/* Copyright (c) 2005-2021 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // Before including parallel_pipeline.h, set up the variable to count heap allocated // filter_node objects, and make it known for the header. #include "common/test.h" #include "common/utils.h" #include "common/checktype.h" int filter_node_count = 0; #define __TBB_TEST_FILTER_NODE_COUNT filter_node_count #include "tbb/parallel_pipeline.h" #include "tbb/global_control.h" #include "tbb/spin_mutex.h" #include "tbb/task_group.h" #include #include #include // std::unique_ptr //! \file test_parallel_pipeline.cpp //! \brief Test for [algorithms.parallel_pipeline algorithms.parallel_pipeline.flow_control] specification const unsigned n_tokens = 8; // we can conceivably have two buffers used in the middle filter for every token in flight, so // we must allocate two buffers for every token. Unlikely, but possible. const unsigned n_buffers = 2*n_tokens; const int max_counter = 16; static std::size_t concurrency = 0; static std::atomic output_counter; static std::atomic input_counter; static std::atomic non_pointer_specialized_calls; static std::atomic pointer_specialized_calls; static std::atomic first_pointer_specialized_calls; static std::atomic second_pointer_specialized_calls; static int intbuffer[max_counter]; // store results for parallel pipeline test static bool check_intbuffer; static void* buffers[n_buffers]; static std::atomic_flag buf_in_use[n_buffers] = {ATOMIC_FLAG_INIT}; void *fetchNextBuffer() { for(size_t icnt = 0; icnt < n_buffers; ++icnt) { if(!buf_in_use[icnt].test_and_set()) { return buffers[icnt]; } } CHECK_MESSAGE(false, "Ran out of buffers, p:"<< concurrency); return 0; } void freeBuffer(void *buf) { for(size_t i=0; i < n_buffers;++i) { if(buffers[i] == buf) { buf_in_use[i].clear(); return; } } CHECK_MESSAGE(false, "Tried to free a buffer not in our list, p:" << concurrency); } template class free_on_scope_exit { public: free_on_scope_exit(T *p) : my_p(p) {} ~free_on_scope_exit() { if(!my_p) return; my_p->~T(); freeBuffer(my_p); } private: T *my_p; }; // methods for testing CheckType< >, that return okay values for other types. template bool middle_is_ready(T &/*p*/) { return false; } template bool middle_is_ready(CheckType &p) { return p.is_ready(); } template bool output_is_ready(T &/*p*/) { return true; } template bool output_is_ready(CheckType &p) { return p.is_ready(); } template int middle_my_id( T &/*p*/) { return 0; } template int middle_my_id(CheckType &p) { return p.id(); } template int output_my_id( T &/*p*/) { return 1; } template int output_my_id(CheckType &p) { return p.id(); } template void my_function(T &p) { p = 0; } template void my_function(CheckType &p) { p.get_ready(); } // Filters must be copy-constructible, and be const-qualifiable. template class input_filter : DestroyedTracker { public: U operator()( tbb::flow_control& control ) const { CHECK(is_alive()); if( --input_counter < 0 ) { control.stop(); } else // only count successful reads ++non_pointer_specialized_calls; return U(); // default constructed } }; // specialization for pointer template class input_filter : DestroyedTracker { public: U* operator()(tbb::flow_control& control) const { CHECK(is_alive()); int ival = --input_counter; if(ival < 0) { control.stop(); return nullptr; } ++pointer_specialized_calls; if(ival == max_counter / 2) { return nullptr; // non-stop NULL } U* myReturn = new(fetchNextBuffer()) U(); if (myReturn) { // may have been passed in a NULL CHECK_MESSAGE(!middle_my_id(*myReturn), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(*myReturn), "Already ready, p:" << concurrency); } return myReturn; } }; template<> class input_filter : DestroyedTracker { public: void operator()( tbb::flow_control& control ) const { CHECK(is_alive()); if( --input_counter < 0 ) { control.stop(); } else ++non_pointer_specialized_calls; } }; // specialization for int that passes back a sequence of integers template<> class input_filter : DestroyedTracker { public: int operator()(tbb::flow_control& control ) const { CHECK(is_alive()); int oldval = --input_counter; if( oldval < 0 ) { control.stop(); } else ++non_pointer_specialized_calls; return oldval+1; } }; template class middle_filter : DestroyedTracker { public: U operator()(T t) const { CHECK(is_alive()); CHECK_MESSAGE(!middle_my_id(t), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(t), "Already ready, p:" << concurrency ); U out; my_function(out); ++non_pointer_specialized_calls; return out; } }; template class middle_filter : DestroyedTracker { public: U operator()(T* my_storage) const { free_on_scope_exit my_ptr(my_storage); // free_on_scope_exit marks the buffer available CHECK(is_alive()); if(my_storage) { // may have been passed in a NULL CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency ); } ++first_pointer_specialized_calls; U out; my_function(out); return out; } }; template class middle_filter : DestroyedTracker { public: U* operator()(T my_storage) const { CHECK(is_alive()); CHECK_MESSAGE(!middle_my_id(my_storage), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(my_storage), "Already ready, p:" << concurrency ); // allocate new space from buffers U* my_return = new(fetchNextBuffer()) U(); my_function(*my_return); ++second_pointer_specialized_calls; return my_return; } }; template class middle_filter : DestroyedTracker { public: U* operator()(T* my_storage) const { free_on_scope_exit my_ptr(my_storage); // free_on_scope_exit marks the buffer available CHECK(is_alive()); if(my_storage) { CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency ); } // may have been passed a NULL ++pointer_specialized_calls; if(!my_storage) return nullptr; CHECK_MESSAGE(!middle_my_id(*my_storage), "bad id value, p:" << concurrency); CHECK_MESSAGE(!middle_is_ready(*my_storage), "Already ready, p:" << concurrency ); U* my_return = new(fetchNextBuffer()) U(); my_function(*my_return); return my_return; } }; // specialization for int that squares the input and returns that. template<> class middle_filter : DestroyedTracker { public: int operator()(int my_input) const { CHECK(is_alive()); ++non_pointer_specialized_calls; return my_input*my_input; } }; // --------------------------------- template class output_filter : DestroyedTracker { public: void operator()(T c) const { CHECK(is_alive()); CHECK_MESSAGE(output_my_id(c), "unset id value, p:" << concurrency); CHECK_MESSAGE(output_is_ready(c), "not yet ready, p:" << concurrency); ++non_pointer_specialized_calls; output_counter++; } }; // specialization for int that puts the received value in an array template<> class output_filter : DestroyedTracker { public: void operator()(int my_input) const { CHECK(is_alive()); ++non_pointer_specialized_calls; int myindx = output_counter++; intbuffer[myindx] = my_input; } }; template class output_filter : DestroyedTracker { public: void operator()(T* c) const { free_on_scope_exit my_ptr(c); CHECK(is_alive()); if(c) { CHECK_MESSAGE(output_my_id(*c), "unset id value, p:" << concurrency); CHECK_MESSAGE(output_is_ready(*c), "not yet ready, p:" << concurrency); } output_counter++; ++pointer_specialized_calls; } }; typedef enum { no_pointer_counts, assert_nonpointer, assert_firstpointer, assert_secondpointer, assert_allpointer } final_assert_type; void resetCounters() { output_counter = 0; input_counter = max_counter; non_pointer_specialized_calls = 0; pointer_specialized_calls = 0; first_pointer_specialized_calls = 0; second_pointer_specialized_calls = 0; // we have to reset the buffer flags because our input filters return allocated space on end-of-input, // (on eof a default-constructed object is returned) and they do not pass through the filter further. for(size_t i = 0; i < n_buffers; ++i) buf_in_use[i].clear(); } void checkCounters(final_assert_type my_t) { CHECK_MESSAGE(output_counter == max_counter, "Ran out of buffers, p:" << concurrency); switch(my_t) { case assert_nonpointer: CHECK_MESSAGE(pointer_specialized_calls+first_pointer_specialized_calls+second_pointer_specialized_calls == 0, "non-pointer filters specialized to pointer, p:" << concurrency); CHECK_MESSAGE(non_pointer_specialized_calls == 3*max_counter, "bad count for non-pointer filters, p:" << concurrency); if(check_intbuffer) { for(int i = 1; i <= max_counter; ++i) { int j = i*i; bool found_val = false; for(int k = 0; k < max_counter; ++k) { if(intbuffer[k] == j) { found_val = true; break; } } CHECK_MESSAGE(found_val, "Missing value in output array, p:" << concurrency ); } } break; case assert_firstpointer: { bool check = pointer_specialized_calls == max_counter && // input filter extra invocation first_pointer_specialized_calls == max_counter && non_pointer_specialized_calls == max_counter && second_pointer_specialized_calls == 0; CHECK_MESSAGE(check, "incorrect specialization for firstpointer, p:" << concurrency); } break; case assert_secondpointer: { bool check = pointer_specialized_calls == max_counter && first_pointer_specialized_calls == 0 && non_pointer_specialized_calls == max_counter && // input filter second_pointer_specialized_calls == max_counter; CHECK_MESSAGE(check, "incorrect specialization for firstpointer, p:" << concurrency); } break; case assert_allpointer: CHECK_MESSAGE(non_pointer_specialized_calls+first_pointer_specialized_calls+second_pointer_specialized_calls == 0, "pointer filters specialized to non-pointer, p:" << concurrency); CHECK_MESSAGE(pointer_specialized_calls == 3*max_counter, "bad count for pointer filters, p:" << concurrency); break; case no_pointer_counts: break; } } static const tbb::filter_mode filter_table[] = { tbb::filter_mode::parallel, tbb::filter_mode::serial_in_order, tbb::filter_mode::serial_out_of_order}; const unsigned number_of_filter_types = sizeof(filter_table)/sizeof(filter_table[0]); using filter_chain = tbb::filter; using mode_array =tbb::filter_mode; // The filters are passed by value, which forces a temporary copy to be created. This is // to reproduce the bug where a filter_chain uses refs to filters, which after a call // would be references to destructed temporaries. template void fill_chain( filter_chain &my_chain, mode_array *filter_type, input_filter i_filter, middle_filter m_filter, output_filter o_filter ) { my_chain = tbb::filter(filter_type[0], i_filter) & tbb::filter(filter_type[1], m_filter) & tbb::filter(filter_type[2], o_filter); } template void run_function_spec(Context&... context) { CHECK_MESSAGE(!filter_node_count, "invalid filter_node counter"); input_filter i_filter; // Test pipeline that contains only one filter for( unsigned i = 0; i one_filter( filter_table[i], i_filter ); CHECK_MESSAGE(filter_node_count==1, "some filter nodes left after previous iteration?"); resetCounters(); tbb::parallel_pipeline( n_tokens, one_filter, context... ); // no need to check counters std::atomic counter; counter = max_counter; // Construct filter using lambda-syntax when parallel_pipeline() is being run; tbb::parallel_pipeline( n_tokens, tbb::filter(filter_table[i], [&counter]( tbb::flow_control& control ) { if( counter-- == 0 ) control.stop(); } ), context... ); } CHECK_MESSAGE(!filter_node_count, "filter_node objects leaked"); } template void run_filter_set( input_filter& i_filter, middle_filter& m_filter, output_filter& o_filter, mode_array *filter_type, final_assert_type my_t, Context&... context) { tbb::filter filter1( filter_type[0], i_filter ); tbb::filter filter2( filter_type[1], m_filter ); tbb::filter filter3( filter_type[2], o_filter ); CHECK_MESSAGE(filter_node_count==3, "some filter nodes left after previous iteration?"); resetCounters(); // Create filters sequence when parallel_pipeline() is being run tbb::parallel_pipeline( n_tokens, filter1, filter2, filter3, context... ); checkCounters(my_t); // Create filters sequence partially outside parallel_pipeline() and also when parallel_pipeline() is being run tbb::filter filter12; filter12 = filter1 & filter2; for( int i = 0; i<3; i++) { filter12 &= tbb::filter(filter_type[i], [](t2 x) -> t2 { return x;}); } resetCounters(); tbb::parallel_pipeline( n_tokens, filter12, filter3, context... ); checkCounters(my_t); tbb::filter filter123 = filter12 & filter3; // Run pipeline twice with the same filter sequence for( unsigned i = 0; i<2; i++ ) { resetCounters(); tbb::parallel_pipeline( n_tokens, filter123, context... ); checkCounters(my_t); } // Now copy-and-move-construct another filter instance, and use it to run pipeline { tbb::filter copy123( filter123 ); resetCounters(); tbb::parallel_pipeline( n_tokens, copy123, context... ); checkCounters(my_t); tbb::filter move123( std::move(filter123) ); resetCounters(); tbb::parallel_pipeline( n_tokens, move123, context... ); checkCounters(my_t); } // Construct filters and create the sequence when parallel_pipeline() is being run resetCounters(); tbb::parallel_pipeline( n_tokens, tbb::filter(filter_type[0], i_filter), tbb::filter(filter_type[1], m_filter), tbb::filter(filter_type[2], o_filter), context... ); checkCounters(my_t); // Construct filters, make a copy, destroy the original filters, and run with the copy int cnt = filter_node_count; { tbb::filter* p123 = new tbb::filter ( tbb::filter(filter_type[0], i_filter)& tbb::filter(filter_type[1], m_filter)& tbb::filter(filter_type[2], o_filter) ); CHECK_MESSAGE(filter_node_count==cnt+5, "filter node accounting error?"); tbb::filter copy123( *p123 ); delete p123; CHECK_MESSAGE(filter_node_count==cnt+5, "filter nodes deleted prematurely?"); resetCounters(); tbb::parallel_pipeline( n_tokens, copy123, context... ); checkCounters(my_t); } // construct a filter with temporaries { tbb::filter my_filter; fill_chain( my_filter, filter_type, i_filter, m_filter, o_filter ); resetCounters(); tbb::parallel_pipeline( n_tokens, my_filter, context... ); checkCounters(my_t); } CHECK_MESSAGE(filter_node_count==cnt, "scope ended but filter nodes not deleted?"); } template void run_lambdas_test( mode_array *filter_type, Context&... context ) { std::atomic counter; counter = max_counter; // Construct filters using lambda-syntax and create the sequence when parallel_pipeline() is being run; resetCounters(); // only need the output_counter reset. tbb::parallel_pipeline( n_tokens, tbb::make_filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1 { if( --counter < 0 ) control.stop(); return t1(); } ), tbb::make_filter(filter_type[1], []( t1 /*my_storage*/ ) -> t2 { return t2(); } ), tbb::make_filter(filter_type[2], [] ( t2 ) -> void { output_counter++; } ), context... ); checkCounters(no_pointer_counts); // don't have to worry about specializations counter = max_counter; // pointer filters resetCounters(); tbb::parallel_pipeline( n_tokens, tbb::filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1* { if( --counter < 0 ) { control.stop(); return nullptr; } return new(fetchNextBuffer()) t1(); } ), tbb::filter(filter_type[1], []( t1* my_storage ) -> t2* { my_storage->~t1(); return new(my_storage) t2(); } ), tbb::filter(filter_type[2], [] ( t2* my_storage ) -> void { my_storage->~t2(); freeBuffer(my_storage); output_counter++; } ), context... ); checkCounters(no_pointer_counts); // first filter outputs pointer counter = max_counter; resetCounters(); tbb::parallel_pipeline( n_tokens, tbb::make_filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1* { if( --counter < 0 ) { control.stop(); return nullptr; } return new(fetchNextBuffer()) t1(); } )& tbb::make_filter(filter_type[1], []( t1* my_storage ) -> t2 { my_storage->~t1(); freeBuffer(my_storage); return t2(); } ), tbb::make_filter(filter_type[2], [] ( t2 /*my_storage*/) -> void { output_counter++; } ), context... ); checkCounters(no_pointer_counts); // second filter outputs pointer counter = max_counter; resetCounters(); tbb::parallel_pipeline( n_tokens, tbb::make_filter(filter_type[0], [&counter]( tbb::flow_control& control ) -> t1 { if( --counter < 0 ) { control.stop(); } return t1(); } ), tbb::filter(filter_type[1], []( t1 /*my_storage*/ ) -> t2* { return new(fetchNextBuffer()) t2(); } )& tbb::make_filter(filter_type[2], [] ( t2* my_storage) -> void { my_storage->~t2(); freeBuffer(my_storage); output_counter++; } ), context... ); checkCounters(no_pointer_counts); } template void run_function(const char *l1, const char *l2) { CHECK_MESSAGE(!filter_node_count, "invalid filter_node counter"); check_intbuffer = (!strcmp(l1,"int") && !strcmp(l2,"int")); Checker check1; // check constructions/destructions Checker check2; // for type1 or type2 === CheckType const size_t number_of_filters = 3; input_filter i_filter; input_filter p_i_filter; middle_filter m_filter; middle_filter pr_m_filter; middle_filter rp_m_filter; middle_filter pp_m_filter; output_filter o_filter; output_filter p_o_filter; // allocate the buffers for the filters unsigned max_size = (sizeof(type1) > sizeof(type2) ) ? sizeof(type1) : sizeof(type2); for(unsigned i = 0; i < (unsigned)n_buffers; ++i) { buffers[i] = malloc(max_size); buf_in_use[i].clear(); } unsigned limit = 1; // Test pipeline that contains number_of_filters filters for( unsigned i=0; i(i_filter, m_filter, o_filter, filter_type, assert_nonpointer); run_filter_set(i_filter, m_filter, o_filter, filter_type, assert_nonpointer, context); run_filter_set(p_i_filter, pr_m_filter, o_filter, filter_type, assert_firstpointer); run_filter_set(p_i_filter, pr_m_filter, o_filter, filter_type, assert_firstpointer, context); run_filter_set(i_filter, rp_m_filter, p_o_filter, filter_type, assert_secondpointer); run_filter_set(i_filter, rp_m_filter, p_o_filter, filter_type, assert_secondpointer, context); run_filter_set(p_i_filter, pp_m_filter, p_o_filter, filter_type, assert_allpointer); run_filter_set(p_i_filter, pp_m_filter, p_o_filter, filter_type, assert_allpointer, context); run_lambdas_test(filter_type); run_lambdas_test(filter_type, context); } CHECK_MESSAGE(!filter_node_count, "filter_node objects leaked"); for(unsigned i = 0; i < (unsigned)n_buffers; ++i) { free(buffers[i]); } } //! Testing single filter pipeline //! \brief \ref error_guessing TEST_CASE("Pipeline testing for single filter") { run_function_spec(); tbb::task_group_context context; run_function_spec(context); } #define RUN_TYPED_TEST_CASE(type1, type2) TEST_CASE("Pipeline testing with "#type1" and "#type2) { \ for ( std::size_t concurrency_level : {1, 2, 4, 5, 7, 8} ) { \ if ( concurrency_level > tbb::global_control::active_value(tbb::global_control::max_allowed_parallelism) ) \ break; \ concurrency = concurrency_level; \ tbb::global_control control(tbb::global_control::max_allowed_parallelism, concurrency_level); \ run_function(#type1, #type2); \ } \ } // Run test several times with different types RUN_TYPED_TEST_CASE(std::size_t, int) RUN_TYPED_TEST_CASE(int, double) RUN_TYPED_TEST_CASE(std::size_t, double) RUN_TYPED_TEST_CASE(std::size_t, bool) RUN_TYPED_TEST_CASE(int, int) RUN_TYPED_TEST_CASE(CheckType, std::size_t) RUN_TYPED_TEST_CASE(CheckType, std::size_t) RUN_TYPED_TEST_CASE(CheckType, CheckType) RUN_TYPED_TEST_CASE(CheckType, CheckType) RUN_TYPED_TEST_CASE(CheckType, CheckType) RUN_TYPED_TEST_CASE(double, CheckType) RUN_TYPED_TEST_CASE(std::unique_ptr, std::unique_ptr) // move-only type #undef RUN_TYPED_TEST_CASE