
Using the Columbus extension to Velvet

Daniel Zerbino

June 12, 2010

Abstract

Since its 1.0 release, the Velvet short-read assembler contains a module called
Columbus which allows the user to provide reference sequences along with
mappings of sequencing reads onto those reference sequences, to efficiently
assist the assembly process. This short manual describes how to use the
Columbus module within the Velvet package. Users unfamiliar with Velvet’s
use should first refer to the main Velvet Manual.

1 For impatient people

> head myRegions.fa

>chr1:123456789-123457789

ATGTGTGTACTAGCTAGCGCGCTAGCTAGTCATGTGTGTACTAGCTAGCGCGCTAGCTAGTC

[etc ...]

> sort myReads.sam > mySortedReads.sam

> velveth my_dir 21 -reference myRegions.fa \

-shortPaired -sam mySortedReads.sam

> velvetg my_dir [etc ...]

1

2 How could it be used?

Breakpoint assembly You sequenced an individual genome by WGS, mapped
the reads onto the reference, and detected a structural variant (SV)
breakpoint using the algorithm of your choice. As a further validation
you wish to assemble the reads which span this breakpoint, and thus
obtain an image of the rearrangement down basepair level.

You would then select the two regions which appear to have been joined
(allowing for some arbitrary margin on either side), and all the reads
which map onto those two regions, along with their mate-pairs. Pro-
vided with all this, Velvet would then assemble the breakpoint, using
the known references as scaffolds.

If you are confounded by some form of heterzygocity at the breakpoint,
then you can be sneaky and consider the assembly to be a problem
between short overlapping sequences with different concentrations... a
lot like transcripts! You would therefore use the Oases package to
deconvolute the different “isoforms” of your “gene” (it sounds pretty
roundabout, but from an assembly point of view it actually makes
sense).

Assisted transcriptome assembly You sequenced the transcriptome of a
new species, strain or individual, and you happen to know the gene
sequences of a nearby species, strain or reference individual.

You would then map the reads onto the reference genome, using the
short-read mapper of your choice, and provide the alignments along
with the known exonic sequences to Velvet. It would rebuild contigs
based on the alignments, which could then be used by the Oases pack-
age.

3 Overview of the process

1. Map the reads against a set of target sequences (typically, an entire
reference genome, made up of chromosomal sequences).

2. Select reference regions within the target sequence (optionally, a refer-
ence region can be an entire target sequence) (e.g.: exon regions or SV
regions).

2

3. Prepare a FASTA file containing the sequences of the reference regions,
along with their coordinates within the target sequences.

4. Provide this FASTA file along with the SAM/BAM alignment file (or
selected lines thereof).

5. Run velvetg as usual.

6. If applicable, run Oases as usual.

4 Providing read mappings

Just like like in Velvet, you can provide paired or unpaired read alignments
in SAM or BAM format, as produced by most short read aligners. You
should simply remember to sort the reads by read name. If you turn on
strand specificity (more on this later), you must sort your reads such that
the forward read of each pair comes right before the reverse read of that pair.

Because it is possible to specify regions within the target sequences, the
mapping need not be specifically against the selected reference sequences. For
example, if you wish to use exons as reference sequences, you can perform
an alignment against the whole genome. Velvet will then sort out which
alignments are within the desired regions, and ignore the rest.

Beware that some read-aligners (e.g. Tophat) only report aligned reads
in their output. To make the most of de novo assembly, it is important to
ensure that the unmapped reads are also provided to Velvet, whether in a
separate file or in the SAM/BAM alignment file. It is generally better to put
all the reads in the same file, so that pairings between mapped and unmapped
reads are not lost.

5 Reference sequences

5.1 How to choose reference sequences

The reference sequences can be any subset of the target sequences (whether
whole genome, contigs, etc) used during the mapping process.

3

5.2 How NOT to choose reference sequences

• Reference sequences must NOT overlap in the target sequence coordi-
nate space

This is because when reading the alignment files, Velvet must be able
to assign a read to at most one reference sequence. Ambiguity in the
coordinate space would defeat the purpose of providing alignments.
Normally, Velvet will detect overlapping reference coordinates and exit
with an error message.

• Reference sequences should NOT contain large amounts of repeats

This is more a question of performance. If you load as reference large
chunks of the reference genome (as in 100’s of Mb) which contain large
amounts of repeats, then Velvet will have to make many loops compar-
ing identical sequences. This will slow down the assembly considerably.

• The coordinate system must NOT change between input files.

This is a very obvious point, but it is important to that the coordinate
system in the alignment file must be the same as that in the reference
regions’ file. If the coordinates are off, then Velvet will be unable to use
the alignments (it will still be able to function and use the reference
sequences, but not as efficiently as if it had reliable alignments). For
example, if you align your reads to the human genome assembly HG19,
then the reference regions must also be selected from HG19.

5.3 How to provide reference sequences to Velvet

Reference sequences must necessarily be contained in a FASTA file. If the
sequences correspond to complete target sequences used in the mapping pro-
cess (e.g. when mapping to contigs) then the names in the FASTA headers
must be identical to those of the target sequences. If the reference sequences
correspond to a subset of one of the target sequences, then its header must
correspond to the standard “browser” coordinates (i.e. 1-based, inclusive on
both ends, 5’ start to 3’ end, as illustrated in the quick example above).

4

5.4 Strand specificity in Columbus

If doing a strand specific analysis on Columbus, then the “-strand specific”
velveth flag must be provided before any option, i.e. right after the hash
length.

In this case, the reference sequences are taken from the desired strand.
The headers of the regions on the negative strand have their start and end
coordinates reversed, i.e. the 3’ coordinate comes before the 5’ coordinate.

For example, if the positive strand of a toy example is:

>chr1:1000-1010

AGTCGATAGA

then the reverse complement of this region is provided as:

>chr1:1010-1000

TCTATCGACT

6 Some scripts I use

Below are a few scripts which I put up to prototype Columbus. They’re
pretty rough BioPerl code, but they serve their purpose...

enlarge exons.pl This scripts adds an arbitrary buffer length (default 100bp)
upstream and downstream of each exon. This avoid false positive over-
laps just because one reference region happens to end at a homologous
region.

merge gtf exons.pl This script sorts regions, and merges overlapping ones
(it assumes no strand specificity).

gff2fasta.pl Once you have the GFF file you desire, it can be converted into
a fasta with the appropriate headers with this script.

Typically, you would prepare the references as such:

grep exon my_annotation.gtf | enlarge_exons.pl | merge_gtf_exons.pl \

| gff2fasta.pl my_reference_assembly.fa > my_reference_sequences.fa

5

