/* Copyright (c) 2005-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Bin-packing algorithm that attempts to use minimal number of bins B of size desired_bin_capacity to contain elements_num items of varying sizes. */ #include #include #include #include #include #include #include #include "oneapi/tbb/tick_count.h" #include "oneapi/tbb/flow_graph.h" #include "oneapi/tbb/global_control.h" #include "common/utility/utility.hpp" #include "common/utility/get_default_num_threads.hpp" typedef std::size_t size_type; // to represent non-zero indices, capacities, etc. typedef std::size_t value_type; // the type of items we are attempting to pack into bins typedef std::vector bin; // we use a simple vector to represent a bin // Our bin packers will be function nodes in the graph that take value_type items and // return a dummy value. They will also implicitly send packed bins to the bin_buffer // node, and unused items back to the value_pool node: typedef oneapi::tbb::flow:: multifunction_node, oneapi::tbb::flow::rejecting> bin_packer; // Items are placed into a pool that all bin packers grab from, represent by a queue_node: typedef oneapi::tbb::flow::queue_node value_pool; // Packed bins are placed in this buffer waiting to be serially printed and/or accounted for: typedef oneapi::tbb::flow::buffer_node bin_buffer; // Packed bins are taken from the_bin_buffer and processed by the_writer: typedef oneapi::tbb::flow:: function_node bin_writer; // Items are injected into the graph when this node sends them to the_value_pool: typedef oneapi::tbb::flow::input_node value_source; // User-specified globals with default values size_type desired_bin_capacity = 42; size_type elements_num = 1000; // number of elements to generate bool verbose = false; // prints bin details and other diagnostics to screen bool silent = false; // suppress all output except for time int num_bin_packers = -1; // number of concurrent bin packers in operation; default is #threads; // larger values can result in more bins at less than full capacity size_type optimality = 1; // 1 (default) is highest the algorithm can obtain; larger numbers run faster // Calculated globals size_type bins_num_min; // lower bound on the optimal number of bins size_type bins_num; // the answer, i.e. number of bins used by the algorithm std::vector input_array; // stores randomly generated input values value_type item_sum; // sum of all randomly generated input values std::atomic packed_sum; // sum of all values currently packed into all bins std::atomic packed_items; // number of values currently packed into all bins std::atomic active_bins; // number of active bin_packers std::vector bins; // the array of bin packers // This class is the Body type for bin_packer class bin_filler { typedef bin_packer::output_ports_type ports_type; bin my_bin; // the current bin that this bin_filler is packing size_type my_used; // capacity of bin used by current contents (not to be confused with my_bin.size()) size_type relax, relax_val; // relaxation counter for determining when to settle for a non-full bin bin_packer* my_bin_packer; // ptr to the bin packer that this body object is associated with size_type bin_index; // index of the encapsulating bin packer in the global bins array value_type looking_for; // the minimum size of item this bin_packer will accept value_pool* the_value_pool; // the queue of incoming values bool done; // flag to indicate that this binpacker has been deactivated public: bin_filler(std::size_t bidx, value_pool* _q) : my_used(0), relax(0), relax_val(0), my_bin_packer(nullptr), bin_index(bidx), looking_for(desired_bin_capacity), the_value_pool(_q), done(false) {} void operator()(const value_type& item, ports_type& p) { if (!my_bin_packer) my_bin_packer = bins[bin_index]; if (done) // this bin_packer is done packing items; put item back to pool std::get<0>(p).try_put(item); else if ( item > desired_bin_capacity) { // signal that packed_sum has reached item_sum at some point size_type remaining = active_bins--; if (remaining == 1 && packed_sum == item_sum) { // this is the last bin and it has seen everything // this bin_packer may not have seen everything, so stay active if (my_used > 0) std::get<1>(p).try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = desired_bin_capacity; ++active_bins; } else if (remaining == 1) { // this is the last bin, but there are remaining items std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal ++active_bins; } else if (remaining > 1) { // this is not the last bin; deactivate // this bin is ill-utilized; throw back items and deactivate if (my_used < desired_bin_capacity / (1 + optimality * .1)) { packed_sum -= my_used; packed_items -= my_bin.size(); for (size_type i = 0; i < my_bin.size(); ++i) std::get<0>(p).try_put(my_bin[i]); oneapi::tbb::flow::remove_edge(*the_value_pool, *my_bin_packer); // deactivate done = true; std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal } else { // this bin is well-utilized; send out bin and deactivate oneapi::tbb::flow::remove_edge(*the_value_pool, *my_bin_packer); // build no more bins done = true; if (my_used > 0) std::get<1>(p).try_put(my_bin); std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal } } } else if (item <= desired_bin_capacity - my_used && item >= looking_for) { // this item can be packed my_bin.push_back(item); my_used += item; packed_sum += item; ++packed_items; looking_for = desired_bin_capacity - my_used; relax = 0; if (packed_sum == item_sum) { std::get<0>(p).try_put(desired_bin_capacity + 1); // send out signal } if (my_used == desired_bin_capacity) { std::get<1>(p).try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = desired_bin_capacity; } } else { // this item can't be packed; relax constraints ++relax; // this bin_packer has looked through enough items if (relax >= (elements_num - packed_items) / optimality) { relax = 0; --looking_for; // accept a wider range of items if (looking_for == 0 && my_used < desired_bin_capacity / (1 + optimality * .1) && my_used > 0 && active_bins > 1) { // this bin_packer is ill-utilized and can't find items; deactivate and throw back items size_type remaining = active_bins--; if (remaining > 1) { // not the last bin_packer oneapi::tbb::flow::remove_edge(*the_value_pool, *my_bin_packer); // deactivate done = true; } else active_bins++; // can't deactivate last bin_packer packed_sum -= my_used; packed_items -= my_bin.size(); for (size_type i = 0; i < my_bin.size(); ++i) std::get<0>(p).try_put(my_bin[i]); my_bin.clear(); my_used = 0; } else if (looking_for == 0 && (my_used >= desired_bin_capacity / (1 + optimality * .1) || active_bins == 1)) { // this bin_packer can't find items but is well-utilized, so send it out and reset std::get<1>(p).try_put(my_bin); my_bin.clear(); my_used = 0; looking_for = desired_bin_capacity; } } std::get<0>(p).try_put(item); // put unused item back to pool } } }; // input node uses this to send the values to the value_pool class item_generator { size_type counter; public: item_generator() : counter(0) {} value_type operator()(oneapi::tbb::flow_control& fc) { if (counter < elements_num) { value_type result = input_array[counter]; ++counter; return result; } fc.stop(); return value_type{}; } }; // the terminal function_node uses this to gather stats and print bin information class bin_printer { value_type running_count; size_type item_count; value_type my_min, my_max; double avg; public: bin_printer() : running_count(0), item_count(0), my_min(desired_bin_capacity), my_max(0), avg(0) {} oneapi::tbb::flow::continue_msg operator()(bin b) { value_type sum = 0; ++bins_num; if (verbose) std::cout << "[ "; for (size_type i = 0; i < b.size(); ++i) { if (verbose) std::cout << b[i] << " "; sum += b[i]; ++item_count; } my_min = std::min(sum, my_min); my_max = std::max(sum, my_max); avg += sum; running_count += sum; if (verbose) { std::cout << "]=" << sum << "; Done/Packed/Total cap: " << running_count << "/" << packed_sum << "/" << item_sum << " items:" << item_count << "/" << packed_items << "/" << elements_num << " bins_num=" << bins_num << "\n"; } if (item_count == elements_num) { // should be the last; print stats avg = avg / (double)bins_num; if (!silent) std::cout << "SUMMARY: #Bins used: " << bins_num << "; Avg size: " << avg << "; Max size: " << my_max << "; Min size: " << my_min << "\n" << " Lower bound on optimal #bins: " << bins_num_min << "; Start #bins: " << num_bin_packers << "\n"; } return oneapi::tbb::flow::continue_msg(); // need to return something } }; int main(int argc, char* argv[]) { utility::thread_number_range threads(utility::get_default_num_threads); utility::parse_cli_arguments( argc, argv, utility::cli_argument_pack() //"-h" option for displaying help is present implicitly .positional_arg(threads, "#threads", utility::thread_number_range_desc) .arg(verbose, "verbose", " print diagnostic output to screen") .arg(silent, "silent", " limits output to timing info; overrides verbose") .arg(elements_num, "elements_num", " number of values to pack") .arg(desired_bin_capacity, "bin_capacity", " capacity of each bin") .arg(num_bin_packers, "#packers", " number of concurrent bin packers to use " "(default=#threads)") .arg(optimality, "optimality", "controls optimality of solution; 1 is highest, use\n" " larger numbers for less optimal but faster solution")); if (silent) verbose = false; // make silent override verbose // Generate random input data srand(42); input_array.resize(elements_num); item_sum = 0; for (auto& item : input_array) { item = rand() % desired_bin_capacity + 1; // generate items that fit in a bin item_sum += item; } bins_num_min = (item_sum % desired_bin_capacity) ? item_sum / desired_bin_capacity + 1 : item_sum / desired_bin_capacity; oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now(); for (int p = threads.first; p <= threads.last; p = threads.step(p)) { oneapi::tbb::global_control c(oneapi::tbb::global_control::max_allowed_parallelism, p); packed_sum = 0; packed_items = 0; bins_num = 0; if (num_bin_packers == -1) num_bin_packers = p; active_bins = num_bin_packers; if (!silent) std::cout << "binpack running with " << item_sum << " capacity over " << elements_num << " items, optimality=" << optimality << ", " << num_bin_packers << " bins of capacity=" << desired_bin_capacity << " on " << p << " threads." << "\n"; oneapi::tbb::flow::graph g; value_source the_source(g, item_generator()); value_pool the_value_pool(g); oneapi::tbb::flow::make_edge(the_source, the_value_pool); bin_buffer the_bin_buffer(g); bins.resize(num_bin_packers); for (int i = 0; i < num_bin_packers; ++i) { bins[i] = new bin_packer(g, 1, bin_filler(i, &the_value_pool)); oneapi::tbb::flow::make_edge(the_value_pool, *(bins[i])); oneapi::tbb::flow::make_edge(oneapi::tbb::flow::output_port<0>(*(bins[i])), the_value_pool); oneapi::tbb::flow::make_edge(oneapi::tbb::flow::output_port<1>(*(bins[i])), the_bin_buffer); } bin_writer the_writer(g, 1, bin_printer()); make_edge(the_bin_buffer, the_writer); the_source.activate(); g.wait_for_all(); for (int i = 0; i < num_bin_packers; ++i) { delete bins[i]; } } utility::report_elapsed_time((oneapi::tbb::tick_count::now() - start).seconds()); return 0; }