingle entry without metacharacterswill still require an exact match of the candidate string. This
allows for specifying defaults with precedence and eliminates redundancy for maximum conciseness.

* Input files may now be specified by URL. This applies to specification of SQL script files on the command-line, as
well as dataimports (DSV, XML, and binary), and @ construct relative paths from them correctly.

* Special command \p now has a'n' option that doesn't output a line delimiter. Thisis similar to UNIX echo's -n
switch or \c escape.

* Added System PL Variables* SCRIPT, * SCRIPT_FILE, * SCRIPT_BASE, *HOST, *HOSTNAME, *ROWS. See
SqlTool System PL Variables appendix.

The Bare Minimum

The Bare Minimum You Need to Know to Run SqlTool

1 To reduce the time I will need to spend maintaining this document, in this chapter | am giving the path to the sanpl e directory asit isin
HyperSQL 2.x distributions, namely, HSQLDB_HOVE/ sanpl e. Users of HSQLDB before 2.0.x should trandlate these sample directory paths to
use HSQLDB_HOME/ sr ¢/ or g/ hsql db/ sanpl e/

HyperS@L SqiTool

Warning
If you are using an Oracle database server, it will commit your current transaction if you cleanly

disconnect, regardless of whether you have set auto-commit or not. This will occur if you exit SglTool
(or any other client) in the normal way (as opposed to killing the process or using Ctrl-C, etc.). Thisis
mentioned in this section only for brevity, so | don't need to mention it in the main text in the many places
where auto-commit is discussed. This behavior has nothing to do with SglTool. It isaquirk of Oracle.

If you want to use Sgl Tool, then you either have an SQL text file, or you want to interactively typein SQL commands.
If neither case applies to you, then you are probably looking at the wrong program.

Procedure1l.1. Torun SgiToal...

1

Copy thefile sanpl e/sqltool.rc Lof your HyperSQL distribution to your home directory and secure
accesstoit if your computer isaccessibleto anybody else (most likely from the network). Thisfilewill work as-is
for aMemory Only databaseinstance; or if your target isaHyperSQL Server running on your local computer with
default settings and the password for the "SA" account is blank (the SA password is blank when new HyperSQL
database instances are created). Edit the file if you need to change the target Server URL, username, password,
character set, JDBC driver, or TLS trust store as documented in the RC File Authentication Setup section. You
could, alternatively, usethe - - i nl i neRc command-line switch or the \j special command to connect up to a
data source, as documented below.

Find out whereyour sqgl t ool . j ar fileresides. It typically residesat HSQLDB_HOVE/ | i b/ sql t ool . j ar
where HSQLDB_HOME is the "hsgldb" directory inside the root level of your HyperSQL software installation.
(For example, if you extract hsqgl db-9.1.0.zip into c:\tenp, your HSQDB HOVE would be
c:/tenp/ hsqgl db-9. 1. 0/ hsqgl db. Your file may also have a version label in the file name, like
sql tool -1. 2. 3. 4. j ar . Theforward slashes work just fine on Windows). For this reason, I'm going to use
"$HSQLDB_HOME/lib/sqltool.jar" as the path to sql t ool . j ar for my examples, but understand that you
need to use the actual path to your ownsqgl t ool . j ar file. (Unix usersmay set areal env. variableif they wish,
in which case the examples may be used verbatim; Window users may do the same, but will need to dereference
thevariableslike 99 HI S%instead of like $THI S).

. Warning

My examples assume there are no spaces or funky characters in your file paths. This avoids bugs
with the Windows cmd shell and makes for simpler syntax al-around. If you insist on using
directories with spaces or shell metacharacters (including standard Windows home directories
like C:\ Docunents and Settings\ bl ai ne), you will need to double-quote arguments
containing these paths. (On UNIX you can aternatively use single-quotes to avoid variable
dereferencing at the same time).

If you are just starting with SglTool, you are best off running your SglTool command from a shell command-
line (as opposed to by using icons or the Windows' Start/Run... or Start/Start Search). Thisway, you will be sure
to see error messages if you type the command wrong or if SglTool can't start up for some reason. On recent
versions of Windows, you can get a shell by running crrd from Start/Run... or Start/Start Search). On UNIX or
Linux, any real or virtual terminal will work.

On your shell command line, run

‘ java -jar $HSQ.DB_HOVE/li b/sqltool .jar --help ‘

to see what command-line arguments are available. Note that you don't need to worry about setting the
CLASSPATHwhen you usethe - j ar switchtoj ava.

To run SglTool without a JDBC connection, run

HyperS@L SqiTool

‘ java -jar $HSQLDB_HOME/lib/sqltool.jar ‘

Y ouwon't be able to execute any SQL, but you can play with the SglTool interface (including using PL features).

To execute SQL, you'll need the classes for the target database's JDBC driver (and database engine classesfor in-
process databases). As this section istitled The Bare Minimum, I'll just say that if you are running SglTool from
aHyperSQL product installation, you are al set to connect to any kind of HyperSQL database. Thisis because
SqlTool will look for thefilehsql db. j ar inthesamedirectory assql t ool . j ar, and that file contains all of
the needed classes. (Sgl Tool supportsall JDBC databases and does not require aHyperSQL installation, but these
cases would take us beyond the bare minimum). So, with hsql db. j ar in place, you can run commands like

‘ java -jar $HSQLDB_HOVE/ i b/sqltool.jar mem ‘

for interactive use, or

‘ java -jar $HSQ.DB HOVE/|lib/sqgltool.jar --sqgl ="SQ statenent;" nmem ‘

or

‘ java -jar $HSQLDB HOVE/lib/sqgltool.jar memfilepathl.sql... ‘

where memis an urlid, and the following arguments are paths to text SQL files. Filepath may be alocal file path
that can use whatever wildcards your operating system shell supports; or a URL.

The urlid mem in these commandsis akey into your RC file, as explained in the RC File Authentication Setup
section. Sincethisisamem: type catalog, you can use Sgl Tool with thisurlid immediately with no database setup
whatsoever (however, you can't persist any changes that you make to this database). The sample sgltool.rc file
also definesthe urlid "localhost-sa" for alocal HyperSQL Listener. At the end of this section, | explain how you
can load some sample data to play with, if you want to.

. Tip

If SglTool fails to connect to the specified urlid and you don't know why, add the invocation parameter
- - debug. Thiswill cause SglTool to display a stack trace from where the connection attempt fails. (I
a connection attempt fails with the interactive \j command, details will always be displayed).

I You areresponsible for Commit behavior

- Sl Tool does not commit SQL changes by default. (You can use the - - aut oCommi t command-line
switch to have it auto-commit). Thisleavesit to the user's discretion whether to commit or rollback their
modifications. If you do want your changes committed, remember to run \= before quitting SglTool.
(Most databases also support the SQL command commi t ;),

If you put a file named aut o. sql into your home directory, this file will be executed automatically every time
that you run SglTool interactively (unless you invoke with the - - noAut oFi | e switch). | did say interactively: If
you want to execute this file when you execute SQL scripts from the command line, then your script must use \ i
${user. horme}/ aut o. sql or similar to invoke it explicitly.

To use a JDBC Driver other than the HyperSQL driver, you can't use the - j ar switch because you need to modify
the classpath. You must add the sql t ool . j ar file and your JDBC driver classes to your classpath, and you must
tell SglTool what the JIDBC driver class nameis. Thelatter can be accomplished by either using the "--driver" switch,
or setting "driver" in your config file. The RC File Authentication Setup section. explains the second method. Here's
an example of the first method (after you have set the classpath appropriately).

‘j ava org. hsql db. cndl i ne. Sql Tool --driver=oracle.jdbc. Oracl ebriver urlid ‘

HyperS@L SqiTool

Tip

If the tables of query output on your screen are all messy because of lineswrapping, the best and easiest
solutionisusually to resize your terminal emulator window to makeit wider. (With some termsyou click
& drag the frame edges to resize, with others you use a menu system where you can enter the number
of columns).

Quotes and Spaces

Single and double-quotes are not treated specialy by SglTool. This makes SglTool more intuitive than most shell
languages, ensures that quotes sent to the database engine are not adulterated, and eliminates the need for somehow
escaping quote characters.

Line delimiters are special, as that is the primary means for SglTool to tell when a command is finished (requiring
combination with semi-colon to support multi-line SQL statements). Spaces and tabs are preserved inside of your
strings and variable values, but are trimmed from the beginning in nearly all cases (such space having very rare
usefulness). The cases where leading whitespace is preserved exactly as specified in your strings are the : commands
(including* VARNAME :,/: VARNAME \x :,and\xq :).

So, if you write the SQL command

‘INSERTintot val ues (' one '’ and '' two');

or the SglTool print command

‘\p A nessage for ny 'Geatest... fan'

you just type exactly what you want to send to the database, or what you want displayed.

Embedding

Using SqlTool to execute SQL files from your own Java code

To repeat what is stated in the JavaDoc for the Sql Tool classitself: Programmatic userswill usually want to use
the objectMain(String[]) method if they want arguments and behavior exactly like command-line Sgl Tool. If you don't
need invocation parameter parsing, aut 0. sql execution, etc., you will have more control and efficiency by using the
SylFile classdirectly. Thefile src/ org/ hsql db/ sanpl e/ Sql Fi | eEnbedder . j ava inthe HyperSQL
distribution provides an example for thislatter strategy.

Non-displayable Types

There are some SQL types which SglTool (being atext-based program) can't display properly. Thisincludes the SQL
types BLOB, JAVA_OBJECT, STRUCT, and OTHER. When you run a query that returns any of these, SglTool will
save the very first such value obtained to the binary buffer and will not display any output from this query. You can
then save the binary value to afile, as explained in the Storing and Retrieving Binary Files section.

Thereare other types, such asBl NARY, which JDBC can make displayabl e (by using ResultSet.getString()), but which
you may very well want to retrieve in raw binary format. Y ou can use the \b command to retrieve any-column-type-
at-all in raw binary format (so you can later store the value to a binary file).

Another restriction which all text-based database clients have is the practical inability for the user to type in binary
data such as photos, audio streams, and serialized Java objects. Y ou can use SglTool to load any binary object into
a database by telling SqlTool to get the insert/update datum from afile. Thisis also explained in the Storing and
Retrieving Binary Files section.

HyperS@L SqiTool

Compound commands or commands with semi-
colons

See the Chunking section if you need to execute any compound SQL commands or SQL commands containing non-
escaped/quoted semi-colons.

Desktop shortcuts

Desktop shortcutsand quick launchiconsare useful, especialy if you often run Sgl Tool with the same set of arguments.
It'srealy easy to set up several of them-- one for each way that you invoke SglTool (i.e., each onewould start SglTool
with al theargumentsfor one of your typical startup needs). Onetypical setup isto have one shortcut for each database
account which you normally use (use adifferent ur | i d argument in each shortcut's Target specification.

Desktop icon setup varies depending on your Desktop manager, of course. I'll explain how to set up a SqlTool startup
icon in Windows XP. Linux and Mac users should be able to take it from there, since it's easier with the common
Linux and Mac desktops.

Procedure 1.2. Creating a Desktop Shortcut for SglTool

1. Right click in the main Windows background.

2. New
3. Shortcut
4. Browse

5. Navigate to where your good JRE lives. For recent Sun JRE's, it installsto C: \ Progr am Fi | es\ Java\ *
\ bi n by default (the * will be aJDK or JRE identifier and version number).

6. Selectj ava. exe.

7. OK

8. Next

9. Enter any name

10. Finish

11. Right click the new icon.
12. Properties

13. Edit the Target field.

14. Leave the path to java.exe exactly as it is, including the quotes, but append to what is there. Beginning with a
space, enter the command-line that you want run.

15. Change Icon... to apretty icon.

16. If you want a quick-launch icon instead of (or in addition to) a desktop shortcut icon, click and drag it to your
quick launch bar. (Y ou may or may not need to edit the Windows Toolbar properties to let you add new items).
Postnote: Quick launch setup has become more idiosyncratic on the more recent versions of Windows, sometimes
reguiring esoteric hacks to make them in some cases. So, if the instructions here don't work, you'll have to seek
help elsewhere.

HyperS@L SqiTool

Loading sample data

If you want some sample database objects and datato play with, executethe sanpl e/ sanpl edat a. sql SQL
filel. To separate the sample data from your regular data, you can put it into its own schema by running this before
you import:

CREATE SCHEMA sanpl edat a AUTHORI ZATI ON dba;
SET SCHEMA sanpl edat a;

Run it like this from an SglTool session

‘ \'i HSQLDB_HOME/ sanpl e/ sanpl edat a. sql

where HSQLDB_HOME isthe base directory of your HSQL DB software installation 1

For memory-only databases, you'll heed to run this every time that you run SglTool. For other (persistent) databases,
the datawill reside in your database until you drop the tables.

Satisfying SqglTool's CLASSPATH Requirements

As discussed earlier, only the single file sql t ool . j ar isrequired to run SglTool (the file name may contain a
versionlabel likesqgl t ool - 1. 2. 3. 4. j ar). Butit'suselessasan SQL Tool unlessyou can connect to aJDBC data
source, and for that you need the target database's JIDBC driver in the classpath. For in-process catalogs, you'll also
need the database engine classesin the CLASSPATH. The The Bare Minimum section explains that the easiest way
to use SqlTool with any HyperSQL database isto just usesql t ool . j ar in-place where it resides in a HyperSQL
installation. This section explains how to satisfy the CLASSPATH requirements for other setups and use cases.

Accessing older HSQLDB Databases with SqlTool

If you are using SqlTool to access non-HSQL DB database(s), then you should use the latest and greatest-- just grab
the newest public release of SglTooal (like from the latest public HyperSQL release) and skip this subsection.

You are strongly encouraged to use the latest SqlTool release to access older HSQLDB databases, to enjoy greatly
improved Sgl Tool robustness and features. It is very easy to do this.

1. Obtainthelatestsql t ool . j ar file. Oneway to obtainthelatest sql t ool . j ar fileisto download the latest
HyperSQL distribution and extract that single file

2. Place (or copy) your new sql t ool . j ar fileright alongside the hsql db. j ar file for your target database
version. If you don't have alocal copy of thehsql db. j ar filefor your target database, just copy it from your
database server, or download the full distribution for that server version and extract it.

3. (If you have used older versions of SglTool before, notice that you now invoke SglTool by specifying the
sql tool . j ar fileinstead of thehsql db. j ar). If your target databaseisaprevious 2.x version of HyperSQL,
then you arefinished and can use the new Sgl Tool for your older database. Users upgrading from apre-2.x version
please continue...

Run Sl Tool like this.

‘ java -jar path/to/sqgltool.jar --driver=org.hsqldb.jdbcDriver... ‘

where you specify the pre-2.x JDBC driver name or g. hsql db. j dbcDri ver. Give any other SqlTool
parameters as you usually would.

Once you have verified that you can access your database using the - - dr i ver parameter as explained above,
edit your sql t ool . r ¢ file, and add anew line

‘ driver org. hsqldb.jdbcDriver ‘

HyperS@L SqiTool

after each urlid that is for a pre-2.x database. Once you do this, you can invoke SglTool as usual (i.e. you no
longer need the - - dr i ver argument for your invocations).

App-specific Classes, Embedding, and non-HyperSQL
Databases

For these situations, you need to add your custom, third-party, or SQL driver classes to your Java CLASSPATH.
Java doesn't support adding arbitrary elements to the classpath when you use the - j ar , so you must set a classpath
containing sql t ool . j ar plus whatever else you need, then invoke SqglTool without the - j ar switch, as briefly
described at the end of the The Bare Minimum section. For embedded apps, invoke your own main class instead of
SqlTool, and you can invoke Sql Tool or Sql Fi | e from your code base.

To customize the classpath, you need to set up your classpath by using your operating system or shell variable
CLASSPATHor by using thej ava switch - cp (or theequivalent - cl asspat h). I'm not going to take up space here
to explain how to set up aJava CLASSPATH. That isaplatform-dependent task that is documented well in tons of Java
introductions and tutorials. What I'm responsible for telling you iswhat you need to add to your classpath. For the non-
embedded case where you have set up your CLASSPATH environmental variable, you wouldinvoke SqlTool likethis.

‘ java org. hsql db. cndl i ne. Sgl Tool ... ‘

If you are using the - cp switch instead of a CLASSPATH variable, stick it after j ava. After "Sql Tool ", give any
Sl Tool parametersexactly asyouwould put afterj ava -jar .../ sql tool .| ar if youdidn't needto customize
the CLASSPATH. You can specify a JDBC driver class to use either with the - - dri ver switch to SqlTool, or in
your RC file stanza (the last method is usually more convenient).

Note that without the - j ar switch, SglTool will still automatically pull in HyperSQL JDBC driver or engine classes
from HyperSQL jar files in the same directory. It's often a good practice to minimize your runtime classpath. To
prevent the possibility of pulling in classes from other HyperSQL jar files, just copy sql t ool . j ar to some other
directory (which does not contain other HyperSQL jar files) and put the path to that onein your classpath.

Distributing SqlTool with your Apps

You can distribute SglTool aong with your application, for standalone or embedded invocation. For embedded
use, you will need to customize the classpath as discussed in the previous item. Either way, you should minimize
your application footprint by distributing only those HyperSQL jar files needed by your app. You will obviously
need sql t ool . j ar if you will use the Sql Tool or Sql Fi | e classin any way. If your app will only connect
to external HyperSQL listeners, then build and include hsql j dbc. j ar . If your app will aso run a HyperSQL
Listener, you'll need toinclude hsql db. j ar . If your app will connect directly to ain-process catal og, then include
hsql dbmai n. j ar . Note that you never need to include more than one of hsql db. j ar, hsql dbmai n. j ar,
hsql j dbc. j ar, since the former jars include everything in the following jars.

SqlTool Client PCs

If you just want to be able to run SqlTool (interactively or non-interactively) on a PC, and have no need for
documentation, then it's usually easiest to just copy sql t ool . j ar and hsql db. j ar to the PCs (plus JDBC
driver jars for any other target databases). If you want to minimize what you distribute, then build and distribute
hsql j dbc. j ar or hsql dbrai n. j ar instead of hsql db. j ar, according to the criteria listed in the previous
sub-section.

RC File Authentication Setup

RC file authentication setup is accomplished by creating a text RC configuration file. In this section, when | say
configuration or config file, | mean an RC configuration file. RC files can be used by any JDBC client program that
uses the org.hsgldb.util.RCData class-- this includes Sql Tool, DatabaseM anager, DatabaseM anager Swing.

HyperS@L SqiTool

You can use it for your own JDBC client programs too. There is example code showing how to do thisat src/
or g/ hsql db/ sanpl e/ Sql Fi | eEnbedder. j ava

ThesampleRCfileshown hereresidesat sanpl e/ sqgl t ool . r ¢ inyour HSQLDB distribution . Thefile consists
of comments and blank lines, ur | i d patterns that are matched against, and assignments (all other lines). A stanzais
ablock of lines from one urlid line until before the next urlid line (or end of file).

Example 1.1. Sample RC File

#

H* HHHHHHHHH #* F#* HH O HH

H* H H*

#* F#*

HHHHHHHHHHHHH

HHHHHHHHHHR

#* F#*

$ld: sqgltool.rc 6381 2021-11-18 21:45:56Z unsaved $

This is a sanple RC configuration file used by Sql Tool, DatabaseManager,
and any other programthat uses the org. hsqldb.lib. RCData cl ass.

See the docunentation for Sgl Tool for various ways to use this file.

This is not a Java Properties file. It uses a customformat with stanzas,
simlar to .netrc files.

If you have the | east concerns about security, then secure access to
your RC file.

You can run Sqgl Tool right now by copying this file to your hone directory
and running

java -jar /path/to/sqgltool.jar nem
This will access the first urlid definition belowin order to use a
personal Menory-Only dat abase.
"url" val ues may, of course, contain JDBC connection properties, delimnted
wi th senicol ons.
As of revision 3347 of SglFile, you can al so connect to datasources defined
here fromwithin an Sgl Tool session/file with the conmand "\j wurlid".

You can use Java system property values in this file like this: ${user.hone}
W ndows users are advised to use forward sl ashes instead of back-sl ashes,
and to avoi d paths containing spaces or other funny characters. (This

recommendati on applies to any Java app, not just Sqgl Tool).

It is aruntine error to do a urlid | ookup using RCData class and to not
mat ch any stanza (via urlid pattern) in this file.

Three features added recently. Al are downward-conpati bl e.

1. urlid field values in this file are now conma-separated (w th optional
whi t espace before or after the conmas) regul ar expressions.

2. Each individual urlid token value (per previous bullet) is a now a regul ar
expression pattern that urlid | ookups are conpared to. N b. patterns mnust
match the entire | ookup string, not just match "within" it. E. g. pattern
of . would match | ookup candidate "A" but not "AB". .+ will always match.

3. Though it is still an error to define the sane exact urlid value nore

than once in this file, it is allowed (and useful) to have a url | ookup
match nore than one urlid pattern and stanza. Assignments are applied
sequentially, so you should generally add default settings with nore
liberal patterns, and override settings later in the file with nore
specific (or exact) patterns.

Since service discovery works great in all JREs for many years now, |
have renoved all 'driver' specifications here. JRE discover will
automatically resolve the driver class based on the JDBC URL format.

Most peopl e use default ports, so | have renoved port specification from
exanpl es except for Mcrosoft's Sql Server driver where you can't depend
on a default port.

In all cases, to specify a non-default port, insert colon and port number
after the hostnane or ip address in the JDBC URL, |ike

jdbc: hsqgl db: hsql : //1 ocal host: 9977 or

jdbc: sql server://host nane. adnt. com 1433; dat abaseNane=dbnane

Amazon Aurora instances are access from JDBC exactly the sane as the
non- Aurora RDS counterpart.

10

HyperS@L SqiTool

For using any database engi ne other than Hyper SQL, you nust add the

JDBC jar file and the Sql Tool jar to your CLASSPATH then run a conmand |i ke:
java org. hsqgl db.util.Sql Tool ...

#1.e., the "-jar" switch doesn't support nodified classpath.

(See Sqgl Tool manual for how to do sane thing using Java nodul es.)

To oversinplify for non-devel opers, the two npst common nethods to set

CLASSPATH for an executable tool |ike Sgl Tool are to either use the java
"-cp" switch or set environmental variable CLASSPATH.

W ndows users can use graphical U or CLI "set". Unix shell users nust

"export" in addition to assigning.

#

Al JDBC jar files used in these exanples are avail able from Maven

repositories. You can also get themfromvendor web sites or with product
bundl es (especially database distributions).

Most databases provide nmultiple variants. Mst people will want a type 4
driver supporting your connection mechani sm (nmost comronly TCP/ I P service,
but al so database file access and others) and your client JRE version.

By convention the variants are distinguished in segnents of the jar file
name before the final ".jar"

dobal default. .+ matches all | ookups:

urlid .+

user name SA

passwor d

A personal Menory-Only (non-persistent) database.

Inherits username and password from default setting above.
urlid mem

url jdbc: hsql db: mem mendbi d

A personal, local, persistent database.

Inherits username and password from default setting above.

urlid personal

url jdbc: hsqgldb:file:${user. hone}/db/ personal ; shut down=true;ifexist=true
transi so TRANSACTI ON_READ COW TTED

When connecting directly to a file database like this, you should

use the shutdown connection property like this to shut down the DB

properly when you exit the JVM

This is for a hsqldb Server running with default settings on your | ocal
conmputer (and for which you have not changed the password for "SA").

Inherits username and password from default setting above.

Default port 9001

urlid | ocal host-sa

url jdbc: hsql db: hsql : //1 ocal host

Tenplate for a urlid for an Oracl e dat abase.

Driver jar files fromthis century have format |ike "oj bc*.jar
Default port 1521

urlid | ocal host-sa

Avoid ol der drivers because they have quirks.

You could use the thick driver instead of the thin, but | know of no reason
why any Java app shoul d.

#urlid cardiff2

Can identify target database with either SID or gl obal service nane.
#url jdbc:oracle:thin: @/centos.adnc. conltstsid. adnc

#user nane bl ai ne

#password asecr et

Tenplate for a TLS-encrypted HSQLDB Server.
Remenber that the hostnane in hsgls (and https) JDBC URLs must nmatch the

11

HyperS@L SqiTool
CN of the server certificate (the port and instance alias that follows

are not part of the certificate at all)

You only need to set "truststore" if the server cert is not approved by

your systemdefault truststore (which a comercial certificate probably

woul d be)

Port defaults to 554

#urlid tls

#url jdbc: hsql db: hsql s://db. adnc. com 9001/ | n2
#user nanme BLAI NE

#password asecr et

#truststore ${user. hone}/cal/ db/db-trust.store

Tenpl ate for a Postgresql database

Driver jar files are of format |ike "postgresql-*.jar
Port defaults to 5432

#urlid bl ai nedb

#url jdbc: postgresql://idun.africawork. org/bl ai nedb
#user nane bl ai ne

#password asecr et

Amazon RedShift (a fork of Postgresql)

Driver jar files are of format |ike "redshift-jdbc*.jar"

Port defaults to 5439

#urlid redhshift

#url jdbc:redshift://clusternane. hex. us-east-1.redshift.amzonaws. conl dev
#user name awsuser

#password asecr et

Tenplate for a M/SQL dat abase. MSQL has poor JDBC support.

The | atest driver jar files are of format |ike "nysql-jdbc*.jar", but not
long ago they were |ike "nysql-connector-java*.jar".

Port defaults to 3306

#urlid nysql-testdb

#url jdbc: nmysql ://host name/ dbnane

#user nane r oot

#password asecr et

Alternatively, you can access MySQ using jdbc: mariadb URLs and driver

Note that "databases" in SQ Server and Sybase are traditionally used for
the same purpose as "schemas" with nmore SQL-conpliant databases

Tenplate for a Mcrosoft SQ Server database using Mcrosoft's Driver

Seenms that some versions default to port 1433 and others to 1434

MSDN inplies instances are port-specific, so can specify port or instnane
#urlid nsprojsvr

Driver jar files are of format Iike "nssql-jdbc-*.jar".

Don't use older MS JDBC drivers (like SQ Server 2000 vintage) because they
are pitifully inconpetent, handling transactions incorrectly.

| reconmend that you do not use Mcrosoft's nonstandard format that

includes backsl ashes.

#url jdbc:sql server://hostname;instanceNanme=i nst name; dat abaseName=dbnane

with port:

#url jdbc:sql server://hostnanme: 1433; i nst anceNane=i nst nane; dat abaseNanme=dbnane
#user name nyuser

#password asecr et

Tenpl ate for Mcrosoft SQ Server database using the JTDS Driver

Looks like this project is no |onger maintained, so you may be better off
using the Mcrosoft driver above

http://jtds.sourceforge.net Jar file has nane like "jtds-1.3.1.jar".

Port defaults to 1433

MSDN i nplies instances are port-specific, so can specify port or instnane
#urlid nlyte

#user name nyuser

#password asecr et

HHHHHH

12

HyperS@L SqiTool

#url jdbc:jtds:sqglserver://nyhost/nlyte;instance=MSSQLSERVER

Where database is 'nlyte' and instance is ' MSSQLSERVER .

N b. this is diff. fromMs tools and JDBC driver where (depending on which
docunent you read), instance or database X are specified Ii ke HOSTNAME\ X

Tenpl ate for a Sybase dat abase

#urlid sybase

#url jdbc: sybase: Tds: host nane: 4100/ dbnane

#user nane bl ai ne

#password asecr et

This is for the jConnect driver (requires jconn3.jar)

Derby / Java DB

Pl ease see the Derby JDBC docs, because they have changed the organi zation
of their driver jar files in recent years. Conbining that with the different
dat abase types supported and jar file classpath chaining, and it's not
feasible to docunent it adequately here

11l just give one exanple using network service, which works with 10.15.2.0
Put files derbytool s*.jar, derbyclient*.jar, derbyshared*.jar into a
directory and include the path to the derbytools.jar in your classpath

Port defaults to 1527

#url jdbc: derby://server:<port>/dat abaseNane

#user name ${user. nane}

#password any_noaut hbydef aul t

|f you get the right classes into classpath, local file URLs are |ike

#url jdbc: derby: path/to/ derby/directory

HHHHHHHHH

You can use \= to commit, since the Derby team decided (why???)

not to inplenent the SQL standard statenment "commt"!!

Note that Sql Tool can not shut down an enbedded Derby database properly,
since that requires an additional SQL connection just for that purpose
However, |'ve never |ost data by shutting it down inproperly.

Other than not supporting this quirk of Derby, Sqgl Tool is mles ahead of
Derby's ij.

Maria DB

Wth current versions, the MySQL driver does not work to access a Maria
dat abase (though the inverse works)

Driver jar files are of format |ike "nmariadb-java-client*.jar"

Port defaults to 3306

#urlid maria

#url jdbc: mari adb://host nane/ db2
#user nane bl ai ne

#password asecr et

As noted in the comment (and as used in a couple examples), you can use Java system properties like this:
${user . hone} . Windows users, please read the suggestion directed to you in thefile.

You can put this file anywhere you want to, and specify the location to SglTool/DatabaseManager/
DatabaseManagerSwing by using the - - r cf i | e argument. If there is no reason to not use the default location (and
there are situations where you would not want to), then use the default location and you won't have to give - -
rcfi | e argumentsto SglTool/DatabaseM anager/DatabaseM anagerSwing. The default locationissql t ool . rc or
dbmanager . r ¢ inyour home directory (corresponding to the program using it). If you have any doubt about where
your home directory is, just run SglTool with a phony urlid and it will tell you where it expects the configuration
fileto be.

‘ java -jar $HSQLDB_HOVE/li b/sql tool.jar x ‘

There are cases where you can't use the RC file at the default location. You may have no home directory. Another
directory may be more secure. Or you may have multiple RC files that you use for different purposes. Either way, you
can specify any RC filepath (absolute or relative) like so:

‘ java -jar $HSQ.DB HOVE/lib/sqgltool.jar --rcFile=path/to/rc/file.name urlid ‘

If Sl Tool can't open the specified RC file or thereisasyntax error init, you'll get auseful error message. You'll also
get an error message if there is no match for the urlid value that you look up.

13

HyperS@L SqiTool

The config file consists of stanza(s) beginning withur | i d

urlid web.+, app.+

url jdbc: hsql db: hsql : //1 ocal host
user name web

passwor d webspassword

Only theur | i d field isrequired, and the value of it must be acomma-delimited (with optional white-space on either
side) list of regular expression patterns which are matched against candidate urlid lookups. One urlid pattern may only
appear in the file once, but a candidate urlid may match multiple patterns, and that allows you to set defaults and
apply overrides, etc. (see paragraph below about that). Be aware that after all of the matching for alookup is done, the
results won't be usable to establish a connection unless you have assigned at least aur | value (more often than not
a username and password will also be required). The URL may contain JDBC connection properties. Y ou can have
as many blank lines and comments like

‘ # This coment ‘

in the file as you like. The whole point is that the urlid that you give in your SglTool/DatabaseManager command
must match at least one urlid in your configuration file so that values like url and username can be assigned to use
for connection attempts.

. Warning
Use whatever facilities are at your disposal to protect your configuration file.

The specified urlid patterns must match then entire lookup candidate urlid values. For example, a pattern of . would
match lookup candidate "A" but not "AB". Pattern of .+ will always match.

Assignments are applied in the order they occur in the file, with lower assignments overriding earlier assignments.
Therefore, you will generally want to use more general urlid patterns toward the top to specify default values, and
more specific urlid patterns toward the bottom to specify overrides.

The file should be readable, both locally and remotely, only to users who run programs that need it. On UNIX, this
is easily accomplished by using chnod/ chown commands and making sure that it is protected from anonymous
remote access (like viaNFS, FTP or Samba).

Y ou can also put the following optional settingsinto aurlid stanza. The setting will, of course, only apply to that urlid.

charset Thisis used by the SglTool program, but not by the DatabaseM anager programs. Seethe Character
Encoding section of the Non-Interactive section. Thisis used for input and output files, not for
stdin or stdout, which are controlled by environmental variables and Java system properties. If you
set no encoding for an urlid, input and outfileswill use the same encoding as for stdin/stdout. (As of
right now, the charset setting here is not honored by the \j command, but only when SqlTool loads
an urlid specified on the command-line).

driver Setsthe JDBC driver class name. You can, alternatively, set thisfor one Sgl Tool/DatabaseM anager
invocation by using the command line switch --driver. Defaults to org.hsgldb.jdbc.JDBCDriver.

truststore TLStrust keystore store file path as documented in the TLS section of the Listeners chapter of the
HyperSQL User Guide [http://hsgldb.org/doc/2.0/guide/index.html] Y ou usually only need to set
thisif the server isusing anon-publicly-certified certificate (like aself-signed self-cad cert). Relative
paths will be resolved relative to the ${ user . di r} system property at JRE invocation time.

transiso Specify the Transaction I solation Level with an all-caps string, exactly aslisted in he Field Summary
of the Java API Spec for the classj ava. sql . Connecti on.

Property and SglTool command-line switches override settings made in the configuration file.

14

http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html

HyperS@L SqiTool

Switching Data Sources

The \j command lets you switch JDBC Data Sources in your SQL files (or interactively). "\?" shows the syntax to
make a connection by either RCData urlid or by name + password + JDBC Url. (If you omit the password parameter,
an empty string password will be used). The urlid variant uses RC file of $HOVE/ sql t ool . r c. We will add away
to specify an RC file if there is any demand for that.

You can start SglTool without any JDBC Connection by specifying no Inline RC and urlid of "-" (just a hyphen). If
you don't need to specify any SQL file paths, you can skip the hyphen, asin this example.

‘j ava -jar $HSQLDB_HOVE/|i b/sqltool .jar -Pvl=one ‘

(The "-" is required when specifying one or more SQL files, in order to distinguish urlid-spec from file-spec).
Consequently, if you invoke SglTool with no parameters at all, you will get a SglTool session with no JDBC
Connection. You will obviously need to use\j before doing any database work.

Using Inline RC Authentication

Inline RC authentication setup isaccomplished by using the- - i nl i neRc command-line switch on SglTool. The- -
i nl i neRc command-line switch takes a comma-separated list of key/value elements. Theur | and user elements
are required. The rest are optional. The - - i nl i neRc switch is the only case where you can give SQL file paths
without a preceding urlid indicator (an urlid or -). The program knows not to look for an urlid if you give an inline.

Since commas are used to separate each nane=val ue pair, you must do some extrawork for any commas inside of
the values of any nane=val ues. Escape them by proceeding them with backslash, like "my Name=ny\ p, val ue"
to inform SqlTool that the commais part of the value and not a name/val ue separator.

url The JDBC URL of the database you wish to connect to.
user The username to connect to the database as.
char set Sets the character encoding. Overrides the platform default, or what you have set by env variables

or Java system properties. (Does not effect stdin or stdout).

truststore TheTLStrust keystore file path as documented in the TL S chapter. Relative paths will be resolved
relative to the current directory.

transi so j ava. sgl . Connect i on transaction isolation level to connect with, as specified in the Java API
Spec.

passwor d Y ou may only use this element to set empty password, like
‘ passwor d= ‘

For any other password value, omit the passwor d element and you will be prompted for the value.

(Usethe- - dri ver switchinstead of - - i nl i neRc to specify aJDBC driver class). Hereis an example of invoking
SqlTool to connect to a standal one database.

‘j ava -jar $HSQLDB HOVE/li b/sqltool.jar --inlineRc=url=jdbc:hsqldb:file:/hone/dan/dandb, user=dan ‘

For security reasons, you cannot specify a non-empty password as an argument. Y ou will be prompted for a password
as part of the login process.

Logging

Both the\l command and all warnings and error messages now use alogging facility. The logging facility hands off to
Logdj if Logdj isfound inthe classpath, and otherwisewill hand off toj ava. uti | . | oggi ng. Thedefault behavior

15

HyperS@L SqiTool

of java. util .| oggi ng should work finefor most users. If you are using log4j and are redirecting with pipes, you
may want to configure a Console Appender with target of " Syst em err" so that error output will go to the error
stream (all console output for j ava. uti | . | oggi ng goesto stderr by default). Seethe API specsfor Log4j and for
J2SE for how to configure either product. If you are embedding SglTool in a product to process SQL files, | suggest
that youuselogdj.j ava. uti | .| oggi ng isneither scalable nor well-designed.

Run the command \ | ? to see how to use the logging command \ | in your SQL files (or interactively), including
what logging levels you may specify.

Interactive Usage

Do read the The Bare Minimum section before you read this section.

You run SglTool interactively by specifying no SQL filepaths on the SglTool command line. Like this.

‘ java -jar $HSQLDB HOME/lib/sqltool.jar urlid ‘

Procedure 1.3. What happenswhen SqlTool isrun interactively (using all default settings)

1. SgiTool starts up and connects to the specified database, using your SglTool configuration file (as explained in
the RC File Authentication Setup section).

2. SQL fileaut 0. sqgl inyour home directory is executed (if thereisone),

3. SglTool displaysabanner showing the Sgl Tool and Sql File version numbers and describesthe different command
types that you can give, as well ascommandsto list all of the specific commands available to you.

Y ou exit your session by using the "\q" special command or ending input (like with Ctrl-D or Ctrl-Z).

I mportant
!

Any command may be preceded by space characters. Special Commands, Edit Buffer Commands, PL
Commands, Macros always consist of just oneline.

These rules do not apply at al to Raw Mode . Raw mode is for use by advanced users when they want
to completely bypass SglTool processing in order to enter a chunk of text for direct transmission to the
database engine.

SqlTool Command-Line Editing

If you are really comfortable with grep, perl, or vim, you will instantly be an expert with SgiTool command-line
editing. Due to limitations of Java I/O, we can't use up-arrow recall, which many people are used to from DosKey
and Bash shell. If you don't know how to use regular expressions, and don't want to learn how to use them, then just
forget command-recall. (Actually DosK ey doeswork from vanilla Windows M SDOS console windows. Be aware that
it suffers from the same 20-year old quirks as DOS command-line editing. Very often the command line history will
get shifted and you won't be able to find the command you want to recall. Usually you can work around this by typing
acomment... "::" to DOS or "--" to SglTool then re-trying on the next command line).

Basic command entry (i.e., without regexps)
» Just type in your command, and use the backspace-key to fix mistakes on the sameline.

« If you goof up a multi-line command, just hit the ENTER key twice to start over. (The command will be moved
to the buffer where it will do no harm).

16

HyperS@L SqiTool

e Usethe":h" command to view your command history. Y ou can use your terminal emulator scroll bar and copy and
paste facility to repeat commands.

» Aslong as you don't need to change text that is already in a command, you can easily repeat commands from the
history like":14;" to re-run command number 14 from history.

» Expanding just a bit from the previous item, you can add on to a previous command by running a command like
":14a" (where the "a" means append).

* Seethe Macros section about how to set and use macros.

If you use regular expressions to search through your command history, or to modify commands, be aware that the
command type of commands in history are fixed. Y ou can search and modify the text after a\ or * prefix (if any), but
you can't search on or change a prefix (or add or remove one).

Command Types

When you are typing into Sgl Tool, you are always typing part of the immediate command. If the immediate command
isan SQL statement, it is executed as soon as Sl Tool reads in the trailing (unquoted) semi-colon. Commands of the
other command types are executed as soon as you hit ENTER. The interactive : commands can perform actions with
or on the edit buffer. The edit buffer usually contains a copy of the last command executed, and you can always view
it with the :b command. If you never use any : commands, you can entirely ignore the edit buffer. If you want to repeat
commands or edit previous commands, you will need to work with the edit buffer. The immediate command contains
whatever (and exactly what) you type. The command history and edit buffer may contain any type of command other
than commentsand : commands (i.e., : commands and comments are just not copied to the history or to the edit buffer).

Hopefully an example will clarify the difference between the immediate command and the edit buffer. If you typein
the edit buffer Substitution command”: s/ t bl / t abl e/ ", the:scommand that you typed is the immediate command
(and it will never be stored to the edit buffer or history, sinceit isa: command), but the purpose of the substitution
command is to modify the contents of the edit buffer (perform a substitution on it)-- the goal being that after your
substitutions you would execute the buffer with the™: ; " command. The ":a" command is special in that when you hit
ENTER to execute it, it copies the contents of the edit buffer to a new immediate command and leaves you in a state
where you are appending to that immediate command (nearly) exactly asif you had just typed it in.

Emulating Non-Interactive mode

You can run SglTool interactively, but have SglTool behave exactly as if it were processing an SQL file (i.e., no
command-line prompts, error-handling that defaults to fail-upon-error, etc.). Just specify "-" asthe SQL file namein
the command line. Thisis a good way to test what SqlTool will do when it encounters any specific command in an
SQL file. See the Piping and shell scripting subsection of the Non-Interactive chapter for an example.

Command Types

Command types

SQL Statement Any command that you enter which does not begin with "\", "*:", "* " or "/"
is an SQL Statement. The command is not terminated when you hit ENTER,
like most OS shells. You terminate SQL Statements with either ";" or with a
blank line. In the former case, the SQL Statement will be executed against the
SQL database and the command will go into the edit buffer and SQL command
history for editing or viewing later on. In the former case, execute against
the SQL database means to transmit the SQL text to the database engine for
execution. In the latter case (you end an SQL Statement with ablank line), the
command will go to the edit buffer and SQL history, but will not be executed
(but you can execute it later from the edit buffer).

17

HyperS@L

SqlTool

Specia Command

Edit Buffer / History Command

PL Command

Macro Command

Raw Mode

(Blank lines are only interpreted this way when SqglTool is run interactively.
In SQL files, blank lines inside of SQL statements remain part of the SQL
statement).

Asaresult of these termination rules, whenever you are entering text that is not
a Special Command, Edit Buffer / History Command, or PL Command, you are
always appending lines to an SQL Statement or comment. (In the case of the
first line, you will be appending to an empty SQL statement. |.e. you will be
starting a new SQL Statement or comment).

Run the command "\?" to list the Specia Commands. All of the Special
Commands begin with "\". I'll describe some of the most useful Special
Commands below.

Run the command ":?" to list the Edit-Buffer/History Commands. All of these
commands begin with ":". These commands use commands from the command
history, or operate upon the edit "buffer", so that you can edit and/or (re-)execute
previously entered commands.

Procedural Language commands. Run the command "*?" to list the PL
Commands. All of the PL Commands begin with "*". PL commands are for
setting and using scripting variablesand conditional and flow control statements
like* if and* while. A few PL features (such as macros and updating
and selecting data directly from/to files) can be areal conveniencefor nearly all
users, so these features will be discussed briefly in this section. More detailed
explanation of PL variables and the other PL features, with examples, are
covered inthe SglTool Procedural Language section.

Macro definition and usage commands. Run the command "/?' to show the
define, list, or use macros.

The descriptions of command-types above do not apply to Raw Mode. In raw
mode, SqlTool doesn't interpret what you type at al. It al just goes into the
edit buffer which you can send to the database engine. Beginners can safely
ignore raw mode. You will never encounter it unless you run the "\." special
command, or define astored procedure or function. Seethe Raw Mode section
for the details.

Special Commands

Essential Special Commands

\?

\q
\j...

\i path/to/script.sql

In-program Help. Run this to show ALL available Special Commands
instead of just the subset listed herel

Quit
View JDBC Data Source detail sor connect up to aJDBC Data Source (replacing

the current connection, if any). Run\?to see the syntax for the different usages.

Execute the specified SQL script, then continue again interactively. Since
Sl Tool isaJavaprogram, you can safely use forward slashesin your file paths,
regardless of your operating system. Y ou can use Java system properties like
${user. hone}, PL variables like *{t hi s} and @in your file paths. The

18

HyperS@L

SqlTool

\c true (or false)

\m?

\x?

\mq?

\xq?

\d?

\dt [filter_substring]

\dv [filter_substring]
\ds [filter_substring]
\di [table_name]

\dS [filter_substring]
\da [filter_substring]
\dn [filter_substring]
\du [filter_substring]
\dr [filter_substring]

\d* [filter_substring]

last is mostly useful for \i statements inside of SQL files, where it means the
directory containing the current script.

Change error-handling (Continue-on-error) behavior from the default. By
default when SglTool is run interactively, errors will be reported but SglTool
will continue to process subsegquent commands. By default when Sl Tool isrun
non-interactively, errors will also cause SglTool to stop processing the current
stream (like stdin) or SQL file. The default settings are usually what is desired,
except for SQL scripts which need to abort upon failures, even when invoked
manually (including for interactive testing purposes).

Commit the current SQL transaction. Most users are used to typing the SQL
statement comi t ; , but this command is crucial for those databases which
don't support the statement. It's obviously unnecessary if you have auto-commit
mode on.

List asummary of DSV and CSV importing, and all available optionsfor them.
You can use variables in the file path specifications, as described for the \i
command above.

Ditto.
Ditto.
Ditto.

List asummary of the\d commands below.

Lists available objects of the given type.
¢ t: non-system Tables

e Vv:Views

¢ s Seguences

e i: Indexes

S: System tables

e a Aliases

19

HyperS@L

SqlTool

* n: schemaNames

* Uu: database Users

* r: Roles

« *: dl table-like objects
If your database supports schemas, then the schema name will also be listed.

If you supply an optional filter substring, then only items which match the
specified substring. will be listed. In most cases, the specified filter will be
treated as aregular expression matched against the candidate object names. In
order to take advantage of extreme server-side performance benefits, however,
in some cases the substring is passed to the database server and the filter will
processed by the server.

Theregexp test is case-sensitive!

Even though in SQL queries and for the "\d objectname"
command object names are usualy case-insensitive, for the
\dX commands, you must capitalize the filter substring exactly
as it will appear in the special command output. This is an
inconvenience, since the database engine will change names in
SQL to default case unless you double-quote the name, but that is
server-side functionality which cannot (portably) be reproduced
by SglTool. You can use spaces and other special characters in
the string.

Schema-narrowed Filter Specs

Filter substrings ending with "." are special. If a substring ends
with ".", then this means to narrow the search by the exact,
case-sensitive schema name given. For example, if | run "\ d*
BLAI NE. ", this will list al table-like database objects in the
"BLAINE" schema. The capitalization of the schema must be
exactly the same as how the schema name is listed by the "\dn"
command. Y ou can use spaces and other special charactersin the
string. (1.e., enter the name exactly how you would enter it inside
of double-quotesin an SQL command). Thisisan inconvenience,
since the database engine will change names in SQL to default
case unless you double-quote the name, but that is server-side
functionality which cannot (portably) be reproduced by SqlTool.

Current-Schema Filter Spec

The filter string "." (just a plain dot) means the current session
schema, for databases which support the concept according to the
SQL standard (HyperSQL database does).

20

HyperS@L

SqlTool

\d objectname [[/]regexp]

Sear ching for Indexes

Indexes may not be searched for by substring, only by exact target
table name. So if 1 1 is an index on table T1, then you list this
index by running "\di T1". In addition, many database vendors
will report onindexesonly if atarget tableisidentified. Therefore,
"\di" with no argument will fail if your database vendor does not
support it.

Lists names of columns in the specified table or view. obj ect nane may be
a base table name or a schema.object name.

If you supply afilter string, then only columns with a name matching the given
regular expressionwill belistd. (If no special charactersare used, thisjust means
that names containing the specified substring will match). Y ou'll find this filter
isagreat convenience compared to other database utilities, where you have to
list al columns of large tables when you are only interested in one of them.

To narrow the displayed information based on all column outputs, instead of
just the column names, just prefix the expression with /. For example, to list all
INTEGER columns, you could run\ d nyt abl e /| NTEGER

Tip

When working with real data (as opposed to learning or playing),
| often find it useful to run two SglTool sessions in two side-by-
side terminal emulator windows. | do all of my real work in one
window, and usethe other mostly for \d commands. Thisway | can
refer to the data dictionary whilewriting SQL commands, without
having to scroll.

Thislist here includes only the essential Special Commands, but n.b. that there are other useful Special Commands
which you can list by running\ ? . (You can, for example, execute SQL from external SQL files, and save your
interactive SQL commandsto files). Some specifics of these other commands are specified immediately below, and the
Generating Text or HTML Reports section explains how to usethe"\o" and "\h" special commandsto generate reports.

Be aware that the\ ! Special Command does not work for external programs that read from standard input. Y ou can
invoke non-interactive and graphical interactive programs, but not command-line interactive programs.

SqlTool executes\ ! programs directly, it does not run an operating system shell (thisis to avoid OS-specific code
in SglTool). Because of this, you can give as many command-line arguments as you wish, but you can't use shell

wildcards or redirection.

Edit Buffer / History Commands

Edit Buffer / History Commands

?

b

IN-program Help

List the current contents of the edit buffer.

Shows the Command History. For each command which has been executed (up
to the max history length), the SQL command history will show the command;

21

HyperS@L

SqlTool

:130R :-2 OR :/blue/

its command number (#); and also how many commands back it is (as a
negative number). : commands are never added to the history list. You can
then use either form of the command identifier to recall acommand to the edit
buffer (the command described next) or as the target of any of the following :
commands. This last is accomplished in a manner very similar to the vi editor.
Y ou specify the target command number between the colon and the command.
As an example, if you gave the command : s/ X/ Y/, that would perform the
substitution on the contents of the edit buffer; but if you gave the command
;-3 s/ X/'Y/, that would perform the substitution on the command 3 back
in the command history (and copy the output to the edit buffer). Also, just like
Vi, you can identify the command to recall by using aregular expression inside
of dashes, like: / bl ue/ s/ X/ 'Y/ to operate on the last command you ran
which contains "blue".

Recallsacommand from Command history to the edit buffer. Enter ":" followed
by the positive command number from Command history, like ":13"... or
":" followed by a negative number like ":-2" for two commands back in the
Command history... or ":" followed by a regular expression inside slashes,
like ":/blue/" to recall the last command which contains "blue”. The specified
command will be written to the edit buffer so that you can execute it or edit it
using the commands below.

As described under the :h command immediately above, you can follow the
command number here with any of the commands below to perform the given
operation on the specified command from history instead of on the edit buffer
contents. So, for example, ":4;" would load command 4 from history then
executeit (seethe:;" command below).

Executesthe SQL, Special or PL statement inthe edit buffer (by default). Thisis
an extremely useful command. It's easy to remember because it consists of ":",
meaning Edit Buffer Command, plus a line-terminating ";", (which generally
means to execute an SQL statement, though in this case it will also execute a
special or PL command).

Enter append mode with the contents of the edit buffer (by default) asthe current
command. When you hit ENTER, things will be nearly exactly the same as if
you physically re-typed the command that is in the edit buffer. Whatever lines
you type next will be appended to the immediate command. As aways, you
then have the choice of hitting ENTER to execute a Special or PL command,
entering a blank line to store back to the edit buffer, or end a SQL statement
with semi-colon and ENTER to executeit.

Y ou can, optionally, put astring after the :a, in which case thingswill be exactly
as just described except the additional text will also be appended to the new
immediate command. If you put a string after the :awhich endswith ;, then the
resultant new immediate command will just be executed right away, as if you
typed in and entered the entire thing.

If your edit buffer contains SELECT x FROM nyt ab andyouruna: | e, the
resultant command will be SELECT x FROM nyt abl e. If your edit buffer
contains SELECT x FROM nytab andyouruna: ORDER BY vy, the
resultant command will be SELECT x FROM nyt ab ORDER BY y. Notice
that in the latter case the append text begins with a space character.

22

HyperS@L SqiTool

You may notice that you can't use the left-arrow or backspace key to back up
over theoriginal text. Thisisdueto Javaand portability constraints. If you want
to edit existing text, then you shouldn't use the Append command.

:g/from regex/to string/switches The Substitution Command is the primary method for SglTool command
editing-- it operates upon the current edit buffer by default. The "to string" and
the "switches" are both optional (though the final "/" is not). To start with, I'll
discussthe use and behavior if you don't supply any substitution mode switches.

Don't use"/" if it occurs in either "from string" or "to string”. Y ou can use any
character that you want in place of "/", but it must not occur in the from or to
strings. Example

‘ cs@romstring@o string@ ‘

Theto string is substituted for the first occurrence of the (case-specific) from
string. The replacement will consider the entire SQL statement, eveniif itisa
multi-line statement.

In the example above, the from regex was a plain string, but it is
interpreted as a regular expression so you can do al kinds of powerful
substitutions. Seetheper | r e man page, or the java.util.regex.Pattern [http://
download.oracle.com/javase/6/docs/api/javalutil/regex/Pattern.html] APl Spec
for everything you need to know about extended regular expressions.

Don't end ato string with ;" in attempt to make a command execute. Thereis
a substitution mode switch to use for that purpose.

Y ou can use any combination of the substitution mode switches.

¢ Use"i" to make the searches for from regex case insensitive.

« Use"g" to substitute Globally, i.e., to substitute all occurrences of the from
regex instead of only the first occurrence found.

e Use ";" to execute the command immediately after the substitution is
performed

e Use "m" for » and $ to match each line-break in a multi-line edit buffer,
instead of just at the very beginning and every end of the entire buffer.

If you specify acommand number (from the command history), you end up with
a feature very reminiscent of vi, but even more powerful, since the Perl/Java
regular expression are a superset of the vi regular expressions. As an example,

‘ : 24 s/ pin/needl e/ g; ‘

would start with command number 24 from command history, substitute
"needle" for al occurrences of "pin", then execute the result of that substitution
(and this final statement will of course be copied to the edit buffer and to
command history).

:w /path/to/file.sqgl Th|s appends the contents of the current buffer (by default) to the specmed

effectlvely creat| ng?an SQL scrlpt To wnte some prev|ous command to af|Ie

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

HyperS@L SqiTool

just restore the command to the edit buffer with a command like ":-4" before
you give the :w command.

| find the ":/regex/" and ":/regex/;" constructs particularly handy for every-day usage.

\ SI\\dl; \

re-executes the last \d command that you gave (The extra"\" is needed to escape the special meaning of "\" in regular
expressions). It's great to be able to recall and execute the last "insert" command, for example, without needing to
check the history or keep track of how many commands back it was. To re-execute the last insert command, just run
":linsert/;". If you want to be safe about it, do it in two steps to verify that you didn't accidentally recall some other
command which happened to contain the string "insert”, like

:linsert/

(Executing the last only if you are satisfied when SglTool reports what command it restored). Often, of course, you
will want to change the command before re-executing, and that's when you combine the ;s and :a commands.

WEe'l finish up with a couple fine points about Edit/Buffer commands. Y ou generally can't use PL variablesin Edit/
Buffer commands, to eliminate possible ambiguities and complexities when modifying commands. The :w command
isan exception to thisrule, since it can be useful to use variables to determine the output file, and this command does
not do any "editing".

The:?in-program help explains how you can changethe default regul ar expression matching behavior (case sensitivity,
etc.), but you can always use syntax like " (?)" inside of your regular expression, as described in the Java APl spec for
class java.util.regex.Pattern [http://downl oad. oracle.conjavase/ 6/ docs/api/

javal/util/regex/ Pattern. htm] .History-command-matching with the /regex/ construct is purposefully
liberal, matching any portion of the command, case sensitive, etc., but you can still use the method just described to
modify thisbehavior. Inthiscase, you could use"(?-i)" at the beginning of your regular expression to be case-sensitive.

Command History

The SQL history shown by the :h command, and used by other commands, is truncated to 100 entries, since its utility
comesfrom being ableto quickly view the history list. Y ou can change the history length by setting the system property
sqgl t ool . hi st or yLengt h tothe desireinteger value (using any of the System Property mechanisms provided by
Java). If thereis any demand, I'll make the setting of this value more convenient.

The SQL history list contains all executed commands other than Edit Buffer commands and comments, even if the
command has a syntax error or fails upon execution. The reason for including bad commandsis so that you can recall
and fix them if you wish to. The same appliesto the edit buffer. If you copy a command to the edit buffer by entering
blank line, or if you edit the edit buffer, that edit buffer value will never make it into the command history until and
if you executeit.

PL Commands

Essential PL Command

*? In-program Help about using the PL variableswhich have been set. Usethiscommand!
* ?assign In-program Help about setting and unsetting PL variables. Use this command!
* VARNAME = value Set the value of a variable. If the variable doesn't exist yet, it will be created. The

most common use for this is so that you can later use it in math expressions like
VARNANME, in logical (conditionally) expressions like * { VARNAME}, or in other

24

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

HyperS@L

SqlTool

* -VARNAME

* VARNAME _

* 2 control

* if (LOGICAL EXPR)

commands (including SQL) like* { VARNANE} or * { : VARNANME} construct. Theonly
differencebetween*{l i t eral } and*{: VARNANE} isthat the former producesan
error if VARNAME is not set, whereas the latter will expand to a zero-length string
if VARNAME isnot set.

I Preventing unset-variable Errors

- You can prevent all unset-variable errors by using the construct
*{: VARNAME} in place of *{ VARNAVME} wherever VARNAME may not
then be set.

. Warning
You can use this assignment command to set the value of a

variable to the empty string (unless you set Java system property
sql t ool . REMOVE_EMPTY_VARS to t r ue). We are talking about
assignments like the following:

* VARNAME =

Regardliess of sqgl t ool . REMOVE_EMPTY_VARS, you can aways use
the unset command (described next) to unset variables, and you can
aways use command line switches - P or - - set Var to assign empty
strings.

See Variables subsection for information about variable usage.
Unset (remove) the specified variable.

When next SQL command is run, instead of displaying the rows, just store the very
first column value to variable VARNAME. Thisworks for CLOB columnstoo. It also
workswith Oracle XML type columnsif you use column labelsand theget cl obval
function. If the SQL null value is retrieved next, then this variable will be assigned
the value null, which is the same thing as unsetting it. It's easy to tell when avariable
is set to null vs. when it is set to the empty string. See the Nulls and Empty Strings
section about that.

In-program Help about PL control/branching commands. Use this command!

If the logical expression evaluates to true, then the following block of code (up to the
paired* end i f statementisexecuted. If the expression isfalse, then the same code
block is skipped. Run* ? control for details, including the optional * el se
statement, a short-cut inline if statement, and several other branching statements.

This list here includes only a sampling of some essential PL Commands, but there are many other useful PL
Commands which you can list by running* 2.

PL variables are intimately involved with most PL commands, and (and with some Special commands). Even if you
never assign aPL variable, if you are at technical level of using PL commands, you should at |east know how to check
Sl Tool system PL variables which effect SglTool's behavior. See the Nullsand Empty Strings section about that.

Non-Interactive

Read the Interactive Usage section if you have not already, because much of what isin this section builds upon that.
You can skip al discussion about Command History and the edit buffer if you will not use those interactive features.

25

HyperS@L SqiTool

(Except the important exception that the edit buffer is still populated by executed commands and raw mode, so the
buffer canbeused by * VARNAME :,/: VARNAME,\ X :,and\xq : commands).

The previous point brings us to another important consideration for SQL script writers. When SglTool is run
interactively, you can enter ablank line after a SQL command to send the command to the edit buffer without executing
it. That action is not supported in scripts, however, because scripters expect more freedom in usage of white space.
|.e., scripters should be able to add blank lines wherever they want to in their scripts- and they can. The problem
is, defining variables or macros or performing exports using multi-line SQL statements requires the multi-line SQL
statements in the edit buffer. One way to do these commands into the buffer is to execute the SQL command, but
usually you do not want the SQL to execute until expansion or execution time of the variable/macro/export. The empty-
line method only works in interactive mode. What we useis Raw Mode . Thisworks great both interactively and non-
interactively, and it supports Chunking without having to format your SQL in a special way. A great application of
thisisto put multi-line macro and function definitionsinto your aut o. sql file.

SqlTool system PL variables control behavior (for example, they control many aspects of DSV importing and
exporting). User PL variables can be used to make your scripts dynamic and for conditional actions. Both system and
user PL variables can be set by - - set Var and - p switches, or PL commandsin - - sql switches or SQL files (as
well asinaut 0. sql forinteractive usage). Sincethe variablesare all global and shared across contexts, the variables
thus set effect behavior of all subsequence content in - - sql switches and SQL files (and aut 0. sql and stdin for
interactive usage). Seethe Variables subsection for the particulars.

! Remember to Commit

If you're doing data updates, remember to issue acommit command or usethe- - aut oConmi t switch.

As you'll see, SglTool has many features that are very convenient for scripting. But what really makes it superior
for automation tasks (as compared to SQL tools from other vendors) is the ability to reliably detect errors and to
control JDBC transactions. Sql Tool isdesigned so that you can reliably determineif errorsoccurred within SQL scripts
themselves, and from the invoking environment (for example, from a Perl, Bash, or Python script, or a simple cron
tab invocation).

Giving SQL on the Command Line

If you just have a couple Commands to run, you can run them directly from the comand-line or from a shell script
without an SQL file, like this.

‘j ava -jar $HSQLDB HOVE/lib/sqltool.jar --sql ="SQ statenent;" urlid ‘

Note

The - - sql switch automatically implies - - noi nput , so if you want to execute the specified SQL
before and in addition to an interactive session (or stdin piping), then you must also give the --stdinput
switch.

Since SqlTool transmits SQL statements to the database engine only when aline is terminated with ";", if you want
feedback from multiple SQL statements in an --sgl expression, you will need to use functionality of your OS shell
to include linebreaks after the semicolons in the expression. With any Bourne-compatible shell, you can include
linebreaks in the SQL statements like this.

java -jar $HSQLDB_HOMVE/ i b/sqltool.jar --sql =
SQL statenent nunber one;
* NEW/AR = sonet hi ng
\p A Sgl Tool Special command which echoes NEWAR: *{ NEW/AR}
nunber two;
SQL statenent three;

26

HyperS@L SqiTool

‘ " urlid ‘

Notice that the SQL string is not strictly SQL, but SqlTool input, so it may contain Special or PL commands. The
variableis set thisway only for educational purposes. The same thing could be accomplished more elegantly by using
the - p switch.

Note

The multi-line examplesin this section will only work as-is with a Bourne-compatible shell. With some
ugliness they can be converted to C shell. For Windows, you are better off to stick with SQL files for
multi-line input.

If you don't need feedback, just separate the SQL commandswith semicolons and the entire expression will be chunked

The --sql switch is very useful for setting shell variables to the output of SQL Statements, like this.

A shell script

USERCOUNT="j ava -jar $HSQ.DB_HOWVE/li b/sqgltool.jar --sql=
sel ect count(*) fromuserthbl;

urlid || {
Handl e the Sql Tool error

}

echo "There are $USERCOUNT users registered in the database."

["$USECOUNT" -gt 3] && { # If there are nore than 3 users registered
Some conditional shell scripting

SQL Files

Just give pathsto sql text file(s) on the command line after the urlid.

Often, you will want to redirect output to afile, like

| java -jar $HSQLDB HOME/lib/sqltool .jar urlid file.sql... > /tnp/file.log 2>&1 |

You can also execute SQL files from an interactive session with the "\i"* Special Command, but be aware that the
default behavior in an interactive session is to continue upon errors. If the SQL file was written without any concern
for error handling, then the file will continue to execute after errors occur. You could run\ c fal se before\ i
fi | enane, but then your SglTool session will exit if an error is encountered in the SQL file. If you have an SQL file
without error handling, and you want to abort that file when an error occurs, but not exit SqlTool, the easiest way to
accomplish thisisusually toadd\ ¢ f al se to the top of the script.

If you specify multiple SQL files on the command-line, the default behavior is to exit SglTool immediately if any of
the SQL files encounters an error.

SQL filesthemselves have ultimate control over error handling. Regardless of what command-line options are set,
or what commands you giveinteractively, if aSQL file contains error handling statements, they will take precedence.

You can aso use \i in SQL files to pull in (nest) additional SQL files. This is a powerful way to hierarchically
maintain and configuration manage a set of scriptsfor aproduct, project, or database. For encapsulation, tracking, and
collaboration purposes, it's usually best to keep each SQL script focused on one task or goal, for example: creating a
table, it's trigger, and loading initial data from a DSV file. Usually a set of such scripts will have to be executed in a
precise order so that referenced tables are created before tables with foreign keys to them, etc. | make a super-script
for every database project that | manage. Besides this strategy proving and configuration managing an installation
procedure known to work, | can recreate large and complex, custom product databases for deployments or tests in
seconds. With the addition of some very simple PL coding, | can re-create all database structuresin aparallel schema
by just specifying a schema name when | invoke the super-script.

27

HyperS@L SqiTool

Only for interactive SglTool invocations, the file aut 0. sql in your home directory will be executed before your
typed (or piped) input. It is processed in the same way as a script file specified on the command-line except that since
you are running SqglTool interactively, the interactive SglTool rules will apply. If your aut 0. sql does setup that
you need done for non-interactive SQL files, thenadd a\i ${ user. hone}/ aut 0. sql to the top of the script,
understanding that if you execute that script interactively you will cause aut 0. sql to be executed a second time,
but see the following tip about preventing that.

: Preventing redundant execution of utility or shared scripts.

There's a common idiom used in UNIX login and shell initialization scripts that prevents redundant
executions, and it works great for SglTool too. Think up a unique PL variable name which will keep
track of whether the script has been sourced in the current SglTool session, and the script will have no
effect if called a 2nd, 3rd, etc. time. This example appliesthe idiom to an aut 0. sql file, but it can be
used in any script that you want to prevent superfluous executions in a devel oper-friendly way.

* if (*AUTO_EXECUTED)
* break

* end if

* AUTO _EXECUTED = true

It would be dlightly more efficient, but less reliable, to put the test on the caller's side instead of the
callee side, like this:

* if (! *AUTO EXECUTED)
* \i ${user.hone}/auto. sql
* end if

As you would probably guess, al of SQL's file commands (for example loading or saving SQL scripts, binary data,
DSV data) take either relative or absolute file paths. However, when you nest scripts, you will usually want to begin
your paths with the @ . The initial @character in file paths means the directory containing the current script. Thisis
important because of Java's frustrating inability to switch the current directory. By using @ you can cross-reference
between SQL scriptsin one or several co-located directories, and everything will just work, regardless of your current
directory when you invoke script(s).

Make use of @/ construct for CMD scriptswith nesting

If you use amanaged set of nested scripts, you are advised to prefix al relativefile pathsinside of SqlTool
scripts with @ . Without this, relative file paths would be resolved relative to the invocation directory--
making your scripts require aspecific invocation directory. The at character will resolve to the directory
containing the current script.

You can use the following SQL file, sanpl e/ sanpl e. sgl , from your HyperSQL distribution L1t contains
SQL aswell as Special Commands making good use of most of the Special Commands documented bel ow.

/*
$l1d: sanple.sgl 3605 2010-06-01 02: 21:36Z unsaved $
Exenplifies use of Sqgl Tool .
PCTASK Tabl e creation

*/

/* lgnore error for these two statements */
\c true

DROP TABLE pct askl i st;

DROP TABLE pct ask;

\c fal se

\p Creating table pctask
CREATE TABLE pctask (

28

HyperS@L

SqlTool

idinteger identity,
name var char (40),
description varchar (256),
url varchar (80),
UNI QUE (nane)

)i

\p Creating table pctaskli st
CREATE TABLE pctasklist (
idinteger identity,
host varchar (20) not null,
tasksequence int not null,
pct ask integer,
assigndate timestanp default current_timestanp,
conpl et edat e ti nestanp,
show bool ean default true,
FOREI GN KEY (pctask) REFERENCES pct ask,
UNI QUE (host, tasksequence)

)

\p Granting privil eges

GRANT sel ect ON pctask TO public;
GRANT all ON pctask TO tontat;

GRANT sel ect ON pctasklist TO public;
GRANT all ON pctasklist TO tontat;

\p Inserting test records

I NSERT | NTO pct ask (name, description, url) VALUES (
"task one', 'Description for task 1', "http://cnn.com);

I NSERT | NTO pct askl i st (host, tasksequence, pctask) VALUES (
"adnt-masq', 101, (SELECT id FROM pctask WHERE nane = 'task one'));

commit;

Y ou can execute this SQL file with a Memory Only database with a command like

java -jar $HSQLDB_HOWE/lib/sqltool.jar --sql =
create user tontat password "x";
mem pat h/ t o/ hsqgl db/ sanpl e/ sanpl e. sql

This shows how you can mix SQL on the command line, and SQL inside an SQL file.

Note

an SQL file to accomplish this on Windows.

The example above uses Bourne shell syntax. C shell syntax would be similar. Y ou would need to use

(The--sql ="create...;" argument in the example creates an account which the following script uses). You
should see error messages betweentheCont i nue-on-error...trueandConti nue-on-error...fal se.
The script purposefully runs commands that might fail there. The reason the script does this is to perform database-
independent conditional table removals. (The SQL clause | F EXI STS is more graceful and succinct, so you may
want to use that if you don't need to support databases which don't support | F EXI STS). If an error occurs when

continue-on-error is false, the script would abort immediately.

. Tip

if noneis specified.

It can be very convenient to end-usersto write SQL scriptsthat take a parameter(s) but use default values

Example 1.2. Default parameter value with optional user-specified override

29

HyperS@L Sqi Tool

User can specify a value like...

java -jar .../sqgltool.jar -Pvarnanme=override urlid script.sdql
Or use the default varnane val ue:
java -jar .../sqgltool.jar urlid script.sdql

-- In your script assign your default value |like so:
*if (*varname == **NUL) * varnanme = default val ue

Thisworksin "auto.sgl" file too.

Piping and shell scripting

Y ou can of course, redirect output from SglTool to afile or another program.

java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid file.sql > file.txt 2>&1

java -jar $HSQLDB_HOMVE/lib/sqltool.jar urlid file.sql 2>& | soneprogram ..

Y ou can type commands in to Sgl Tool while being in non-interactive mode by supplying "-" asthe file name. Thisis
agood way to test how SglTool will behave when processing your SQL files.

\ java -jar $HSQLDB HOMVE/ |l ib/sqltool.jar urlid - \

Thisis how you have SqlTool read itsinput from another program:

Example 1.3. Piping input into Sql T ool

echo "Sone SQL commands with ' $VARI ABLES ;" |
java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid -

Example 1.4. Redirecting input into SqlT ool

‘ java -jar $HSQLDB_HOMVE/lib/sqltool.jar urlid - < nyFile.sql ‘

For a shell not as graceful as the Bourne-compatible shells, you would need to type this al on the same line (or use
aline-continuation trick).

Warning

Beware of null stdin to SglTool (or SglFile). At least with Java 6 on UNIX, Syst em i n returns
megabytes of garbage for reads if stdin is closed. | consider this an obvious bug. Therefore, unlike any
other program you would invoke from scripts, check stdin before running any Java program that will
read from it. | consider this a big ugly bug in Java. Thisis not just theoretical, because many remote
execution environments will have stdin closed off.

Make sure that you also read the Giving SQL on the Command Line section. The- - sql and - p switches are great
facilities to use with shell scripts.

Automation

SqlTool isideal for mission-critical automation because, unlike other SQL tools, SglTool returns a dependable exit
status and gives you control over error handling and SQL transactions. Autocommit is off by default, so you can build
acompletely dependable solution by intelligently using \c commands (Continue upon Errors) and commit statements,
and by verifying exit statuses.

30

HyperS@L SqiTool

Using the SqlTool Procedural Language, you have ultimate control over program flow, and you can use variables for
database input and output as well as for many other purposes. Seethe SglTool Procedural Language section.

. Tip

Since Sl Tool religiously returns meaningful exit status, you can use the following idiom to send alerts
about failed batch jobs (for example, jobs started by cron, at, AutoSys, Quartz, Hudson).

Example 1.5. Error-handling Idiom

java -jar $HSQLDB_HOVE/lib/sqltool.jar urlid $HOVE app/ nyFile.sql >> $HOVE | og/ app. | og
2>&1 ||

echo "See log file y: $HOVE/ | og/ app.lo0og" | mailx -s "App aborted on host y"
reci pl@.comreci p2@. com

Optimally Compatible SQL Files

If you want your SQL scripts optimally compatible among other SQL tools, then don't use any Specia or PL
Commands. SglTool has default behavior which | think is far superior to the other SQL tools, but you will have to
disable these defaults in order to have optimally compatible behavior.

These switches provide compatibility at the cost of poor control and error detection.

 --continueOnErr=true
The output will still contain error messages about everything that SglTool doesn't like (malformatted commands,
SQL command failures, empty SQL commands), but SglTool will continue to run. Errors will not cause rollbacks
(but that won't matter because of the following setting).

» --autoCommit

You don't have to worry about accidental expansion of PL variables, since SglTool will never expand PL variables

if you don't set any variables on the command line, or give any "* " PL commands. (And you could not have "* "
commands in acompatible SQL file).

Comments

Comments of the form /*. .. */ or - - behave as a SQL programmer would expect, in al contexts other than in
interactive edit/history commands.

If a comment occurs outside of an SQL statement, SglTool will not send the comment to the database (to improve
performance). Raw mode can be used to send just comments to the database. In order to proactively catch accidents,
SqlTool will complain if you attempt to send an empty SQL statement (i.e., just whitespace) to the database, even
in raw mode.

Special Commands and Edit Buffer Commands in SQL Files

Generally, don't use Edit Buffer / History Commandsin your sql files, because they won't work. Edit Buffer / History
Commands arefor interactive use only. However, theimportant scripting commands* VARNAME :,/: VARNAME,
\x :,and\ xq :,aswell as Raw Mode do use the edit buffer.

Y ou can, of course, use any SglTool command at all interactively. Thegoal hereisjust to group together the commands
most useful to script-writers.

31

HyperS@L

SqlTool

\q [abort message]

\p [text to print]
\I| SEVERITY_LEVEL texttolog

\i /path/to/file.sql

\o [file/path.txt]

\a[trueffal se]

\c [trueffal se]

Be aware that the \q command will cause SqlTool to completely exit. If ascript
X. sql hasa\gcommandinit, thenit doesn't matter if the script isexecuted like

‘ java -jar .../sqgltool.jar urlid a.sqgl x.sqgl z.sql ‘

orif you use\i toread it ininteractively, or if another SQL file uses\i to nest it.
If \q is encountered, SqlTool will quit. See the SglTool Procedural Language
section for commandsto abort an SQL file (or even parts of an SQL file) without
causing SglTooal to exit.

\q takes an optional argument, which is an abort message. If you give an abort
message, the message is displayed to the user and SglTool will exit with a
failure status. If you give no abort message, then SglTool will exit quietly with
successful status. As aresullt,

[\a |

means to make an immediate but successful exit, whereas

‘ \q Message ‘

means to abort immediately with error status. Both commands will exit
gracefully.

Print the given string to stdout. Just give "\p" alone to print a blank line.

The logging subsystem will display and/or log and/or email or whatever,
depending on how you haveit configured. To see where messages go by defaullt,
just play with it interactively. Run "\ | ?" to list the available severity levels.

Include another SQL file at thislocation. Y ou can usethisto nest SQL files. For
database installation scripts | often have amaster SQL filewhichincludesall of
the other SQL filesin the correct sequence. Be aware that the current continue-
upon-error behavior will apply to included files until such point asthe SQL file
runs its own error handling commands.

Tee output to the specified file (or stop doing so). See the Generating Text or
HTML Reports section.

A database-independent way to commit your SQL session. Useful for database
which have no COMM T SQL statement.

This turns on and off SQL transaction autocommits. Auto-commit defaults
to false, but you can change that behavior by using the - - aut oCommi t
command-line switch.

A "true" setting tells SglTool to Continue when errors are encountered. The
current transaction will not be rolled back upon SQL errors, soif \cistrue, then
run the ROLLBACK; command yourself if that'swhat you want to happen. The
default for interactive use is to continue upon error, but the default for non-
interactive use is to abort upon error. Y ou can override this behavior by using
the- - conti nueOnEr r command-line switch.

With database setup scripts, | usually find it convenient to set "true" before
dropping tables (so that things will continue if the tables aren't there), then set
it back to false so that real errors are caught. DROP TABLE t abl enane
I F EXI STS; isamore elegant, but less portable, way to accomplish the same
thing.

32

HyperS@L SqiTool

Tip

It depends on what you want your SQL filesto do, of course, but |
usually want my SQL files to abort when an error is encountered,
without necessarily killing the SglTool session. If this is the
behavior that you want, then put an explicit\ ¢ f al se at thetop
of your SQL fileand turn on continue-upon-error only for sections
where you really want to permit errors, or where you are using PL
commands to handle errors manually. This will give the desired
behavior whether your script is called by somebody interactively,
from the Sl Tool command-line, or included in another SQL file
(i.e. nested).

! | mportant

The default settings are usually best for people who don't want to
put in any explicit \c or error handling code at all. If you run SQL
files from the SglTool command line, then any errors will cause
SqlTool to roll back and abort immediately. If you run SglTool
interactively and invoke SQL files with \i commands, the scripts
will continue to run upon errors (and will not roll back). This
behavior was chosen because there are lots of SQL files out there
that produce errors which can be ignored; but we don't want to
ignoreerrorsthat auser won't see. | reiteratethat any and al of this
behavior can (and often shoul d) be changed by Special Commands
run in your interactive shell or in the SQL files. Only you know
whether errorsin your SQL files can safely be ignored.

Getting Interactive Functionality with SQL Files

Some script devel opers may run into cases where they want to run with sgl filesbut they also want Sql Tool'sinteractive
behavior. For example, they may want to do command recall inthe sql file, or they may want tolog Sgl Tool's command-
line prompts (which are not printed in non-interactive mode). In this case, do not give the sql file(s) as an argument
to SglTool, but pipe them in instead, like

java -jar $HSQLDB HOVE/lib/sqltool .jar urlid < filepathl.sql > /tnp/log. htm 2>&1 |

or

cat filepathl.sql... |
java -jar $HSQLDB_HOVE/lib/sqgltool .jar urlid > /tnp/log. htm 2>&1

For a shell not as graceful as the Bourne-compatible shells, you would need to type this al on the same line (or use
aline-continuation trick).

Character Encoding

There are several levels of encoding settings. First there are your platform defaults. These can be changed, temporarily
or permanently, with system settings or environmental variables. Java system properties may be used to change the
encodings for the VM run. Finally, can specify a different encoding in your RC file, as documented in the RC
File Authentication Setup section, though these will not effect stdin or stdout (as explained there). Programmatic
users of Sgl Fi | e have complete control over encoding by setting up Reader sand Pri nt Wi t er s, or by using
constructors with an encodi ng parameter. Devel opers should understand that where a Sql Fi | e constructor takes
aReader oraPrint Wi ter parameter, we will not apply encoding settings to them, leaving that up to you.

33

HyperS@L SqiTool

Generating Text or HTML Reports

This section is about making a file containing the output of database queries. You can generate reports by using
operating system facilities such as redirection, tee, and cutting and pasting. But it is much easier to use the "\0" and
"\n" special commands.

Note

HTML reporting has been drastically modernized. It now has user-overridable boilerplates, flexible and
safe CSS styles, and PL variable substitution.

Procedure 1.4. Writing query output to an external file

1. By default, everything will be done in plain text. If you want your report to be in HTML format, then give the
special command \ h t r ue. If you do so, you will probably want to use filenames with an suffix of ".html" or
".htm" instead of ".txt" in the next step. Y ou must set HTML mode to true before running the\ o command of the
next step, because thisis how the\ o command knows to write the opening HTML (header and such) to the file.

2. Runthecommand\ o path/to/reportfile.txt.From thispoint on, output from your queries will be
appended to the specifiedfile. (I.e. another copy of the output is generated.) Thisway you can continue to monitor
or use output as usua asthe report is generated.

3. When you want SglTool to stop writing to the file, run \ o (or just quit SglTool if you have no other work to
do). If you are in HTML mode and you are finished writing the file (i.e. you will not append to it again later),
then closeit with\ oc instead, to

4. If you turned HTML mode on before and want to turn it off now, run\ h f al se.

It isnot just the output of "SELECT" statements that will make it into the report file, but...

Kinds of output that get teed to\o files
* Output of SELECT statements.
» Output of all "\d" Special Commands. (I.e., "\dt", "\dv", etc., and "\d OBJECTNAME").

e Output of "\p" Special Commands. Y ou will want to use this to add titles, and perhaps spacing, for the output of
individual queries.

Other output will go to your screen or stdout, but will not make it into the report file. Be aware that no error messages
will go into the report file. If SglTool is run non-interactively (including if you give any SQL file(s) on the command
line), SqlTool will abort with an error status if errors are encountered. The right way to handle errorsis to check the
Sl Tool exit status. (The described error-handling behavior can be modified with Sgl Tool command-line switches and
Special Commands).

. Warning
Remember that \o appends to the named file. If you want anew file, then use anew file name or remove
the pre-existing target file ahead of time.

Tip

So that | don't end up with a bunch of junk in my report file, | usualy leave \o off while | perfect my
SQL. With \o off, | perfect the SQL query until it produces on my screen exactly what | want saved to
file. At this point | turn on\o and run ":/select/;" to repeat the last SQL command containing the given

HyperS@L Sqi Tool

string ("select" in this example). If | have several complex queries to run, | turn \o off and repeat until
I'm finished. (Every time you turn\o on, it will append to the file, just like we need).

Usually it doesn't come to mind that | need awider screen until aquery produces lines that are too long.
In this case, stretch your window and repeat the last command with the ":;" Edit Buffer Command.

HTML output has its own *NULL_REP_HTM. setting distinct from *NULL_REP_TOKEN. It fulfils
*NULL_REP_TOKENS output purpose of saying how to represent SQL nulls retrieved from VARCHAR columns,
but lets you manage it for HTML separately from display and CSV/DSV output.

Severa new features have been added to HTML reporting between revisions 4505 and 4606 inclusive. All of the new
features are explained in comments in the working, sample SQL file below. If you write your own top boilerplate
fragment, you will probably want to style the CSS classes written by SqlTool. These class names all begin with
sqgl t ool -, to avoid namespace collisions. Just generate a sample report to see which what class names get used.

@ Blaine's Sampls Report - Mozilla Firef 9 &
Frsfox v | [Blaina's Samele.Rapart =

G o [0 flem v]c [y oo @ # v &
M w B B | At =wasEs £ weCsSS » [l Bookmar
Q ¢ & D viewseurca™ @Disable™ L Cockies™ 2 (35 [ElF

Blaine's Sample Report

A message to appear in the Report

I VC
one
two
three

four

L2 B R T

five

name datatype width no-nulls
I INTEGER 11
WC WARCHAR 20

Generated at Thu Oct 27 18:26:40 EDT 2011 by SqlTool v
& 2004-2011 Blaine Simpson and the HSQL Development Group.

A HTML report
The report above has a simple table dump and the basic column definitions for that table. Y ou can, of course, make
reports with any number of queries of any level of sophistication. The SQL file below generated this report.

35

HyperS@L SqiTool

Please study this example closely, because this is your principal source of education about the specifics of creating
HTML reports. Notice the close at the very end with the explicit HTML-close command\ oc. If you used just\ o, the
file would be closed but the closing HTML code would not be written. csv- sanpl e. sql

Example 1.6. Sample HTML Report Generation Script

/*

* $ld: htnl-report.sqgl 4512 2011-10-11 02: 29: 08Z unsaved $
*

* Sanpl e/ Tenpl ate for witing an HTM. Report

*/

-- Popul ate sanple data

create table t (i integer, vc varchar(20));
insert intot values(1, 'one');

insert intot values(2, '"tw');

insert intot values(3, '"three');

insert intot values(4, 'four');

insert intot values(5, 'five');

commi t;

-- | MPORTANT: \o will append by default. [If you want to wite a newfile,
-- it's your responsibility to check that a file of the same nane does not
-- already exist (or renpve it).

-- Follow the foll ow ng exanples to use your own HTM. fragnment files.
-- * *TOP_HTMLFRAG FI LE = /tnp/top. htm
-- * *BOTTOM HTMLFRAG FI LE = /tnp/ bottom htm

-- The default TOP_HTMLFRAG FI LE has a reference to this PL vari abl e.

* REPORT_TI TLE = Bl ai ne' s Sanpl e Report

-- The default will also override its CSS style settings with your own if you
-- put themin a file named "overrides.css" in sane directory al ongside your
-- reports ("report.htm" in this exanple).

-- You can add references to ${systemproperties} and *{PL_VARI ABLES} in

-- your own custom fragnent files too.

-- Turn on HTM. out put nopde.

-- Mist enable HTM. _before_ opening to wite top frag.
\h true

\o report. htm

\p A nessage to appear in the Report

SELECT * FROM t;

-- Cose off output just to show that you can go back and forth.

-- Aclose with "\o" will not wite the bottomboilerplate that cl oses the HTM.
\o

\h fal se

\'p Sone non-HTM. non- Report out put:

SELECT count (*) FROM t;

\h true

-- Re-open the report

\o report. htm

\d t

-- This tinme close it with
\oc

One thing that | chose not to exemplify in the example, so as not to scare away less technical users, is that you can
use the\ p variant command \ pr . When you give a\ p command in HTML mode, SglTool formats the output into
a paragraph. But coders may want to write HTML, Javascript, JSP, or similar code, and SglTool should treat this as
Raw to be written as-isto the report file. Thisiswhat \ p accomplishes.

36

HyperS@L SqiTool

Storing and Retrieving Binary Files

Y ou can upload binary files such as photographs, audio files, or serialized Java objectsinto database columns. Sql Tool
keeps one binary buffer which you can load from files with the \bl command, or from a database query by doing aone-
row query for any non-displayable type (including BLOB, OBJECT, and OTHER). In the latter case, the data returned
for the first non-displayable column of the first result row will be stored into the binary buffer.

Once you have data in the binary buffer, you can upload it to a database column (including BLOB, OBJECT, and
OTHER type columns), or save it to a file. The former is accomplished by the special command \bp followed by a
prepared SQL query containing one question mark place-holder to indicate where the data gets inserted. The latter
is accomplished with the \bd command.

Y ou can a so store the output from normal, displayable column into the binary buffer by using the special command \b.
Thevery first column value from thefirst result row of the next SQL command will be stored to the binary byte buffer.

Example 1.7. Inserting binary data into database from afile

\bl /tnp/favoritesong. np3
\ bp
I NSERT | NTO nusictbl (id, strean) VALUES(3112, ?);

Example 1.8. Downloading binary data from databaseto afile

SELECT stream FROM nusictbl WHERE id = 3112;
\bd /tnp/favoritesong. np3

Y ou can also store and retrieve text column values to/from ASCI| files, asdocumented inthe Essential PL Command
section.

SqlTool Procedural Language
Aka PL

Most importantly, run Sql Tool interactively and give the"* ?" command to see what PL commands are available to
you. I'vetried to design the language features to be intuitive. Readers experience with significant shell scripting in any
language can probably learn the rudiments by looking at (and running!) the sample script sanpl e/ pl . sql in
your HyperSQL distribution L and then pick up everything else by using the * ? command from within an interactive
SqlTool session. (By significant shell scripting, | mean to the extent of using variables, for loops, etc.).

It generally causes an error to reference a variable that has not been set. SglTool will always attempt to de-reference
PL variable and Java system property references, except for (a) in : commands, and (b) in SQL statements if no user
PL variable has been set. Since you should never be trying to dereference a PL variable if none have been set, the
practical implications are just: If you want Java system properties to be de-referenced, just make sure that any PL user
variable is set; and if you have strings like ${t hi s} appear in your SQL text (which you do not want expanded),
unset all user PL variables before executing that text (if any have been set earlier). The purpose of this system isto
avoid changing user-specified SQL without the user knowing it. People who don't use PL at all don't have to worry
about strings getting accidentally expanded.

PL is aso used to upload and download column values to/from local ASCII files, analogously to the special \b
commands for binary files. Thisis explained above in the Interactive Essential PL Command section above.

! Accidental Comment Gotcha

Since "/*" marks the beginning of a comment, and "*" is used to dereference PL variables, it's possible
to accidentally code "/*". (The same issue exists generally in Java and many other languages). If your

37

HyperS@L Sqi Tool

PL variable code would result in "/*" that you would not want to result in a comment, awork-around is
to use another PL variable just for the slash, like

Example 1.9. Exampleto avoid accidental Comment

* SLASH = /
\i @{SLASH}*{SubScri pt}

Nulls and Empty Strings

| am raising this PL variable topic out of order here because it isimportant to understand, and I'd like you to have the
concept firmly in mind before digging into other details about variables. In this sub-section | am only talking about
PL variable values (not system properties or SQL engine variables, etc.).

Very similarly to Java system properties, if the value of a PL variable is null, then the variable is unset; and (if you
setthesql t ool . REMOVE _EMPTY_VARS mode as suggested) there is no way to directly assign avariable to null.
If, for example, you ran

* MYVAR = nul |

that would assign the string value of nul | to your variable, not the real null value. If a variable is assigned null
indirectly, say by fetching a null cell value into avariable, or when variable ? is assigned null due to a SQL failure,
this action is entirely equivalent to unsetting the variable.

— Recap
!

- If avariable is unset, or has never yet been set, then that variable's value is null. If avariablesvalueis
null, then the variable is unset.

You can assign a PL variable the empty string value by using a command switch - P or - - set Var . For example

‘j ava -jar .../sqgltool.jar -P varnanme=urlid script.sql

You can seeit's an empty string by echoing the value:

\p (*{varnane})

O

Y ou can use the regular PL assignment command to assign empty value and the PL unset command to assign null:

* MYVAR =
* - MYVAR

Distinguishing Nulls from Empty Strings

You can't use the simplest Special Command \ p to distinguish null variables, because (a) It is an error to expand an
unset/null value with the ${ x} construct, and the aternative ${ : x} is safe but displays null values as if they were
empty strings-- thereby not distinguishing. But don't fear. There are easy ways.

Unset/null variables are not listed by the commands* |i st or* |i stval ues. Therefore, say you want to know
if variable MYVAR is set or not (stated differently, whether it is non-null or null). Run

* list MYVAR

38

HyperS@L SqiTool

If it lists the variable then it is set and is not null.

You can usethe* i f command to compare your variable to the null value or to the empty string. The first test
here will tell you if MYVAR is equal to null (by comparing it to reserved PL variable * NULL). The second test here
compares MYVAR to a variable that you assigned the empty string to earlier. Y ou have to use the logical-expression
PL variable deferencing without curly braces. Curly braceslike*{t hi s} would trigger unset variable runtime error
if the variableisnull.

Example 1.10. Explicit null and empty-string Tests

java -jar .../sqgltool.jar -pEMPTYSTRI NG=

* if (*MYVAR == **NULL)
\'p MY'WAR really is null
* end if
* if (*MYVAR == EMPTYSTI NG
\'p MYWAR is now an enpty string
* end if

There'san examplein this chapter showing how to leverage thisfeature to set default valuesfor optional user-specified
parameters.

Definitely study the Special valuesfor ?, and _ (or ~) Variables example.

Variables

Following subsections explain important things about specific variable types. Here we just list the variable types and
give afew points about variable usage generally.

Variable Types

Database/SQL Variables SglTool has no control over variable mechanisms provided by the SQL
implementation or database vendor. Y ou can use such constructs only in SQL
commands, since the other command types never reach the database engine.
Nothing else that we have to say about manuals applies to database/SQL
variables.

Java System Properties SqlTool alows for reading but not writing of these variables with
${varnane} and* |i st sysprops.To prevent your SQL text from being
changed unintentionaly, ${var name} occurrences will not be expanded
inside of SQL statements unless at least one PL user variable has been set.
Therefore, if executing portable SQL scripts (and by default), SglTool will not
expand ${ var name} sinside of SQL statements.

PL User Variables These variables have names beginning with aletter and (if the name is longer
than one character) any number of letter, digit, or _ characters. The letters are
case-specific. Two examples are mand MY_VAR. There variables are created
and assigned values on the SglTool command-line or with any of several PL
assignment commands listed by the* ? command. Depending on context (see
below about that), they are referenced as * { MY_VAR}, as * MY_VAR, or as
MY_VAR. You can display al current user (and Sl Tool system) variables with
the PL command* | i st val ues.

SqlTool System PL Variables Theseare PL variablesjust like PL user variables, but the variable names begin
with the * character, like * DSV_TARGET_FI LE, and they effect SqlTool

39

HyperS@L SqiTool

system behavior. Some of these are initialized by SglTool automatically. You
can change and examine the values in the same way as PL user variables. See
the following subsection about System PL Variables for details.

Reserved PL Variable ? The ? variable is set automatically to the results of SQL statement executions.
The reset state is the empty string, and it is only ever set to null (aka unset) if
an SQL error was encountered.

*PL variablesNULL and *NULL These are actually reserved system and user PL variables, and since they are
very unigue and interchangeable with one another, I'm giving them their own
bullet. These are reserved PL variables which always have the value of null
(which has the meaning of unset. Y ou can compare other variables to * NULL
or NULL to seeif they are set or not. A specific application isto compare ? to
*NULL or NULL to seeif the last SQL command has failed.

General Rulesfor PL varsand Java system props

» PL variables and Java system properties are always expanded in Special, and (most) PL commands if they are
written like* { VARNAVME} and ${ VARNAME} correspondingly. They are expanded in the same way inside of SQL
statements as long as one (or more) PL variable has been set.

» Your SQL scripts can give good feedback by displaying the value of variables with the "\p" Special command.

System PL Variables

| mportant
!

Definitely run command * ? to view in-program help about referencing PL variables, and run * ?
assi gn if you will be assigning variables.

SqlTool automatically assign values to afew special system variables. As | write this, the special variables are only
*START_TI MVE, *REVI SI ON, * TI MESTAMP. * START_TI ME is a date and time string formatted for the user's
locale. * REVI SI ONis Sl Tool'sversion string (i.e., itisnot avalid real or integer number). * TI MESTAMP is a user-
configurable date or time string configurable with another system variable * TI| MESTAMP_FORNVAT.

SqlTool System PL variables are the mechanism used to configure SglTool behavior. You can list all set PL variables
by running the SglTool command * | i st val ues. If a SgiTool System variable is not shown, then it is unset
(which is equivalent to non-null). But if a system variable is not set, that doesn't mean that the setting behavior will
be unset, but rather that the default behavior will apply. For example, if you * | i st val ues and the variable
*DSV_COL_DELI Mis not listed, that doesn't mean that there will be no DSV column delimiter, but that the default
DSV column delimiter will be used. The in-program help can be used to determine what the default behavior is. (In
the case of * DSV_COL_DELI M you can see the default behavior by running \ x?.

Seethelist of system variablesin the SglTool System PL Variables appendix.

PL Variables

This subsection explains points common to most or all of the PL variable varieties (all variables other than Database/
SQL and Java system properties).

The new - p switch is an easy and elegant way to set PL variables when you know the needed values at SqlTool
invocation time. This is a more user-friendly variant of the - - set Var switch. The primary benefit is that you can
specify multiple variable assignments using multiple - p switches, eliminating the need to separate nane=val ue
elements with commas (doing this necessitates the usage of \ , escapes when there are commas in your intended

40

HyperS@L SqiTool

variablevalues). The most basic usageislike- PNAME=val ue, but there are afew thingsto know to makethisfeature
more useful. Firstly, the space after - p is optional, so you can write either - PNAME=val ue or - P NAME=val ue.
Secondly, the 'p' itself is case-insensitive. You may choose to always user upper-case or always lower-case to be
consistent. But if you do not put space after the p, | recommend that you change the capitalization of the p to more
easily distinguish your variable names, like - pVARNAME=X and - Pvar nane=y.

» PL variables are global to a SglTool invocation and are therefore shared among
e --set Var command-line switches.
» - Por-p command-line switches.
* --sql command-line switches.

e aut o. sql file, if itispresent and the rules call for it to load.

L]

SQL filesloaded with \i from top or a nested level.

« standard input whether from aterminal, redirection, or piping
The variable must, of course, be set at apoint in time beforeiit is referenced.

e Usethe* |i st command to list some or al variables; or * | i st val ues to also see the values. (Exception:
The *EXCEPTION variable can not be displayed with the list commands).

» Assignment

i A Mnemonic

The mnemonic distinction between assignment commands* VARNAME _ and* VARNAME ~ is
that the latter shows the output, which you can think of as looking like ~ on your computer display.
See the in-program help (* ?) about the purpose and usage of these two commands.

Runthe* ? command to see alist of commands that you can use to assign and to unset PL variables. The most
simple assignment command is* VARNAME = Var val ue, but you can assign values from command output,
query return values, contents of files, mathematical expressions, the edit buffer, etc.

Only the* VARNANME : assignment variant supports assigning amulti-line SQL statement(s) as body. To populate
the edit buffer with your multi-line SQL query for the : assignment, you must execute the SQL command before
(usually undesirable), or end the SQL with ablank lineinstead of a; only worksinteractively), or use Raw Mode.

* Youcanalso set PL variables other than ?using the- - set Var and - P (also usable as- p) command-line switches.
| give avery brief but useful example of this below.

* You can unset (remove) PL variablesusingthe* - VARNAME command.

* Itis an error in a Special and most PL commands to expand an unset (remove) variable with * { VARNANE}
or ${ VARNAME} . Therefore, if the variable/property may not be set, just add a colon like *{: VARNAME} or
${: VARNAME} to expand the variableif set, but expand to a zero-length string if the variable is not set.

* Inside of logical expressions (like inside of i f and whi | e commands), reference variables like * VARNAME, i.e.
without the curly brace, and don't worry about a construct like ${ : VARNAME} becauseit islegal to compare unset
variables (all unset variables are equal to one another). The justfication for this simplification is explained below.

e Theassignee variable name, and variables inside of mathematical expressions are written simply as bare words. For
example: "* VARNAME = Var val ue (* thereisacommand prefix-- not part of the variable specifier) and
"* ((VARNAME = OTHER_VARNAME * 6))".

41

HyperS@L SqiTool

PL commands can be used to upload and download column values to/from local ASCII files, but the corresponding
actions for binary files use the special \b commands. Thisis because PL variables are used for ASCII values and you
can store any number of column valuesin PL variables. Thisis not true for binary column values. The \b commands
work with asingle binary byte buffer.

Seethe SqglTool Procedural Language section below for information on using variablesin other ways, and information
on the other PL commands and features.

PL ? Variable

You don't set the ? variable. It is much like the Bourne shell variable $? in that it is always automatically set to the
first value of aresult set (or the return value of other SQL commands). It works very similarly to the* VARNANME
~and* VARNAME ~ assignment commands, but the value of ?is set automatically without you doing anything.
You can, of course, dereference ? like any PL variable or view it with* [ist or* |istval ues. If you are
running interactively or have turned on \ ¢ (continue-upon-error), you should be prepared that ? could get unset by
SQL failures and thereby cause * { ?} referencesto fail. (In which case the list commands still work, you can check
itwithan* i f comparison, andthe*{: ?} construct will be safe (though thislast does not show you the difference
between empty string and null). The important thing to remember about the list commands is that variables that are
not listed are unset (i.e., are null).

? isreliably set to null only upon SQL failures. Upon SqlTool startup, ? is set to the empty string " instead of being
unset or null. If aquery returns anull value in the last cell, then ? will be assigned to the current * DSV_NULL_REP
value instead of the literal null value. Therefore if you enable continue-on-error with\ ¢t r ue (or in interactive
mode when this is the default... though | can't think of how this could be useful interactively), you can test for SQL
failures with

if (? == *NULL)

(* NULL isareserved PL variable that always has the value of null, which means unset).

The important functional difference between variables assigned with VARNAME _ or VARNAME ~ vs. ? isthat the
latter is always set to the last SQL cell value fetched (or return value for non-result-set SQL). Explicit assignments
with _ or ~ are made from the very next cell content retrieved after the _ or ~ command (or return value for non-
result-set SQL). Easier to show what | mean than to explain it...

Example 1.11. Special valuesfor ?, and _ (or ~) Variables

sql> \p At startup ? is equal to enpty string. See between A and B: A*{?}B
At startup ? is equal to enpty string. See between A and B: AB

sql> * if (A*{?}B == AB) \p ? is the enpty string

? is the enpty string

sql >

sql > CREATE TABLE t (i | NTEGER vc VARCHAR(20))

sgl > INSERT INTOt VALUES(1, 'one')

1 row updated

sgl > INSERT INTOt VALUES(2, 'two');

1 row updated

sql> * res ~

sql > SELECT * FROM t;

I VC

1 one
2 two

Fetched 2 rows.

sql > \p *{?}
t wo

42

HyperS@L SqiTool

sql> \p *{res}

1
sql> * listvalues ? res
Listing all 'set' variables (any var not seen is unset and equal to null).
The out ernpst parentheses are not part of the val ues.
?: (two)
res: (1)
sql >

sgl > INSERT INTOt VALUES (3, null);

1 row updat ed.

sql > *res ~

sql > SELECT vc FROMt WHERE i = 3;

[null]

sql>\p *{?}

[null]

sql>* if (*res == **NULL) \p res really is null
res really is null

sql> * listvalues ? res

Listing all 'set' variables (any var not seen is unset and equal to null).
The out ernpst parentheses are not part of the val ues.
?: ([null])
sql >
sql> -- This will prevent Sql Tool from aborting when we run a bad SQL statenent:

sql > \c true

Conti nue-on-error is set to true.

sql > *res ~

sql > SELECT hocus FROM pocus;

SEVERE SQ. Error at '<stdin>' |ine 23:

" SELECT hocus FROM pocus"

user lacks privilege or object not found: POCUS
sql>* if (*? == **NULL) \p ? really is null

? really is null

SEVERE Did not finish setting variable 'res' before a code bl ock exited.
SEVERE Rolling back SQL transacti on.

sql>* if (*res == **NULL) \p res really is null
res really is null

sql> * listvalues ? res

Listing all 'set' variables (any var not seen is unset and equal to null).
The out ernpst parentheses are not part of the val ues.
sql >

(The SQL that generated thisis availablein thefilenul | enpty. sqgl inthesanpl e directory of your HyperSQL
distribution.

PL # Variable

#isan automatic variable just like ?. The value is set to the rowcount of the last successful query. Besides validation
purposes in automation scripts, it's useful for interactive situations where result set counts are not displayed, such as
when queries are run indirectly from invoked scripts with \i.

Macros

Macros are just shortcut commands that you can run in place of the full commands which they stand for. Macros stand
for SQL, Special or PL commands, whereas PL variables can only be used for elements within acommand. It isvery
easy to define, list, and use macros. Run the command "/?" to see how. If you often run a particular query, then for
the effort of about 5 extra keystrokes, you can define a macro for it so that you can enter just "/g;" to run it, whether
the original query is 1 line or 40 lines. (You can use any name in place of "q", and the target command can be any
kind of SQL, special, or PL command).

When you run/use a macro, you can append to the macro value. appendage in the "/?" listing shows where you can
append additional text to the original command. So, if you define

43

HyperS@L SqiTool

‘ sgl > /= nyworkers SELECT name FROM enpl oyees

, you could narrow the query variously during different macro invocations, like

sqgl > / mywor kers WHERE dept = 20;
sqgl > / mywor kers WHERE nane |ike 'Karen% ;

Just like when recalling a command from history, you use";" to execute even Special and PL macro commands.

sql> /= notate \p Work conpl eted by
sql > /notate Bl aine;

If you don't type the ;, you will just recall the command to the buffer (from which you can execute or edit it, if you
wish to).

To make a macro for a mult-line SQL statement, you use the "/: name" construct. First, get the target command into
the command buffer. If you have aready run the command, then run ":h" to see the command number and load it to
the buffer like ":13". If you haven't run the command yet, then just enter the command, but end it with a blank line
(and no semi-colon). You can check the buffer with ":b" to make sure it is what you want. Then just run "/: name"
to define amacro with name "name'".

SqlTool Functions

SqlTool functions are macros which take positional parameters. They are functions in the shell-programming sense.
They do not return values in the sense of functions as distinguished from procedures or methods. Asthe/ ? in-program
help shows, they can be defined by literal assignment or by buffer contents, and optional appendages work as one
would want-- just like regular macros. They areintuitive to define and use, so one example should be all theinstruction
needed.

Example 1.12. Creating a SglTool Function

\.
INSERT INTO t(i, vc) VALUES(*{1}, '*{2}');
SELECT * FROM t

WHERE i = *{1}

/. witeread() AND audited is null

Thisisanon-trivial example where weinsert into atable with some automatically generated columns, and we want to
see the entire created record before deciding whether to commit the new record. Since what we want to do will take
multiple lines of SQL, and indeed 2 SQL statements, we use raw mode to write the multi-line SQL statement to the
edit buffer, thenusethe/ : MACRONAME [appendage] construct to define amacro with body of the previous edit
buffer contents. As described elsewhere, if you want to do thisin a SQL file (as opposed to interactively), you have to
use raw mode as we have done here. Just by assigning a name ending with () we have made a function instead of a
regula macro. Notice how we used positional parameters references* { 1} and *{ 2} in the macro body. We wanted
to add alittle to what was in the edit buffer, so we added an appendageto the/ : command. Note the extra space after
() or wewould have ended up with resultingbody of *. .. i = *{1} AND audited...".

Example 1.13. Invoking a SglTool Function

‘/wri teread(10, ten);

Not much to explain. Though the second character is for a string value to insert into the a varchar column, we wrote
the function so that the function body supplies the single-quotes instead of having to type them in ever time we use
the function. Leading and trailing white space is trimmed from each parameter. So if you want your value to have
leading or trialing space, you will have to type in the quotes at invocation time. Another limitation caused by this

44

HyperS@L SqiTool

convenient parsing is that functions just won't work when your invocation parameters need to contain commas. Just
like for regular macros, the terminating ; causes the expanded macro to execute.

PL Sample

Hereisashort SQL file that gives the specified user write permissions on some application tables.

Example 1.14. Smple SQL fileusing PL

/*
grantwite.sql

Run Sql Tool Ilike this:
java -jar path/to/sqltool.jar -pUSER=debbie grantwite. sql
*/

/* Explicitly turn on PL variable expansion, in case no variabl es have
been set yet. (Only the case if user did not set USER).

*

/

GRANT al |l ON book TO *{USER};
GRANT al |l ON category TO *{USER};

Note that this script will work for any (existing) user just by supplying a different user name on the command-line.
I.e., no need to modify the tested and proven script. Thereis no need for aconmi t statement in this SQL file since
no DML is done. If the script is accidentally run without setting the USER variable, SqlTool will give a very clear
notification of that.

Logical Expressions

Logica expressions occur only inside of logical expression parenthesesin PL statements. For example, i f (*var 1
> astring) andwhi |l e (*checkvar). (The parentheses after "foreach" do not enclose a logical expression,
they just enclose alist).

Spacesare not allowed in elements of logical expressions. These are examplesof illegal logical expressions: * whi | e
(two words),* if (*x == two words). You can certainly do what you want to do, however, by using
variables to hold multi-word strings. Y ou can achieve the goals for the two previous attempts with

*tmpVar = two words
* while (*tnpVar)

;.i.f (*x == *tnpVar)

It iscriticaly important hereto use *t npvar instead of *{t npvar} inthissituation, because*{. . . } would not
delay expansion and would therefore be equivalent to entering the multiple words.

SqiTool's logical expressions are purposefully minimalistic. We do not support nested operations or mixing with
assignment commands. Noticethat thereareno| | , &&, AND, or OR operationsin the table below. Y ou can not assign
thevalue of aboolean expression directly. Y ou can achievethat goal withan* whi | e and mathematical assignments.

As stated earlier, inside of logical expressions you should normally reference PL variables without curly braces. This
syntatic simplification is allowed because multi-word tokens are not allowed in logical expressions (therefore{...} is
not needed to group words). For example, "wor d" , ">" , and "* VARNAME" are all separate atoms.

Y ou can indeed use the curly format like"* { THI S} " inside of logical expressions, but the casual user should stick to
"*THI S". Thereisadifference between * { VARNAME} and * VARNAME inside logical expressions. * { VARNANME} is

45

HyperS@L SqiTool

expanded one time when the parser first encountersthe logical expression. * VARNAME is re-expanded every time that
the expression is evaluated. So, you would never want to code* while (*{X} < 5) becausethe statement will
always be true or always be false. (I.e. the following block will loop infinitely or will never run). Another difference
between * { VARNANME} and * VARNANME isthat the latter resolvesto unset (thisis very different from the empty string
that *{ : VARNAME} would resolve to).

If you do use the braces, make sure that the expansion val ue doesn't contain quotes or whitespace. (They would expand
and then the expression would most likely no longer be a valid expression as listed in the table below). Quotes and
whitespace are fine in * VARNANME variables, but it is the entire value that will be used in evaluations, regardless of
whether quotes match up, etc. |.e. quotes and whitespace are not special to the token evaluator. Hence-- casual users
should not use braces inside of logical expressions.

Though tokens inside logical expressions are atomic, you definitely can and should do tests on strings that contain
spaces. You just have to use avariable for each such string value. For example, if | want to seeif the special variable
? isequal toone two t hree, then you must doit like this:

* cfString = one two three
* if (*cfString == ?)

Asnoted elsewherein this guide, internal spaces are preserved as given. For assignments, trailing spaces are generally
preserved. Leading spaces are preserved only for the : assignment commands.

Logical Operators

TOKEN Thetoken may bealiteral, a* { VARNAVE} whichisexpanded early, or a* VARNANVE
which is expanded late. (You usually do not want to use *{ VARNAME} in logical
expressions). Falseif the token is not set, empty, or "0". True otherwise.

TOKEN1 == TOKENZ2 Trueif the two tokens are equivalent "strings’.

TOKEN1 <> TOKEN2 Ditto.

TOKEN1 >< TOKEN2 Ditto.

TOKEN1 > TOKEN2 Trueif the TOKENL1 string islonger than TOKENZ or isthe same length but isgreater

according to a string sort.
TOKEN1 < TOKEN2 Similarly to TOKENL > TOKENZ.

I LOGICAL_EXPRESSION Logical negation of any of the expressions listed above.

TOKEN1 >= TOKEN2 Trueif the TOKENL1 string islonger than TOKENZ or isthe same length but is greater
or equal value according to astring sort.

TOKEN1 => TOKENZ2 Ditto.

TOKEN1 <= TOKEN2 Similarly to TOKEN1 >= TOKEN2.

TOKEN1 =< TOKEN2 Ditto.

*VARNANMESs in logical expressions, where the VARNAME variable is not set, evaluate to an empty string. Therefore
(*UNSETVAR = 0) would be false, even though (* UNSETVAR) by itself is fase and (0) by itself is false.
Another way of saying thisisthat * VARNAME in alogical expressionisequivalent to*{:VARNAME} out of alogical
expression.

46

HyperS@L SqiTool

When developing scripts, you definitely should use SqglTool interactively to verify that SqlTool evaluates logical
expressions as you expect. Just run* i f commandsthat print something (i.e. \p) if the test expression istrue.

Mathematical Assignments

Only integer math is supported, and only in mathematical assignment commands. Math assignment commands are
of the format

‘<ASSI GNEE> <ASS| GNVENT_OP> <| NTEGER_EXPRESS| ON>

For example,

'SQUARE_FOOTAGE += (FOYER FEET + 20) * 3 + 300 * BATHS

This works very close to Bash and Korn shell ((...)) integer math. The primary difference from those shellsis
that we prohibit useless non-assignment commands. Therefore, our math assignment commands always begin with
the assignee variable name and an assignment operator.

Those users unfamiliar with programs that do strictly integer math should play around with it before using it for
anything important. It may surprise you that real numberslike 2. 9 are not automatically converted to an integer, but
are simply prohibited; and that results of expressions are truncated to an integer, not rounded.

Thelist below isavailable from the program by running* ? (they arelisted after thewords"Assi gnnent OPs: ™).

Note that though we support assignment operator ++, we do not support - - because that conflicts with our single-line
comment delimiter - - . The work-around isto use - =1 instead.

Mathmatical Assignment Operators

* ++ (increment by 1, no expression allowed)

-= (subtract value of the expression)

+= (add t0...)

/= (divide by...)

%= (divide by expression and return remainder)

To theright of the assignment operator is the integer math expression consisting of raw variable names, integers, and
mathematical operators. The variables referenced, if any, must al contain integer values. In the expression only user
PL variables may be used. Not Java system properties nor SglTool system PL variables.

Thelist below is available from the program by running * ? (they are listed after thewords "l nt er nal ops: ").
Mathmatical Expression Operators

- INTEGER_USER VARIABLE_NAME (resolve to its value)

* () (specify precedence)

47

HyperS@L Sqi Tool

/ (division)

% (division remainder)
* " (power)
Flow Control

Flow control works by conditionally executing blocks of Commands according to conditions specified by logical
EXPressions.

% I mportant
!

-~

Definitely run command * ? control toview alist of the available flow control statements, and
details about how to use them.

The conditionally executed blocks are called PL Blocks. These PL Blocks always occur between a PL flow control
statement (like* foreach, *while, * if)andacorresponding* end PL Command (like* end f or each).

Definitely read the section Logical Expressions.

The values of control variablesfor* foreach and* forrows PL blockswill change as expected.

Thereare* break and* conti nue, which work as any shell scripter would expect them to. The* br eak
command can aso be used to quit the current SQL file without triggering any error processing. (I.e. processing will
continue with the next line in the including SQL file or interactive session, or with the next SQL file if you supplied

multiple on the command-line).

Thereisnow also aninline* i f command that isvery handy and concise. Try these samples on.

Example 1.15. Inline If Statement

* if (*x == *NULL) \q Aborting program

* while. ..
* if (*exitCondition) * break

* if (*notabl eEvent) \|I SEVERE Sonet hi ng bad happened

PL Example

Below isthe example SQL file sanpl e/ pl . sql , which shows how to use most of the basic PL features . If you
have a question about how to use a particular PL feature, check this file in your distribution before asking for help...
and definitely read the in-program help for * ? carefully! Giveit arun, like

‘j ava -jar $HSQLDB HOVE/ |i b/ sqgltool .jar mem $HSQLDB_HOVE/ pl . | ar

It will suggest that you re-run it with another parameter. Insert the new parameter before "ment'.

48

HyperS@L Sqi Tool

Example 1.16. SQL File showing use of most PL features

/*
$1d: pl.sqgl 4563 2011-10-19 02: 24:41Z unsaved $
SQL File to illustrate the use of sone basic Sgl Tool PL features
I nvoke Iike
java -jar .../sqgltool.jar mem.../pl.sq
-- blaine
*/

*if (! *MYTABLE)
\'p MYTABLE vari abl e not set!
/* You could use \q to Quit Sqgl Tool, but it's often better to just
break out of the current SQ file.
I f people invoke your script from Sgl Tool interactively (with

\i yourscriptname.sql) any \qg will kill their Sqgl Tool session. */
\p Use argument "-pMYTABLE=nyt abl enanme" for Sql Too
* break
* end if

-- Turning on Continue-upon-errors so that we can check for errors ourselves
\c true

\p
\p Loading up a table named ' *{ MYTABLE}' ..

CREATE TABLE *{ MYTABLE} (
i int,
s var char (20)

PL variable ? is always set to status or fetched val ue of |ast SQL
-- statement. It will be null/unset if the last SQ statenent failed
\p CREATE status is *{?}

/* Validate our return status
In case of success of a CREATE TABLE, *? will be 0, and therefore a
"* if (*?)' would be fal se
So we follow the general practice of testing *? for the error indicator
val ue of null, using the reserved Sgl Tool system variable *NULL
*/
if (? == *NULL)
\'p Qur CREATE TABLE command fail ed
* break
* end if

-- Default Continue-on-error behavior is what you usually want
\c fal se

\p

/* Insert data with a foreach | oop
These val ues could be froma read of another table or fromvariabl es
set on the comand line |ike
*/
\p Inserting some data into our new table
* foreach VALUE (12 22 24 15)
* if (*VALUE > 23)
\'p Skipping *{VALUE} because it is greater than 23
* continue
\p YOU WLL NEVER SEE THI S LI NE, because we just 'continued'
*end if
I NSERT | NTO *{ MYTABLE} VALUES (*{VALUE}, 'String of *{VALUE}")
* end foreach
\p

/* This time instead of using the ? variable, we're assigning the SELECT val ue
to a User variable, 'themax'. */

49

HyperS@L SqiTool

* themax ~

/* Can put Special Conmands and conments between "* VARNAME ~" and the target
SQL statenent. */

\p We're saving the nax value for later. You'll still see query output here:

SELECT MAX(i) FROM *{ MYTABLE};

/* No need to test for failure status (either ? or themax being unset/null),
because we are in \c nobde and woul d have aborted if the SELECT failed. */
* if (0 == *thenax)
\p Got 0 as the max val ue.

* break

\'p YOU WLL NEVER SEE THI S LI NE, because we just 'broke'.
* end if
\p

\p The results of our work:
SELECT * FROM *{ MYTABLE} ;
\p MAX val ue is *{themax}

\p

\'p Counting down to exit
= ((i =3))

* while (*i > 0)

\p *{i}...
* ((i -=1)) -- i++ is supported but i-- is not, because -- nmarks conments
* end while

\p
\'p Everything worked. Signing off.

Chunking

We hereby call the ability to transmit multiple SQL commandsto the database in one transmission chunking. Normally
it's best to send SQL statements to the database one-at-a-time. That way, the database can give you or your program
feedback about each statement. But there are situations where it is more important to transmit multiple-statements-at-
artime than to get feedback for each statement individually.

Why?

The first general reason to chunk SQL commands is performance. For standalone databases, the most common
performance bottleneck is network latency. Chunking SQL commands can dramatically reduce network traffic.

The second reason isthat there are a couple SQL commands which requiretheterminating ;" to be sent to the database
engine. For ssimplicity and efficiency, it's usually better for general JDBC clients like SglTool to strip off the final
delimiter. Raw commands retains everything that the user types.

The third general reason to chunk SQL commandsisif your database requires you to send multiple commandsin one
transmission. Thisis usually the case with the following types of commands:

* Nested SQL commands, like the nested CREATE SCHEMA variant, and most stored procedure, function, and
trigger definitions.

» Commands containing non-quoted programming language to be interpreted by the database engine. Definitions of
stored procedures, function, and triggers often contain code like this.

How?

Use raw mode. Go to the Raw Mode section to see how. Y ou can enter any text at all, exactly how you want it to be
sent to the database engine. Therefore, in addition to chunking SQL commands, you can give commands for non-SQL
extensions to the database. For example, you could enter JavaScript code to be used in a stored procedure.

50

HyperS@L SqiTool

Raw Mode

Y ou begin raw mode by issuing the Special Command "\.". Y ou can then enter as much text in any format you want.
When you are finished, enter aline consisting of only ".;" to store the input to the edit buffer and send it to the database
server for execution.

You may end the raw input with aline consisting only of "." (instead of ".;"). Thiswill just save the input to the edit
buffer so that you can do things like edit it or create a macro/function/variable for it. To execute a database command
after editing, use the command ":;" when you are satisfied (use ":b" to view buffer).

Y ou may end the raw input with aline consisting only of "." You'll notice that your prompt will be the "raw" prompt
between entering "\." and terminating the raw input with ".;" or ".".

Just by running commands beginning with BEG N, DECLARE, CREATE f uncti on, or CREATE procedure,
your SglTool session will automatically be changed to Raw mode, exactly asif you had entered "\.". That's because
these commands are universally used to define stored procedures or functions, and these commands require raw mode
(as explained in the previous section). You can always switch to raw mode explicitly instead of depending on the
automatic switching. Raw mode always requires you to indicate where the raw input ends, regardless of raw mode was
entered explicitly or automatically. Trigger definition statements do not automatically switch to raw mode, because
there are many trigger definitions where raw mode is not necessary-- therefore, you must explicitly use raw mode to
define triggers which contain semi-colons.

Example 1.17. Interactive Raw M ode example

sql > \.

Enter RAWtext. No \, :, * commands.

End with a line containing only ".;" to send to database,
or only "." to store to edit buffer for editing or saving.

raw> | i ne one;

raw> |ine two;

raw> |ine three;

raw> .

Raw chunk noved into buffer. Run ":;" to execute the chunk.
sql > :;

Executing conmand from buffer:

li ne one;

line two;

line three;

SQL Error at 'stdin' line 13:
"line one;

l'ine two;

line three;"

Unexpect ed token: LINE

sql >

The error message "Unexpected token: LINE in statement [ling]" comes from the database engine, not SglTool. All
three lines were transmitted to the database engine.

Edit Buffer Commands are not available when running Sgl Tool non-interactively.

SQL/PSM, SQL/JRT, and PL/SQL

This section covers database-engine-embedded |anguages, which are often used in the definition of stored procedures,
stored functions, and triggers. SQL/ PSM SQL/ JRT, and PL/ SQ are well known examples. We prefer SQL/ PSM
and SQL/ JRT because unlike the alternatives, they are based on open SQL specifications.

51

HyperS@L SqiTool

Note

PL/SQL isnot thesameasPL. PL isthe procedural language of SqlFile and isindependent of your back-
end database. PL commands always begin with *. PL/SQL is an Oracle-specific extension processed on
the server side. You can not intermix PL and any server-embedded language (except for setting a PL
variable to the output of execution), because when you enter server language to SglTool, that input is
not processed by SqlFile.

Use Raw Mode to send server-language code bl ocksto the database engine. Y ou do not need to enter the"\." command
to enter raw mode. Just begin anew SglTool command line with "DECLARE", "BEGIN", "CREATE FUNCTION",
or "CREATE PROCEDURE", and SglTool will automatically put you into raw mode. See the Raw Mode section
for details.

The following sample SQL fileresidesat sanpl e/ pl sql . sgl in your HyperSQL distribution 1 This script

will only work with Oracle, only if you have permission to create the table "T1" in the default schema, and if that
object does not aready exist.

Example 1.18. PL/SQL Example

/
$1d: plsql.sql 6375 2021-11-07 17:44:56Z unsaved $

This exanple is copied fromthe "Sinple Prograns in PL/SQ"
exanpl e by Yu-May Chang, Jeff Ul man, Prof. Jennifer Wdom at
the Standord University Database G oup's page

htt p: // ww db. st anf ord. edu/ ~ul | man/ f cdb/ or acl e/ or - pl sql . ht n

| have only renoved sone blank lines (in case sonebody wants to
copy this code interactively-- because you can't use bl ank
lines inside of SQL conmands i n non-raw node Sgl Tool when running
it interactively); and, at the bottom| have replaced the
client-specific, non-standard command "run;" wth Sqgl Tool's
correspondi ng command ".;" and added a plain SQL SELECT command
to show whet her the PL/ SQL code worked. - Bl aine

E I R

~

CREATE TABLE T1(
e | NTEGER
f | NTEGER

)

DELETE FROM T1;

I NSERT | NTO T1 VALUES(1, 3);
I NSERT | NTO T1 VALUES(2, 4);

/* Above is plain SQ.; belowis the PL/SQL program */
DECLARE

a NUMBER

b NUMBER
BEG N

SELECT e,f INTO a,b FROM T1 WHERE e>1

I NSERT | NTO T1 VALUES(b, a);

/** The statenent on the previous line, ".;" is Sql Tool specific
* This command says to save the input up to this point to the
* edit buffer and send it to the database server for execution
* | added the SELECT statenent below to give imm
*/

/* This should show 3 rows, one containing values 4 and 2 (in this order)...*/

52

HyperS@L Sqi Tool

SELECT * FROM t1;
| |

Notethat, inside of raw mode, you can use any kind of formatting that your database engine needs or permits: Whatever
you enter-- blank lines, comments, everything-- will be transmitted to the database engine.

Thisfileresidesat testrun/sqltool/sqljrt.sql

Example 1.19. SQL/JRT Example

/
$1d: sqljrt.sql 5406 2014-10-13 20: 53:18Z unsaved $

L

Tests SQL/JRT
/

create function dehex(VARCHAR(80), | NTEGER)
returns | NTEGER
no sql
| anguage j ava
ext ernal name ' CLASSPATH: j ava. | ang. | nt eger. val ueOt'

CALL dehex('12', 16);
If (?2 1= 18) \g SQL/JRT function failed

Thisfileresidesat testrun/sqltool/sqgl psm sql

Example 1.20. SQL/PSM Example

/*
* $ld: sqgl psmsqgl 5406 2014-10-13 20:53:18Z unsaved $
*

* Tests SQL/JRT
*/

create table custoners(
id INTEGER default 0, firstname VARCHAR(50), |astnane VARCHAR(50),
entrytime TI MESTAWP) ;

create procedure new_custoner (firstname varchar(50), |astname varchar(50))
nodi fies sql data
insert into custoners val ues (
default, firstnane, |astnanme, current_tinmestanp)

SELECT count (*) FROM custoners;
*if (*2 1= 0) \g SQ./ PSM preparation failed
CALL new_custoner('blaine', 'sinpson');

SELECT count (*) FROM custoners;
if (?2 1= 1) \qg SQ./PSM procedure failed

Delimiter-Separated-Value Imports and Exports

SqlTool's DSV functionality encompasses what many users will recognize as CSV export, as well as portable backup
or transfer of data. Those familiar with Oracle's SQL* Loader will recognize the extreme usefulness of the feature set.
Besides database- and platform-independent data backups, exports can be used to depl oy data setswith applications, to
transfer data among multiple database instances (even drastically different database instances such as SQL Server and
HyperSQL), and to properly change control data sets with a content management system such as a collaboration server
or Subversion. To jump way ahead for a moment to whet your appetite, here is a sample import reject report which

53

HyperS@L Sqi Tool

will can be generated automatically for you upon import just by setting the PL variable* DSV_REJECT _REPORT (to
the desired destination HTML file name).

'f SqiTood DSY Reject Repart - Mozilla Firefox

File Edit Wiew Histary Bookmarks Taals Help

s -2 0 & =0 | [@]] filesimmpisample-rsjzct.ntmi « | ([- \ e @ -

= B5 - | |ME API |@]J25E API [8|JOGL AP (@] Ant Manual #eCSS Ref smHTML 4 Ref A 5 MJava

& SqiTool DS... ¥ |[XStream (... 3 | 8| JDK 6 Doc... 3 | suncerifi. 3¢ |EcNN.com- .. 3 | jMonkeyEn.. 3 | -
Impaort performed Moo Dec 14 20:40:40 EST 2009 with Sallool

Input DEV fila- sample. dsv

Feject DEV file: ftmp/sample-reject.dsv

The comresponding records in Vtmplaample-reject dav’ are at bne munbers of (reject # + 1), since the header racord cconpias the first line

i g | Imput bad column i
re]. Hﬂf.# ﬁf]{nﬂﬂﬂnJ I'eas0nIl

Bad daktestime walue 'not a date 0:03:00°

1 11 d java. lang.IllegalérgunentException: Tinestanpg format must be yyyy-nn-dd hhinmiss[. fFfFFFFEF)

- 14 integrity constraint vielatien: HOT MULL check constraint: SYS_CT_10828 table: SAWPLETABLE

Import summary (#'-skips / rejects [inserts): 371/ 3.

SglFile revision 3347

Dane

A DSV Import reject report
If you wish to, you can review the reject report before deciding whether to commit or roll back the inserts.

Note

Thisfeature is independent of HyperSQL Text Tables. (See the Text Tables chapter of the HyperSQL
User Guide [http://hsgldb.org/doc/2.0/guide/index.html] for details about them). a server-side feature
of HyperSQL. It makes no difference to Sgl Tool whether the source or target table of your export/import
is a memory, cache, or text table. Indeed, like all features of SglToal, it works fine with other JDBC
databases. It works great, for example to migrate data from atable of one type to atable of another type,
or to another schema, or to ancther database instance, or to another database system.

Most business type people would call this feature "CSV", but there is an important difference. Though "CSV" stands
for Comma-Separated Values, the only thing actually distinctive about CSV is not the comma but the way that
double-quotes are used for escaping purposes. As discussed in this section, with Delimiter-Separated-Value files, we
purposefully choose an effective delimiter instead of the CSV method of using adelimiter which worksin some cases
and then use double-quoting to escape occurrence of the column-delimiter and of double-quote itself in the actual
data. Just by choosing a delimiter which never needs escaping, we eliminate the whole double-quoting complication,
and the data in our files always look just like the corresponding data in the database. To make this CSV / Delimiter-
separated-value distinction clear, | use the suffix ".dsv" for my data files. This leads me to stipulate the abbreviation
DSV for the Delimiter Separated Value feature of HyperSQL.

Usethe\ x command to eXport atableto aDSV file, and the\ mcommand to iMport aDSV file into a pre-existing
table. Usecommand\ x? or \ n? for alisting of all related commands and options.

54

http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html
http://hsqldb.org/doc/2.0/guide/index.html

HyperS@L SqiTool

The row and column delimiters may be any String (or even aregular expression for import), not just asingle character.
The export function is more general than just a table data exporter. Besides the trivial generalization that you may
specify aview or other virtual table namein place of atable name, you can aternatively export the output of any query
which produces normal text output. (This could actually even be multiple multiple-line SQL statements, as long as
the last one outputs the needed data cells). A benefit to specifying even asimple query isthat it allows you to export
only some columns of atable, and to specify a WHERE clause to narrow down the rows to be exported (or perform
any other SQL transformation, mapping, join, etc.). A specific use for this would be to exclude columns of binary data
(which can be exported by other means, such as a PL loop to store binary values to files with the \bd command), or
pseudo-or derived columns.

Note that theimport command will not create anew table. Thisis because of theimpossibility of guessing appropriate
types and constraints based only on column names and a data sampling (which is all that a DSV-importer has access
to). Therefore, if you wish to populate a new table, create the table before running the import. The import file does
not need to have data for al columns of atable. The only required columns are those required by database constraints
(non-null, indexes, keys, etc.) One specific reason to omit columnsisif you want values of some columnsto be created
automatically by column DEFAULT settings, triggers, HyperSQL identity sequences, etc. Another reason would be
to skip binary columns.

Due to wildly varying support and behavior of data and time typesin SQL databases, SglTool always converts date-
type and time-type values being imported from DSV files using java.sgl.Timestamp [http://download.oracle.com/
javase/6/docs/api/javalsgl/ Timestamp.html]s. This usually provides more resolution than is needed, but is required
for portability. Therefore, questions about acceptable date/time formats are ultimately decided by the Javas
java.sgl.Timestamp class [http://download.oracle.com/javase/6/docs/api/javalsgl/ Timestamp.html].

Simple DSV exports and imports using default settings

Even if you need to change delimiters, table names, or file names from the defaults, | suggest that you run one export
and import with default settings as a practice run. A memory-only HyperSQL instanceisideal for test runslike this.

This command exports the table i cf . pr oj ect s to the file pr oj ect s. dsv in the current directory (where you

invoked SqglTool from). By default, the output file name will be the specified source table name plus the extension
. dsv.

Example 1.21. DSV Export Example

SET SCHEMA i cf;
\'x projects

We could also have run \ x i cf. projects (which would have created a file named i cf. proj ects. dsv)
instead of changing the session schema. In this example we have chosen to make the export file name independent of
the schema to facilitate importing it into a different schema.

Take alook at the output file. Notice that the first line consists of column names, not data. Thislineis present because
it will be needed if the file is to used for a DSV import. Notice the following characteristics about the export data.
The column delimiter is the pipe character "|". The record delimiter is the default line delimiter character(s) for your
operating system. The string used to represent database NULLs is[nul |] . See the next section for how to change
these from their default values.

. Warning

Y ou can not DSV import Array valueswhere any Array elements contain commas, for example an Array
of VARCHARs which contain one or more commas. There is no such limitation on DSV exports, which
you can use for purposes other than Sgl Tool importing, or you could use a script to change the commas
to some other character.

55

http://download.oracle.com/javase/6/docs/api/java/sql/Timestamp.html
http://download.oracle.com/javase/6/docs/api/java/sql/Timestamp.html
http://download.oracle.com/javase/6/docs/api/java/sql/Timestamp.html
http://download.oracle.com/javase/6/docs/api/java/sql/Timestamp.html
http://download.oracle.com/javase/6/docs/api/java/sql/Timestamp.html

HyperS@L SqiTool

This command imports the data from the file pr oj ect s. dsv in the current directory (where you invoked SqglTool
from) into the table newschenma. pr oj ect s. By default, the output table name will be the input filename after
removing optional leading directory and trailing final extension.

Example 1.22. DSV Import Example

SET SCHEMA newschenma
\'m proj ects. dsv

If the DSV file was named with the target schema, you would have skipped the SET SCHEMA command, like\ m
newschema. pr oj ect s. dsv. In order to alow for more flexibility, the default input input delimiters are not
exactly the same as the output delimiters. The input delimiters are regular expressions. The input column delimiter
happens to be the regular expression corresponding exactly to "["; but the input record delimiter matches UNIX,
Windows, Mac, and HTTP line bresks.

Specifying queries and options

For a hands on example of a DSM import which generates an import report and uses some other options, change to
directory HSQLDB/ sanpl e and play with theworking script dsv- sanpl e. sql ! You can execute it like

‘ java -jar ../lib/sqgltool.jar mem dsv-sanple. sql ‘

(assuming that you are using the supplied sql t ool . r c file or have have urlid memset up).

The header lineinthe DSV fileisrequired at thistime. (If thereis user demand, it can be made optional for exporting,
but it will remain required for importing).

Your export will fail if the output column or record delimiter, or the null representation value occurs in the data
being exported. You change these values by setting the PL variables *DSV_COL_DELI M * DSV_ROW DELI M
*DSV_NULL_REP. Notice that the asterisk is part of the variable names, to indicate that these variables are
used by SqlTool internally. Regular expressions have their own mechanism for including specia characters.
*DSV_NULL_REP effects normal displaying of VARCHAR output to screen or stdout, not just importing and
exporting-- so you should reset the value if you want to revert to normal display behavior. When specifying output
delimiters, you can use the escape sequences \n, \r, \f, \t, \\, and decimal, octal or hex specifications like \20, \020,
\0x20. For example, to change the column delimiter to the tab character, you would give the command

\ * *DSV_COL_DELIM = \t \

The input (\m) delimiter values, * DSV_COL_SPLI TTER and * DSV_ROW SPLI TTER, are set using normal Perl/
Java regexp syntax. There are escapes for specifying specia characters, and anything else you would need. Input vs.
output row and column delimiters are easily distinguished by containing "SPLITTER" for splitting input (\m) files; or
"DELIM" for the delimiters that we will write (\x) among the data.

: *DSV..DELIM vs*DSV...SPLITTER settings

Boththe...DELIM andthe...SPLITTER settingsarefor delimiting cells of data, but whereas our DELIM
values are literal things that SglTool will write right into aDSV file, SPLITTER values are patterns for
detecting the literal delimitersin existing DSV files.

The settings named like * DSV. . . SPLI TTER are input delimiters specified as regular expressions
following the rules in the APl spec for java.util.regex.Pattern [http://downl oad.oracle.com/
javase/6/docs/api/javalutil/regex/Pattern.html]. The settings named like *DSV. . . SPLI TTER are
output delimiters specified as constant strings which can contain escape sequences to represent special
characters (as documented in this section).

56

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

HyperS@L SqiTool

For imports, you must always specify the source DSV file path. If you want to export to adifferent file than onein the
current directory named according to the source table, set the PL variable* DSV_TARGET _FI LE, like

| * *DSV_TARGET_FILE = /tnp/dtbl.dsv |

For exports, you must always specify the source table name or query. If you want to import to a table other than that
derived from the input DSV file name, set the PL variable * DSV_TARGET_TABLE. The table name may contain a
schema name prefix.

You don't need to import all of the columns in a data file. To designate the fields to be skipped, either set the PL
PL variable * DSV_SKI P_CCLS, or replace the column names in the header line to "-" (hyphen). The value of
*DSV_SKI P_COLS is case-insensitive, and multiple column names are separated with white space and/or commas.

Y ou can specify aquery instead of atablename with the\x command in order to filter or transform datafrom atable or

view, or to export the output of ajoin, etc. You must set the PL variable* DSV_TARGET _FI LE, as explained above
(since thereis no table name from which to automatically map afile name).

Example 1.23. DSV Export of an Arbitrary Query

* *DSV_TARCGET_FI LE = outfile.txt
\x SELECT entrydate, 2 * aval "Double aval", nodtime FROM bs. dt bl

Note that | specified the column label alias"Double aval" so that the label for that columninthe DSV file header will
not be blank. Y ou can type aquery line aslong long as you want to, but if you want to use a specified query that spans
multiple lines, then you must use the command variant\ x : to usethe query in the previous edit buffer. (To populate
the edit buffer with your multi-line SQL query, you must execute the command before... usually undesirable, or end
the SQL with ablank lineinstead of a; ... only worksinteractively, or use Raw Mode).

By default, imports will abort as soon as a error is encountered during parsing the file or inserting data. If you invoke
Sl Tool with aSQL script on the command line, thefailurewill cause Sgl Tool toroll back and exit. If runinteractively,
you can decide whether to commit or roll back the rows that inserted before the failure. Y ou can modify this behavior
with the\a and \c settings.

If you set either aregject dsv file or areject report file, then failures during imports will be reported but will not cause
the import to abort. When run in this way, SglTool will give you a report at the end about how many records were
skipped, rejected, and successfully inserted. The reject dsv file isjust a dsv file with exact copies of the dsv records
that failed to insert. The reject report fileis a HTML report which lists, for every rejected record, why that record
was rejected. \ n?? will show you that the required PL variables for this functionality are* DSV_REJECT _FI LE and
*DSV_REJECT_REPORT. In both cases, you set the variable value to the path of the file which SqlTool will create.

Reject reports use the same templating system as SglTool HTML reports. Therefore you can set SglTool system PL
variables* TOP_HTMLFRAG _FI LE or * BOTTOM HTM_FRAG _FI LE to use your own opening and closing HTML
and to completely replace the styling. If you use the default templates you can set user PL variable REPORT_TI TLE
for the obvious reason, and you can place afile named over ri des. css into the same directory as your generated
report, for the obvious purpose. Y ou can use PL variable references in your own fragment files (remember to use the
${: VARNAME} construct to prevent errorsfor variablesthat are not set). Y ou can also use automatically set variables
like* TI MESTAMP and * REVI SI ON

Toalow for user-friendly entry of headers, we require that tablesfor DSV import/exports use standard column names.
I.e., no column namesthat would require quoting ininteractive SQL statements. The DSV import and export parsersare
very smart and user-friendly. The datatypes of columns are checked so that the parser can make safe assumptions about
white space and blank entriesin the data. If acolumnisaJDBC Boolean type, for example, then we know that afield
value of " True" obviously means "True", and that afield value of "" obviously means null. Since we require vanilla
style column names, we allow white space anywhere in the header column. We allow blank lines anywhere (where
"lines" are delimited by * DSV_ROW DELI M . By default, commented lines are ignored, but this can be disabled (by

57

HyperS@L SqiTool

setting DSV_SKI P_PREFI X to the empty string) or you can change the delimiter character from # to whatever you
want (by setting DSV_SKI P_PREFI X to that value).

! Use In-Program Help for Importing and Exporting

Run the command "\x?" or "\m?" to see the several system PL variables which you can set to adjust
reject file behavior, commenting behavior, and other DSV features. Thein-program help isthe definitive
reference for available options, not this manual.

You can aso define some settings right in the DSV file, and you can even specify multiple header linesin a single
DSV file. | usethislast feature to import data from one data set into multiple tables that are joined. Since | don't have
any more time to dedicate to explaining all of these features, I'll give you some examples from working DSV files
and let you take it from there.

Example 1.24. Sample DSV header switch settings

RCS keyword was here.

header swi t ch{
i t endef: nane| - | - | har dness| br eakdc]| -
si npl ei tendef : it emdef _nane| maxval ue| wei ght | - | - | maxhp

}

I'll just note that the prefixes for the header rows must be of format target-table-name + :. You can use * for target-
table-name here, for the obvious purpose.

Example 1.25. DSV tar gettable setting

‘ targettabl e=t ‘

This last example is from the SglTool unit test filedsv-t ri nmi ng. dsv. These special commands must be at the
top of the file (before any normal data or header lines).

Thereisalso the* DSV_CONST _COLS setting, which you can use to automatically write static, constant valuesto the
specified columns of all inserted rows.

CSV Imports and Exports

The only difference between CSV and DSV isthat CSVsallow presence of the column delimiter in the CSV file, and
require the use of double-quotes to escape occurrences of both that column delimiter and of double-quotesin the real
data cells. To enable this double-quote escaping, just use commands\ xg and \ ny instead of \ x and\ m Since CSV
is this double-quote escaping, SqlTool's\ xq and \ ng commands initiate CSV exports and imports. Conflicting with
the name, CSV files do not need to use comma as the column delimiter, and the tab character isacommon aternative.
Since CSV importing and exporting is implemented as a sub-case of DSV import and exporting, everything in the
Delimiter-Separated-V aue Imports and Exports section applies, and CSV users should definitely read that section.

| should also mention the trivial difference between\ xq and \ x that if you do not specify * DSV_TARCET_FI LE,
the default filename suffix will be". csv" instead of ". dsv".

Always use command \mq? or \xg?to list al available import and export options.

Settings Often of Interest to CSV User

*DSV_COL_DELIM Set to what column delimiter to write to the CSV file. Valuesof ", " and "\ t " (without
the quotes) are most common with CSVs. Thisiswhat SglTool will use to separate the
valuesin asingle output CSV fileline.

58

HyperS@L

SqlTool

*DSV_COL_SPLITTER

*NULL_REP_TOKEN

*ALL_QUOTED

*DSV_REJECT_REPORT

This sample shows everything you need to know to get going with CSV. csv-sanpl e. sql

Set to the column-delimiter character in the CSV file to be read. This is what SglTool
will use to split each line into multiple cell values. Valuesof ", " and "\ t " (without the
guotes) are most common with CSV's.

Thiseffectsonly datacoming from or destined to columnswith astring datatype, because
nulls can easily be distinguished from non-nullsfor other datatypes. By default, Sgl Tool
will distinguish between nulls and empty strings for string columns. Many CSV -support
applications can't handle importing or exporting nulls. In you are interfacing to such an
app, set Java system property 'sql t ool . REMOVE_EMPTY_VARS'tof al se and set
NULL_REP_TOKEN to the empty string like" *NULL_REP_TOKEN =", Thiswill
cause both nulls and empty strings to write empty stringsto the export CSV file; and will
cause empty strings in the import CSV file to create nulls. (The Java system property
setting will become unnecessary with the next minor relase of SglTool because that is
going to be SglTool's default behavior). * NULL_REP_TOKEN also effects how nullsin
VARCHAR columnsarerepresented in regular query output (non-exports), so after your
exporting/importing you will often want to reset it with"* - *NULL_REP_TOKEN'
unless you will be exiting Sgl Tool immediately.

Every cell valuewill be quoted upon \xq, instead of just those val ues containing acolumn
delimiter character or double-quote that needs escaping. * ALL_ QUOTED does not effect
the* NULL_REP_TOKEN. If you want the null-rep token to be double-quoted took, then
you must set the* NULL_REP_TOKEN value itself to be double-quoted.

Set this to the path of a HTML file that will be generated if any bad input records
are encountered upon \mg. Instead of aborting, SglTool will continue and import every
record that it isableto. Y ou can view the summary counts (always displayed) and/or the
reject report before deciding whether to commit or rollback the new database records.

1

Example 1.26. Sample CSV export + import script

/*

* $ld: csv-sanple.sql 4810 2011-11-20 21:18:10Z unsaved $

*

* Create a table,

*/

* *DSV_COL_DELIM =,
* *DSV_COL_SPLI TTER =,
-- Following causes a reject report to be witten if there are any bad records

CVSV-export the data, inport it back.

-- during the inport.

* *DSV_REJECT_REPORT = inport. htmi

-- 1. SETTINGS

-- For applications |ike M5 Excel, which can't inport or export nulls, we have
-- to dummy down our database enpty strings to export and inport as if they

-- were nulls.

* *NULL_REP_TOKEN =

-- Enable following line to quote every cell val ue
-- * *ALL_QUOTED = true

-- 2. SET UP TEST DATA
CREATE TABLE t (i

I NSERT I NTO t (i,
I NSERT I NTO t (i,
I NSERT I NTO t (i,
I NSERT I NTO t (i,

\
v,
v,
\

INT, v VARCHAR(25), d DATE);

To test it, enable the "FORCE AN ERROR' bl ock bel ow.

VALUES (1, 'one two three', null);

VALUES (2, null, '2007-06-24");

VALUES (3, 'one,two,,three', '2007-06-24");
VALUES (4, '"one"two""three', '2007-06-24");

59

HyperS@L SqiTool

INSERT INTO t (i, v, d) VALUES (5, '"one,two"three,', '2007-06-24");
INSERT INTO t (i, v, d) VALUES (6, '', '2007-06-24");
conmmit;

-- 3. CSV EXPORT

/* Export */

\xqg t

/* FORCE AN ERROR. Enable the following 3 lines to force a bad CSV record.
\o t.csv

\p barf

\o

*/

-- 4. BACK UP AND ZERO SOURCE TABLE

CREATE TABLE orig AS (SELECT * FROMt) W TH DATA;
DELETE FROM t ;

conmmit;

-- 5. CSV | MPORT
\ng t.csv
conmi t;

-- 6. MANUALLY EXAM NE DI FFERENCES BETWEEN SOURCE AND | MPORTED DATA.

-- See <HSQ.DB_ROOT>/testrun/sqgltool/csv-roundtrip.sqgl to see a way to nmake
-- this sanme conparison progranmatically.

* - *NULL_REP_TOKEN

\p

\'p ORI G NAL:

SELECT * FROM ori g;

\p

\p | MPORTED:

SELECT * FROM t;

\p

\'p The enpty string in the source table will have been translated to null in
\p the inported data.

\p You can see that the generated CSV file represents both nulls and

\p enpty strings as nothing, hence the convergence.

Unit Testing SqglTool

The SglTool unit testsresideatt est run/ sql t ool inyour HyperSQL distribution or source code repository. Just
runr unt est s in that directory to execute all of the tests (except for non-Windows, non-UNIX, non-MacOS users,
who mustinvoke. . /. ./ bui | d/ gr adl ewdirectly). Read the file README. t xt tofind out all about file naming
conventions so that you can write your own SQL test script files.

The system requirements to run the testsis now just a Java 6 JRE. The real test runner isimplemented in the Groovy
script r unt est s. gr oovy. By just typing r unt est s, Windows and Linux (incl. MacOS) users will invoke their
OS-specific scripts. All users can invoke Gradle manually instead if they wish to, using either . . /. ./ bui | d/

gr adl ewor aloca Gradle installation. If you have Groovy installed, you can cut out all of the wrappers and invoke
the Groovy script directly, like gr oovy runt ests. gr oovy (or change the interpreter line within the script file
to point to your own gr oovy path).

60

HyperS@L

Chapter 2. Hsqgldb Test Utility

Theor g. hsql db. t est package contains a number of tests for various functions of the database engine. Among
these, the Test Ut i | class performs the tests that are based on scripts. To run the tests, you should compile the
hsql dbt est . j ar target with Ant and JUnit.

The Test Ut i | class should be run in the /testrun/hsgldb directory of the distributed files. It then runs the set of
TestSelf*.txt filesin the directory. To start the application in Windows, change to the directory and type:

‘ java org. hsqgl db.test. Test Uti |

All filesin the working directory with names matching TestSelf*.txt are processed in alphabetical order.

You can add your own scripts to test different series of SQL queries. The format of the TestSelf*.txt file is smple
text, with some indentation and prefixesin the form of Java-style comments. The prefixes indicate what the expected
result should be.

The classor g. hsql db. t est. Test Scri pt Runner is amore general program which you can use to test any
script files which you specify (with scripts of the same exact format as described below). For example,

‘java org. hsqgl db. test. Test Scri pt Runner --urlid=nem scriptl.tsql script2.sql ‘

Y ou must have the HSQL DB classes, including the util and test classes, in your CLASSPATH. The urlid must be set up
inan RCfileasexplained inthe RC File Authentication Setup section. Usether cf i | e= argument to specify an RC
file other than the default of t est scri pt runner. r ¢ inthe current directory. To see al invocation possibilities,
just run TestScriptRunner with no arguments at all. TestScriptRunner can run tests sequentially (the default) or in
simultaneous asynchronous threads.

» Comment lines must start with -- and are ignored

* Lines starting with spaces are the continuation of the previous line (for long SQL statements)

SQL statements with no prefix are simply executed.

» Theremaining itemsin this list exemplify use of the available command line-prefixes.

The /*s*/ option stands for silent. It isused for executing queries regardless of results. Used for preparation of tests,
not for actual tests.

‘/*s*/ Any SQL statenment - errors are ignored ‘

» The/*c<rows>*/ optionisfor SELECT queriesand assertsthe number of rowsin the result matches the given count.

‘/*c<roms>*/ SQ statement returning count of <rows> ‘

e The /*u*/ option is for queries that return an update count, such as DELETE and UPDATE. It asserts the update
count matches.

‘/*u<count>*/ SQ. statenment returning an update count equal to <count> ‘

» The /*e*/ option asserts that the given query results is an error. It is mainly used for testing the error detection
capabilities of the engine. The SQL State of the expected error can be defined, for example /*e42578*/, to verify
the returned error. This option can be used with syntactically valid queries to assert a certain state in the database.
For example a CREATE TABLE can be used to assert the table of the same name already exists.

‘/*e*/ SQL statenent that should produce an error when executing ‘

e The/*r...*/ option asserts the SELECT query returns asingle row containing the given set of field values.

61

HyperS@L Hsgldb Test Utility

[*r<stringl>, <string2>*/ SQL statement returning a single row ResultSet equal to the specified
val ue

» Theextended /*r...*/ option assertsthe SELECT query returnsthe given rows containing the given set of field values.

[*r
<stringl>, <string2>
<stringl>, <string2>
<stringl>, <string2>
*/ SQL statement returning a nultiple row ResultSet equal to the specified val ues

(note that the result set lines are indented).

» The/*d*/ directive just displays the supplied text.

‘/*d*/ Sonme message ‘

e The/*w MILLIS*/ directive causes the test to Wait for a specified number of milliseconds.

‘/*W 1000*/ Optional nessage ‘

e The /*w ENFORCE_SEQUENCE WAITER_NAME*/ directive causes the test to Wait for the specified Waiter.
A waiter is just name that is used to associate a /*w*/ directive to its corresponding /*p*/ directive. The
ENFORCE_SEQUENCE argument must be set to t rue or f al se to specify whether to fail unless the /*p*/
command runs after the /*w*/ command is waiting.

‘/*MItrue script4*/ Optional nessage ‘

e The /*p ENFORCE_SEQUENCE WAITER_NAME*/ directive is the peer directive to /*w*/, which causes a
waiting thread to Proceed.

‘/*p true script4*/ Optional nessage ‘

« All the options are lowercase |etters. During development, an uppercase can be used for a given test to exclude a
test from the test run. The utility will just report the test blocks that have been excluded without running them. Once
the code has been devel oped, the option can be turned into lowercase to perform the actual test.

See the TestSelf*.txt filesin the /testrun/hsgldb/ directory for actual examples.

The String ${t i mest anp} may be used in script messages (like in /*d*/, *w*/, [*p*/). It expands to the current
time, down to the second. For example,

/*d*/ 1t is now ${tinestanp}

62

HyperS@L

Chapter 3. Database Manager

Fred Toussi, The HSQL Development Group
Blaine Simpson, The HSQL Development Group

$Revision: 6753 $
2024-10-25

Brief Introduction

The Database Manager tool is a simple GUI database query tool with a tree display of the tables. Both AWT
and SWING versions of the tool are available and work almost identically. The AWT version class name is
org.hsgldb.util.DatabaseM anager; the SWING version, org.hsgldb.util.DatabaseM anagerSwing. The SWING version
has more refinements than the AWT version.

When the Database Manager is started, a dialogue alows you to enter the JIDBC driver, URL, user and password for
the new connection. A drop-down box, Type, offers preset valuesfor JDBC driver and URL for most popul ar database
engines, including HSQLDB. Once you have selected an item from this drop-down box, you should edit the URL
to specify the details of the database or any additional properties to pass. You should aso enter the username and
password before clicking on the OK button.

The connection dialogue allows you to save the settings for the connection you are about to make. Y ou can then access
the connection in future sessions. To save a connection setting, enter a name in the Setting Name box before clicking
on the OK button. Next time the connection dialogue is displayed, the drop-down box labelled Recent will include
the name for al the saved connection settings. When you select a name, the individual settings are displayed in the
appropriate boxes.

The small Clr button next to the drop-down box allows you to clear all the saved settings. If you want to modify an
existing setting, first select it from the drop-down box then modify any of the text boxes before making the connection.
The modified values will be saved.

Most SWING menu items have context-sensitive tool tip help text which will appear if you hold the mouse cursor still
over the desired menu item. (Assuming that you don't turn Tooltips off under the Help menu.

The database object treein the SWING version allows you to right click on the name of atable or column and choose
from common SQL statements for the object, for example SELECT * FROM thistable ... If you click on one of the
given choices, the sample statement is copied to the command window, where you can modify and complete it.

The DatabaseM anagers do work with HSQL DB servers serving TLS-encrypted JDBC data. See the TLS section of
the Listeners chapter of the HyperSQL User Guide [distro_baseurl DEFAULTVAL/guide/index.html]

. Tip

If you are using DatabaseM anagerSwing with Oracle, you will want to make sure that Show row counts
and Show row counts are both off before connecting to the database. Y ou may also want to turn off Auto
tree-update, as described in the next section.

Auto tree-update

By default, the object treein the left panel is refreshed when you execute DDL which may update those objects. If you
are on a slow network or performance-challenged PC, use the view / Auto-refresh tree menu item to turn it off. You
will then need to use the viewRefresh tree menu item every time that you want to refresh the tree.

63

distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html

HyperS@L Database Manager

Note

Auto-refresh tree does not automatically show all updates to database objects, it only refreshes when
you submit DDL which may update database objects. (This behavior is a compromise between utility
and performance).

Automatic Connection

You can use command-line switches to supply connection information. If you use these switch(es), then the
connection dialog window will be skipped and a JDBC connection will be established immediately. Assuming that
the hsql db. j ar (or an alternative jar) are in your CLASSPATH, this command will list the available command-
line options.

‘ java org. hsgl db. util . Dat abaseManager Swi ng - - hel p ‘

It's convenient to skip the connection dialog window if you always work with the same database account.

Warning

Use of the --password switch is not secure. Everything typed on command-lines is generally available
to other users on the computer. The problem is compounded if you use a hetwork connection to obtain
your command line. The RC File section explains how you can set up automatic connections without
supplying a password on the command line.

RC File

Y ou can skip the connection dialog window securely by putting the connection information into an RC file and then
using the- - ur | i d switch to DatabaseManager or DatabaseManagerSwing. This strategy is great for adding launch
menu items and/or launch icons to your desktop. Y ou can set up one icon for each of the database accounts which
you regularly use.

The default location for the RC fileis dbnanager . r ¢ in your home directory. The RC File Authentication Setup
section explains how to put the connection information into thistext file. If you also run SglTool , then you can share
the RC filewith SglTool by using asym-link (if your operating system supportssymlinks), or by usingthe- -rcfil e
switch for either SglTool or DatabaseM anagerSwing.

Warning
Use your operating system facilities to prevent others from reading your RC file, since it containg
passwords.

To set up launch itemg/icons, first experiment on your command line to find exactly what command works. For
example,

‘j ava -cp /path/to/hsqgldb.jar org. hsql db. util.DatabaseManagerSwing --urlid nem

Then, use your window manager to add an item that runs this command.

Using the current DatabaseManagers with an older
HSQLDB distribution.

Thisprocedurewill allow usersof alegacy version of HSQLDB to useall of the new features of the DatabaseM anagers.
You will aso get the new version of the SglTool! This procedure works for distros going back to 1.7.3.3 at least,
probably much farther.

HyperS@L

Database Manager

These instructions assume that you are capable of running an Ant build. See the Building Appendix of the HyperSQL
User Guide [distro_baseurl DEFAULTVAL/guide/index.html].

1. Download and extract a current HSQL DB distribution. If you don't want to use the source code, documentation,
etc., you can use atemporary directory and remove it afterwards.

2. Cdtothebuild directory under the root directory where you extracted the distribution to.

3. Runant hsqgl dbutil.

4. If you're going to wipe out the build directory, copy hsql dbuti | . j ar to asafe location first.

5. For now on, whenever you are going to run DatabaseM anager* , make surethat you havethishsql dbuti | . j ar
asthefirst item in your CLASSPATH.

Here's a UNIX example where somebody wants to use the new DatabaseM anagerSwing with their older HSQLDB
database, as well as with Postgresgl and alocal application.

CLASSPATH=/ pat h/ t o/ hsql dbuti | . j ar:/hone/ bob/ nyapp/ cl asses: /usr/|ocal /1i b/ pg.jdbc3.jar

export CLASSPATH

java org. hsqgl db. util.Dat abaseManagerSwing --urlid urlid

DatabaseManagerSwing as an Applet

DatabaseM anagerSwing up to version 2.4.x is also an applet (from 2.5.0 applet support is no longer available). You
can useitin HTML, JSPs, etc. Be aware that in Applet mode, actions to load or save local files will be disabled, and
attempts to access any server other than the HTM L -serving-host will fail.

Since the Applet can not store or load locally saved preferences, the only way to have persistent preference settings
isby using Applet parameters.

DatabaseM anager Swing Applet Parameters

jdbcUrl

jdbcDriver

jdbcUser
jdbcPassword
schemakFilter

laf
loadSampleData

autoRefresh

showRowCounts
showSysTables

showSchemas

URL of adata source to auto-connect to. String value.

URL of a data source to auto-connect to. String vaue. Defaults to

org. hsql db. dri ver. JDBCDri ver.

User name for data source to auto-connect to. String value.

Password for data source to auto-connect to. String value. Defaults to zero-length string.
Display only object from this schemain the object navigator. String value.

L ook-and-feel. String value.

Auto-load sample data. Boolean value. Defaults to false.

Auto-refresh the object navigator when DDL modifications detected in user SQL commands.
Boolean value. Defaultsto true.

Show number of rowsin each table in the object navigator. Boolean value. Defaultsto false.
Show system tables in the object navigator. Boolean value. Defaults to false.

Show object names like schema.name in object navigator. Boolean value. Defaults to true.

65

distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html
distro_baseurl_DEFAULTVAL/guide/index.html

HyperS@L Database Manager

resultGrid Show query resultsin Gui grid (as opposed to in plain text). Boolean value. Defaults to true.

showTool Tips Show help hover-text. Boolean value. Defaults to true.

66

HyperS@L

Chapter 4. Transfer Tool

Fred Toussi, The HSQL Development Group

$Revision: 6753 $
2024-10-25

Brief Introduction

Transfer Tool isa GUI program for transferring SQL schema and data from one JDBC source to another. Source and
destination can be different database engines or different databases on the same server.

Transfer Tool works in two different modes. Direct transfer maintains a connection to both source and destination
and performs the transfer. Dump and Restore mode is invoked once to transfer the data from the source to atext file
(Dump), then again to transfer the data from the text file to the destination (Restore). With Dump and Restore, it is
possible to make any changes to database object definitions and data prior to restoring it to the target.

Dump and Restore modes can be set viathe command line with -d (--dump) or -r (--restore) options. Alternatively the
Transfer Tool can be started with any of the three modes from the Database Manager's Tools menu.

The connection dialogue allows you to save the settings for the connection you are about to make. You can then
access the connection in future sessions. These settings are shared with those from the Database Manager tool. Seethe
appendix on Database Manager for details of the connection dialogue box.

Fromversion 1.8.0 Transfer Tool isno longer part of thehsql db. j ar . Youcanbuildthehsql dbuti | . j ar using
the Ant command of the same name, to build ajar that includes Transfer Tool and the Database Manager.

When collecting meta-data, Transfer Tool performs SELECT * FROM <table> queries on al the tablesin the source
database. This may take along time with some database engines. When the source database is HSQL DB, this means
memory should be available for the result sets returned from the queries. Therefore, the memory allocation of the java
process in which Transfer Tool is executed may have to be high.

The current version of Transfer isfar fromideal, asit has not been actively developed for several years. The program
also lacks the ability to create UNIQUE constraints and creates UNIQUE indexes instead. However, some bugs have
been fixed in the latest version and the program can be used with most of the supported databases. The best way to
use the program is the DUMP and RESTORE maodes, which allow you to manually change the SQL statements in
the dump file before restoring to a database. A useful ideais to dump and restore the database definition separately
from the database data.

67

HyperS@L

Appendix A. SglTool System PL Variables

As of SqlFile revision 6559

SqlTool System PL variables are the mechanism used to configure SglTool behavior. You can list al set PL variables
by running the SglTool command * | i stval ues. If a SgiTool System variable is not shown, then it is unset
(which is equivalent to non-null). But if a system variable is not set, that doesn't mean that the setting behavior will
be unset, but rather that the default behavior will apply. For example, if you * | i st val ues and the variable
*DSV_COL_DELI Mis not listed, that doesn't mean that there will be no DSV column delimiter, but that the default
DSV column delimiter will be used. The in-program help can be used to determine what the default behavior is. (In
the case of * DSV_COL_DELI M you can see the default behavior by running \ x?.

Besides System PL variables, there are also user PL variableswhich have names beginning with aletter, and the special
variables? and NULL. NULL is completely equivalent to * NULL, which is explained below.

Where the table below reports that a variable is read only, for now that usually means only that you should treat is
as read-only. Behavior will be unpredictable if you write to these. At some point in future | may add enforcement of
this. (Contact meif thisisimportant for you).

? Last retrieved table cell result value. Seethe SglTool chapter about 2.
Row count from last retrieved result set. Seethe SglTool chapter about #.
*ALL_QUOTED Boolean. Whether to quote all values (excluding null values) in a\xq export. No

effect on any command other than \xq.

*BOTTOM_HTMLFRAG _FILE Filepathto HTML fragment fileto closethe HTML report or DSV import reject
file

*DSV_COL_DELIM Literal string (which may contain character escapes). DSV or CSV output column
delimiter literal. Run \x? to see default value and details.

*DSV_COL_SPLITTER Regular expression. DSV or CSV input column delimiter regular expression. Run
\x? to see default value and details.

*DSV_CONST_COLS Alistof col unm_nane = col um_val ue| . .. settings. Specifies constant
import values. Run \x? to see default value and details.

*DSV_RECORDS PER _COMMIT Integer. How often to commit upon DSV/CSV imports. Run \x? to see default
value and details.

*DSV_REJECT FILE File path. Path to DSV file of rejects rejected upon CSV/DSV imports. Run \x?
to see default value and details.

*DSV_REJECT_REPORT File path. Path to HTML report about CSV/DSV import failures. Run \x? to see
default value and details.

*DSV_ROW_DELIM Literal string (which may contain character escapes). DSV or CSV output row
delimiter literal. Run \x? to see default value and details.

*DSV_ROW_SPLITTER Regular expression. DSV or CSV input row delimiter regular expression. Run
\x?to see default value and details.

*DSV_SKIP_COLS A list of column names to skip, like col utm1| col utMm2 Specifies columns
to omit from CSV or DSV importing or exporting. Run \x? to see default value
and details.

68

HyperS@L

SqlTool System PL Variables

*DSV_SKIP_PREFIX

*DSV_TRIM_ALL

*DSV_TARGET_FILE

*DSV_TARGET_TABLE

*HOST

*HOSTNAME

*IGNORE_BANG_STATUS

*NULL

*NULL_REP_HTML

*NULL_REP_TOKEN

*REVISION

*ROW

*ROWS

*SCRIPT

*SCRIPT_BASE

*SCRIPT_FILE

Literal string (which may contain character escapes). Specifies comment
delimiter character or string in DSV or CSV files. Run \x? to see default value
and details.

Boolean. Trim leading and trailing white space from every cell in CSV or DSV
file upon import. Run \x? to see default value and details.

File path. File where to export CSV or DSV to. Run \x? to see default value and
details.

Table name. Table whereto import CSV or DSV to. Run \x? to see default value
and detalils.

Unqualified (short) hostname. |.e. host name without domain.

Will be as reported by command 'hostname’, which may be qualified or
unqualified (by domain).

Boolean. If true, thenif an external command executed by \ ! returnserror (non-
zero) status, SglTool will not report or try to act on the error. (Thiswill have no
effect on what the external program may do).

Null (i.e. always unset).

Literal string (which may contain character escapes). Same as
* NULL_REP_TOKEN, but only appliesto HTML reports.

Literal string (which may contain character escapes). String value to represent
SQL nullsfromVARCHAR columnsand null (unset) PL variablevalues. Applies
to what displays on screen and what gets written into export files.

Read only. Literal string.

Read only. Literal string. Set only inside of * f or r owloop bodies. If thereis
only a single column fetched, then this is equal to that cell of the current row,
unless that value is null, in which case * ROMwill be the * NULL_REP_TOKEN
value. Otherwise it is these values for the columns joined together with the
DSV_COL_DELI M

Read only literal string for use with forrows, but inversely to * ROWavailability,
* ROWS is never available inside of a forrows, only after a forrows. (To use a
previous ROWSvalueinsideaforrowsloop, you would haveto assigniit to auser
PL variable). Thevalueisjust the contatenation of * ROMor each row joined with
*DSV_ROW DELI Mdelimiter. It isbasically asimple DSV export for the query.

Be aware that the \p command can't take an argument with line delimiters,
so though you can use * ROAS with the default * DSV_ROW DELI Mvalue for
exporting, comparing, and other purposes, to print it with \p you will need to
change * DSV_ROW DELI Mso that it doesn't include aline break.

Full name of current script, which isusually an URL or the string <st di n>.

Base name of the current script. Same as* SCRIPT_FILE but with final filename
suffix also removed.

Current script file name without directory or any protocol prefix.

69

HyperS@L

SqlTool System PL Variables

*START_TIME

*TIMESTAMP

*TIMESTAMP_FORMAT

*TOP_HTMLFRAG_FILE

Read only. Literal string. Automatically set to alocalized string presenting the
date and time.

Read only. Literal string. Only usable if * TI MESTAMP_FORVMAT has been set.
Displays the date and/or time at which this variable is dereferenced.

Formatting string, as described below. Setting this variable enables the
*TI MESTAMP read-only variable to be used. Set to a date and/or time
format like yyyy- M dd' T' HH: nm ss. SSSZ, as described at http://
download.oracle.com/javase/6/docs/api/javaltext/SimpleDateFormat.html

File path. File path to HTML fragment file to open the HTML report or DSV
import reject file.

70

http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://download.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

HyperS@L

Appendix B. HyperSQL File Links

HyperSQL Files referred to in this Guide

HyperSQL files referred to in the text may be retrieved from the canonical HyperSQL documentation site, http://
hsgldb.org/doc/2.0, or from the same location you are reading this page from.

Note

If you are reading this document with a standal one PDF reader, only the http://hsgldb.org/doc/2.0/... links
will function.

Pairs of local + http://hsgldb.org/doc/2.0 links for referenced files.

Local: ../verbatim/sample/sgltool.rc
http://hsgldb.org/doc/2.0/verbatim/sample/sqltool .rc
Local: ../verbatim/sample/sampledata.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/sampl edata.sq
Local: ../verbatim/sample/sample.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/sample.sql
Local: ../verbatim/sample/html-report.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/html-report.sql
Local: ../verbatim/sample/pl.sol
http://hsgldb.org/doc/2.0/verbatim/sample/pl.sql

Local: ../verbatim/sample/plsql.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/plsgl .sal
Local: ../verbatim/sample/dsv-sample.sql
http://hsgldb.org/doc/2.0/verbatim/sample/dsv-sample.sql
Local: ../verbatim/sample/csv-sample.sql
http://hsgldb.org/doc/2.0/verbatim/sampl e/csv-sampl e.sql
Local: ../verbatim/testrun/sgltool/sqljrt.sql
http://hsgldb.org/doc/2.0/verbatim/testrun/sgltool /sgljrt.sal
Local: ../verbatim/testrun/sgltool/sglpsm.sql
http://hsgldb.org/doc/2.0/verbatim/testrun/sgltool /sgl psm.sql
Locd: ../verbatim/src/org/hsgldb/sample/SqlFileEmbedder.java

http://hsgldb.org/doc/2.0/verbatim/src/org/hsgl db/sampl e/ Sgl FileEmbedder.java

71

../verbatim/sample/sqltool.rc
http://hsqldb.org/doc/2.0/verbatim/sample/sqltool.rc
../verbatim/sample/sampledata.sql
http://hsqldb.org/doc/2.0/verbatim/sample/sampledata.sql
../verbatim/sample/sample.sql
http://hsqldb.org/doc/2.0/verbatim/sample/sample.sql
../verbatim/sample/html-report.sql
http://hsqldb.org/doc/2.0/verbatim/sample/html-report.sql
../verbatim/sample/pl.sql
http://hsqldb.org/doc/2.0/verbatim/sample/pl.sql
../verbatim/sample/plsql.sql
http://hsqldb.org/doc/2.0/verbatim/sample/plsql.sql
../verbatim/sample/dsv-sample.sql
http://hsqldb.org/doc/2.0/verbatim/sample/dsv-sample.sql
../verbatim/sample/csv-sample.sql
http://hsqldb.org/doc/2.0/verbatim/sample/csv-sample.sql
../verbatim/testrun/sqltool/sqljrt.sql
http://hsqldb.org/doc/2.0/verbatim/testrun/sqltool/sqljrt.sql
../verbatim/testrun/sqltool/sqlpsm.sql
http://hsqldb.org/doc/2.0/verbatim/testrun/sqltool/sqlpsm.sql
../verbatim/src/org/hsqldb/sample/SqlFileEmbedder.java
http://hsqldb.org/doc/2.0/verbatim/src/org/hsqldb/sample/SqlFileEmbedder.java

HyperS@L HyperSQL File Links

e Locd: ../apidocs/org/hsgldb/cmdline/SqlFile.html
http://hsgl db.org/doc/2.0/apidocs/org/hsgl db/jemdline/Sgl File.html

72

../apidocs/org/hsqldb/cmdline/SqlFile.html
http://hsqldb.org/doc/2.0/apidocs/org/hsqldb/jcmdline/SqlFile.html

	HyperSQL Utilities Guide
	Table of Contents
	Preface
	Available formats for this document

	Chapter 1. SqlTool
	Try It
	Purpose, Coverage, Recent Changes in Behavior
	Platforms and SqlTool versions covered
	Recent Functional Changes
	New Features

	The Bare Minimum
	Quotes and Spaces
	Embedding
	Non-displayable Types
	Compound commands or commands with semi-colons
	Desktop shortcuts
	Loading sample data
	Satisfying SqlTool's CLASSPATH Requirements
	Accessing older HSQLDB Databases with SqlTool
	App-specific Classes, Embedding, and non-HyperSQL Databases
	Distributing SqlTool with your Apps
	SqlTool Client PCs

	RC File Authentication Setup
	Switching Data Sources
	Using Inline RC Authentication
	Logging
	Interactive Usage
	SqlTool Command-Line Editing
	Command Types
	Emulating Non-Interactive mode

	Command Types
	Special Commands
	Edit Buffer / History Commands
	Command History

	PL Commands
	Non-Interactive
	Giving SQL on the Command Line
	SQL Files
	Piping and shell scripting
	Automation
	Optimally Compatible SQL Files
	Comments
	Special Commands and Edit Buffer Commands in SQL Files
	Getting Interactive Functionality with SQL Files
	Character Encoding

	Generating Text or HTML Reports
	Storing and Retrieving Binary Files
	SqlTool Procedural Language
	Nulls and Empty Strings
	Distinguishing Nulls from Empty Strings

	Variables
	System PL Variables
	PL Variables
	PL ? Variable
	PL # Variable

	Macros
	SqlTool Functions
	PL Sample
	Logical Expressions
	Mathematical Assignments
	Flow Control
	PL Example

	Chunking
	Why?
	How?

	Raw Mode
	SQL/PSM, SQL/JRT, and PL/SQL
	Delimiter-Separated-Value Imports and Exports
	Simple DSV exports and imports using default settings
	Specifying queries and options

	CSV Imports and Exports
	Unit Testing SqlTool

	Chapter 2. Hsqldb Test Utility
	Chapter 3. Database Manager
	Brief Introduction
	Auto tree-update
	Automatic Connection
	RC File
	Using the current DatabaseManagers with an older HSQLDB distribution.
	DatabaseManagerSwing as an Applet

	Chapter 4. Transfer Tool
	Brief Introduction

	Appendix A. SqlTool System PL Variables
	Appendix B. HyperSQL File Links

