/* Copyright 2007, 2008 Daniel Zerbino (zerbino@ebi.ac.uk) This file is part of Velvet. Velvet is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Velvet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Velvet; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include #include "run.h" #include "binarySequences.h" #include "globals.h" static void printUsage() { puts("Usage:"); puts("./velvetg directory [options]"); puts(""); puts("\tdirectory\t\t\t: working directory name"); puts(""); puts("Standard options:"); puts("\t-cov_cutoff \t: removal of low coverage nodes AFTER tour bus or allow the system to infer it"); puts("\t\t(default: no removal)"); puts("\t-ins_length \t\t: expected distance between two paired end reads (default: no read pairing)"); puts("\t-read_trkg \t\t: tracking of short read positions in assembly (default: no tracking)"); puts("\t-min_contig_lgth \t: minimum contig length exported to contigs.fa file (default: hash length * 2)"); puts("\t-amos_file \t\t: export assembly to AMOS file (default: no export)"); puts("\t-exp_cov \t: expected coverage of unique regions or allow the system to infer it"); puts("\t\t(default: no long or paired-end read resolution)"); puts("\t-long_cov_cutoff : removal of nodes with low long-read coverage AFTER tour bus"); puts("\t\t(default: no removal)"); puts(""); puts("Advanced options:"); puts("\t-ins_length* \t\t: expected distance between two paired-end reads in the respective short-read dataset (default: no read pairing)"); puts("\t-ins_length_long \t: expected distance between two long paired-end reads (default: no read pairing)"); puts("\t-ins_length*_sd \t: est. standard deviation of respective dataset (default: 10% of corresponding length)"); puts("\t\t[replace '*' by nothing, '2' or '_long' as necessary]"); puts("\t-scaffolding \t\t: scaffolding of contigs used paired end information (default: on)"); puts("\t-max_branch_length \t: maximum length in base pair of bubble (default: 100)"); puts("\t-max_divergence : maximum divergence rate between two branches in a bubble (default: 0.2)"); puts("\t-max_gap_count \t: maximum number of gaps allowed in the alignment of the two branches of a bubble (default: 3)"); puts("\t-min_pair_count \t: minimum number of paired end connections to justify the scaffolding of two long contigs (default: 5)"); puts("\t-max_coverage \t: removal of high coverage nodes AFTER tour bus (default: no removal)"); puts("\t-coverage_mask \t: minimum coverage required for confident regions of contigs (default: 1)"); puts("\t-long_mult_cutoff \t\t: minimum number of long reads required to merge contigs (default: 2)"); puts("\t-unused_reads \t\t: export unused reads in UnusedReads.fa file (default: no)"); puts("\t-alignments \t\t: export a summary of contig alignment to the reference sequences (default: no)"); puts("\t-exportFiltered \t: export the long nodes which were eliminated by the coverage filters (default: no)"); puts("\t-clean \t\t\t: remove all the intermediary files which are useless for recalculation (default : no)"); puts("\t-very_clean \t\t: remove all the intermediary files (no recalculation possible) (default: no)"); puts("\t-paired_exp_fraction \t: remove all the paired end connections which less than the specified fraction of the expected count (default: 0.1)"); puts("\t-shortMatePaired* \t: for mate-pair libraries, indicate that the library might be contaminated with paired-end reads (default no)"); puts("\t-conserveLong \t\t: preserve sequences with long reads in them (default no)"); puts(""); puts("Output:"); puts("\tdirectory/contigs.fa\t\t: fasta file of contigs longer than twice hash length"); puts("\tdirectory/stats.txt\t\t: stats file (tab-spaced) useful for determining appropriate coverage cutoff"); puts("\tdirectory/LastGraph\t\t: special formatted file with all the information on the final graph"); puts("\tdirectory/velvet_asm.afg\t: (if requested) AMOS compatible assembly file"); } int main(int argc, char **argv) { ReadSet *sequences = NULL; RoadMapArray *rdmaps; PreGraph *preGraph; Graph *graph; char *directory, *graphFilename, *connectedGraphFilename, *preGraphFilename, *seqFilename, *roadmapFilename, *lowCovContigsFilename, *highCovContigsFilename; double coverageCutoff = -1; double longCoverageCutoff = -1; double maxCoverageCutoff = -1; double expectedCoverage = -1; Coordinate minContigLength = -1; Coordinate minContigKmerLength; boolean *dubious = NULL; Coordinate insertLength[CATEGORIES]; Coordinate insertLengthLong = -1; Coordinate std_dev[CATEGORIES]; Coordinate std_dev_long = -1; short int accelerationBits = 24; boolean readTracking = false; boolean exportAssembly = false; boolean unusedReads = false; boolean estimateCoverage = false; boolean estimateCutoff = false; boolean exportAlignments = false; FILE *file; int arg_index, arg_int; double arg_double; char *arg; ShortLength *sequenceLengths = NULL; Category cat; boolean scaffolding = true; int pebbleRounds = 1; long long longlong_var; short int short_var; boolean exportFilteredNodes = false; int clean = 0; boolean conserveLong = false; boolean shadows[CATEGORIES]; int coverageMask = 1; SequencesReader *seqReadInfo = NULL; setProgramName("velvetg"); for (cat = 0; cat < CATEGORIES; cat++) { insertLength[cat] = -1; std_dev[cat] = -1; shadows[cat] = false; } // Error message if (argc == 1) { puts("velvetg - de Bruijn graph construction, error removal and repeat resolution"); printf("Version %i.%i.%2.2i\n", VERSION_NUMBER, RELEASE_NUMBER, UPDATE_NUMBER); puts("Copyright 2007, 2008 Daniel Zerbino (zerbino@ebi.ac.uk)"); puts("This is free software; see the source for copying conditions. There is NO"); puts("warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE."); puts("Compilation settings:"); printf("CATEGORIES = %i\n", CATEGORIES); printf("MAXKMERLENGTH = %i\n", MAXKMERLENGTH); #ifdef _OPENMP puts("OPENMP"); #endif #ifdef LONGSEQUENCES puts("LONGSEQUENCES"); #endif #ifdef BIGASSEMBLY puts("BIGASSEMBLY"); #endif #ifdef COLOR puts("COLOR"); #endif #ifdef DEBUG puts("DEBUG"); #endif puts(""); printUsage(); return 1; } if (strcmp(argv[1], "--help") == 0) { printUsage(); return 0; } // Memory allocation directory = argv[1]; graphFilename = mallocOrExit(strlen(directory) + 100, char); connectedGraphFilename = mallocOrExit(strlen(directory) + 100, char); preGraphFilename = mallocOrExit(strlen(directory) + 100, char); roadmapFilename = mallocOrExit(strlen(directory) + 100, char); seqFilename = mallocOrExit(strlen(directory) + 100, char); lowCovContigsFilename = mallocOrExit(strlen(directory) + 100, char); highCovContigsFilename = mallocOrExit(strlen(directory) + 100, char); // Argument parsing for (arg_index = 2; arg_index < argc; arg_index++) { arg = argv[arg_index++]; if (arg_index >= argc) { velvetLog("Unusual number of arguments!\n"); printUsage(); #ifdef DEBUG abort(); #endif exit(1); } if (strcmp(arg, "-cov_cutoff") == 0) { if (strcmp(argv[arg_index], "auto") == 0) { estimateCutoff = true; } else { sscanf(argv[arg_index], "%lf", &coverageCutoff); } } else if (strcmp(arg, "-long_cov_cutoff") == 0) { sscanf(argv[arg_index], "%lf", &longCoverageCutoff); } else if (strcmp(arg, "-exp_cov") == 0) { if (strcmp(argv[arg_index], "auto") == 0) { estimateCoverage = true; readTracking = true; } else { sscanf(argv[arg_index], "%lf", &expectedCoverage); if (expectedCoverage > 0) readTracking = true; } } else if (strcmp(arg, "-ins_length") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); insertLength[0] = (Coordinate) longlong_var; if (insertLength[0] < 0) { velvetLog("Invalid insert length: %lli\n", (long long) insertLength[0]); #ifdef DEBUG abort(); #endif exit(1); } } else if (strcmp(arg, "-ins_length_sd") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); std_dev[0] = (Coordinate) longlong_var; if (std_dev[0] < 0) { velvetLog("Invalid std deviation: %lli\n", (long long) std_dev[0]); #ifdef DEBUG abort(); #endif exit(1); } } else if (strcmp(arg, "-ins_length_long") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); insertLengthLong = (Coordinate) longlong_var; } else if (strcmp(arg, "-ins_length_long_sd") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); std_dev_long = (Coordinate) longlong_var; } else if (strncmp(arg, "-ins_length", 11) == 0 && strchr(arg, 'd') == NULL) { sscanf(arg, "-ins_length%hi", &short_var); cat = (Category) short_var; if (cat < 1 || cat > CATEGORIES) { velvetLog("Unknown option: %s\n", arg); #ifdef DEBUG abort(); #endif exit(1); } sscanf(argv[arg_index], "%lli", &longlong_var); insertLength[cat - 1] = (Coordinate) longlong_var; if (insertLength[cat - 1] < 0) { velvetLog("Invalid insert length: %lli\n", (long long) insertLength[cat - 1]); #ifdef DEBUG abort(); #endif exit(1); } } else if (strncmp(arg, "-ins_length", 11) == 0) { sscanf(arg, "-ins_length%hi_sd", &short_var); cat = (Category) short_var; if (cat < 1 || cat > CATEGORIES) { velvetLog("Unknown option: %s\n", arg); #ifdef DEBUG abort(); #endif exit(1); } sscanf(argv[arg_index], "%lli", &longlong_var); std_dev[cat - 1] = (Coordinate) longlong_var; if (std_dev[cat - 1] < 0) { velvetLog("Invalid std deviation: %lli\n", (long long) std_dev[cat - 1]); #ifdef DEBUG abort(); #endif exit(1); } } else if (strcmp(arg, "-read_trkg") == 0) { readTracking = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-scaffolding") == 0) { scaffolding = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-exportFiltered") == 0) { exportFilteredNodes = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-amos_file") == 0) { exportAssembly = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-alignments") == 0) { exportAlignments = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "-min_contig_lgth") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); minContigLength = (Coordinate) longlong_var; } else if (strcmp(arg, "-coverage_mask") == 0) { sscanf(argv[arg_index], "%lli", &longlong_var); coverageMask = (IDnum) longlong_var; } else if (strcmp(arg, "-accel_bits") == 0) { sscanf(argv[arg_index], "%hi", &accelerationBits); if (accelerationBits < 0) { velvetLog ("Illegal acceleration parameter: %s\n", argv[arg_index]); printUsage(); return -1; } } else if (strcmp(arg, "-max_branch_length") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setMaxReadLength(arg_int); setLocalMaxReadLength(arg_int); } else if (strcmp(arg, "-max_divergence") == 0) { sscanf(argv[arg_index], "%lf", &arg_double); setMaxDivergence(arg_double); setLocalMaxDivergence(arg_double); } else if (strcmp(arg, "-max_gap_count") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setMaxGaps(arg_int); setLocalMaxGaps(arg_int); } else if (strcmp(arg, "-min_pair_count") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setUnreliableConnectionCutoff(arg_int); } else if (strcmp(arg, "-max_coverage") == 0) { sscanf(argv[arg_index], "%lf", &maxCoverageCutoff); } else if (strcmp(arg, "-long_mult_cutoff") == 0) { sscanf(argv[arg_index], "%i", &arg_int); setMultiplicityCutoff(arg_int); } else if (strcmp(arg, "-paired_exp_fraction") == 0) { sscanf(argv[arg_index], "%lf", &arg_double); setPairedExpFraction(arg_double); } else if (strcmp(arg, "-clean") == 0) { if (strcmp(argv[arg_index], "yes") == 0) clean = 1; } else if (strcmp(arg, "-very_clean") == 0) { if (strcmp(argv[arg_index], "yes") == 0) clean = 2; } else if (strcmp(arg, "-conserveLong") == 0) { if (strcmp(argv[arg_index], "yes") == 0) conserveLong = 2; } else if (strcmp(arg, "-unused_reads") == 0) { unusedReads = (strcmp(argv[arg_index], "yes") == 0); if (unusedReads) readTracking = true; } else if (strcmp(arg, "-shortMatePaired") == 0) { shadows[0] = (strcmp(argv[arg_index], "yes") == 0); } else if (strncmp(arg, "-shortMatePaired", 16) == 0) { sscanf(arg, "-shortMatePaired%hi", &short_var); cat = (Category) short_var; if (cat < 1 || cat > CATEGORIES) { velvetLog("Unknown option: %s\n", arg); #ifdef DEBUG abort(); #endif exit(1); } shadows[cat - 1] = (strcmp(argv[arg_index], "yes") == 0); } else if (strcmp(arg, "--help") == 0) { printUsage(); return 0; } else { velvetLog("Unknown option: %s;\n", arg); printUsage(); return 1; } } // Bookkeeping logInstructions(argc, argv, directory); seqReadInfo = callocOrExit(1, SequencesReader); strcpy(seqFilename, directory); // if binary CnyUnifiedSeq exists, use it. Otherwise try Sequences strcat(seqFilename, "/CnyUnifiedSeq"); if (access(seqFilename, R_OK) == 0) { seqReadInfo->m_bIsBinary = true; } else { seqReadInfo->m_bIsBinary = false; strcpy(seqFilename, directory); strcat(seqFilename, "/Sequences"); } seqReadInfo->m_seqFilename = seqFilename; strcpy(roadmapFilename, directory); strcat(roadmapFilename, "/Roadmaps"); strcpy(preGraphFilename, directory); strcat(preGraphFilename, "/PreGraph"); strcpy(connectedGraphFilename, directory); strcat(connectedGraphFilename, "/ConnectedGraph"); if (!readTracking) { strcpy(graphFilename, directory); strcat(graphFilename, "/Graph"); } else { strcpy(graphFilename, directory); strcat(graphFilename, "/Graph2"); } strcpy(lowCovContigsFilename, directory); strcat(lowCovContigsFilename, "/lowCoverageContigs.fa"); strcpy(highCovContigsFilename, directory); strcat(highCovContigsFilename, "/highCoverageContigs.fa"); // Graph uploading or creation if ((file = fopen(graphFilename, "r")) != NULL) { fclose(file); graph = importGraph(graphFilename); } else if ((file = fopen(connectedGraphFilename, "r")) != NULL) { fclose(file); if (seqReadInfo->m_bIsBinary) { sequences = importCnyReadSet(seqFilename); #if 0 // compare to velvet's version of a seq ReadSet *compareSequences = NULL; compareSeqFilename = mallocOrExit(strlen(directory) + 100, char); strcpy(compareSeqFilename, directory); strcat(compareSeqFilename, "/Sequences"); compareSequences = importReadSet(compareSeqFilename); convertSequences(compareSequences); if (sequences->readCount != compareSequences->readCount) { printf("read count mismatch\n"); exit(1); } int i; for (i = 0; i < sequences->readCount; i++) { TightString *tString = getTightStringInArray(sequences->tSequences, i); TightString *tStringCmp = getTightStringInArray(compareSequences->tSequences, i); if (getLength(tString) != getLength(tStringCmp)) { printf("sequence %d len mismatch\n", i); exit(1); } if (strcmp(readTightString(tString), readTightString(tStringCmp)) != 0) { printf("sequence %d cmp mismatch\n", i); printf("seq %s != cmp %s\n", readTightString(tString), readTightString(tStringCmp)); exit(1); } } #endif } else { sequences = importReadSet(seqFilename); convertSequences(sequences); } seqReadInfo->m_sequences = sequences; graph = importConnectedGraph(connectedGraphFilename, sequences, roadmapFilename, readTracking, accelerationBits); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); correctGraph(graph, sequenceLengths, sequences->categories, conserveLong); exportGraph(graphFilename, graph, sequences->tSequences); } else if ((file = fopen(preGraphFilename, "r")) != NULL) { fclose(file); if (seqReadInfo->m_bIsBinary) { sequences = importCnyReadSet(seqFilename); } else { sequences = importReadSet(seqFilename); convertSequences(sequences); } seqReadInfo->m_sequences = sequences; graph = importPreGraph(preGraphFilename, sequences, roadmapFilename, readTracking, accelerationBits); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); correctGraph(graph, sequenceLengths, sequences->categories, conserveLong); exportGraph(graphFilename, graph, sequences->tSequences); } else if ((file = fopen(roadmapFilename, "r")) != NULL) { fclose(file); rdmaps = importRoadMapArray(roadmapFilename); if (seqReadInfo->m_bIsBinary) { // pull in sequences first and use in preGraph sequences = importCnyReadSet(seqFilename); seqReadInfo->m_sequences = sequences; #if 0 // compare to velvet's version of a seq ReadSet *compareSequences = NULL; char *compareSeqFilename = mallocOrExit(strlen(directory) + 100, char); strcpy(compareSeqFilename, directory); strcat(compareSeqFilename, "/Sequences"); compareSequences = importReadSet(compareSeqFilename); convertSequences(compareSequences); if (sequences->readCount != compareSequences->readCount) { printf("read count mismatch\n"); exit(1); } int i; for (i = 0; i < sequences->readCount; i++) { TightString *tString = getTightStringInArray(sequences->tSequences, i); TightString *tStringCmp = getTightStringInArray(compareSequences->tSequences, i); if (getLength(tString) != getLength(tStringCmp)) { printf("sequence %d len mismatch\n", i); exit(1); } if (strcmp(readTightString(tString), readTightString(tStringCmp)) != 0) { printf("sequence %d cmp mismatch\n", i); printf("seq %s != cmp %s\n", readTightString(tString), readTightString(tStringCmp)); exit(1); } } printf("sequence files match!\n"); #endif } preGraph = newPreGraph_pg(rdmaps, seqReadInfo); concatenatePreGraph_pg(preGraph); if (!conserveLong) clipTips_pg(preGraph); exportPreGraph_pg(preGraphFilename, preGraph); destroyPreGraph_pg(preGraph); if (!seqReadInfo->m_bIsBinary) { sequences = importReadSet(seqFilename); convertSequences(sequences); seqReadInfo->m_sequences = sequences; } graph = importPreGraph(preGraphFilename, sequences, roadmapFilename, readTracking, accelerationBits); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); correctGraph(graph, sequenceLengths, sequences->categories, conserveLong); exportGraph(graphFilename, graph, sequences->tSequences); } else { velvetLog("No Roadmap file to build upon! Please run velveth (see manual)\n"); #ifdef DEBUG abort(); #endif exit(1); } // Set insert lengths and their standard deviations for (cat = 0; cat < CATEGORIES; cat++) { if (insertLength[cat] > -1 && std_dev[cat] < 0) std_dev[cat] = insertLength[cat] / 10; setInsertLengths(graph, cat, insertLength[cat], std_dev[cat]); } if (insertLengthLong > -1 && std_dev_long < 0) std_dev_long = insertLengthLong / 10; setInsertLengths(graph, CATEGORIES, insertLengthLong, std_dev_long); // Coverage cutoff if (expectedCoverage < 0 && estimateCoverage == true) { expectedCoverage = estimated_cov(graph, directory); if (coverageCutoff < 0) { coverageCutoff = expectedCoverage / 2; estimateCutoff = true; } } else { estimateCoverage = false; if (coverageCutoff < 0 && estimateCutoff) coverageCutoff = estimated_cov(graph, directory) / 2; else estimateCutoff = false; } if (coverageCutoff < 0) { velvetLog("WARNING: NO COVERAGE CUTOFF PROVIDED\n"); velvetLog("Velvet will probably leave behind many detectable errors\n"); velvetLog("See manual for instructions on how to set the coverage cutoff parameter\n"); } if (sequences == NULL) { if (seqReadInfo->m_bIsBinary) { sequences = importCnyReadSet(seqFilename); } else { sequences = importReadSet(seqFilename); convertSequences(sequences); } seqReadInfo->m_sequences = sequences; } if (minContigLength < 2 * getWordLength(graph)) minContigKmerLength = getWordLength(graph); else minContigKmerLength = minContigLength - getWordLength(graph) + 1; dubious = removeLowCoverageNodesAndDenounceDubiousReads(graph, coverageCutoff, sequences, exportFilteredNodes, minContigKmerLength, lowCovContigsFilename); removeLowLongCoverageNodesAndDenounceDubiousReads(graph, longCoverageCutoff, sequences, dubious, exportFilteredNodes, minContigKmerLength, lowCovContigsFilename); removeHighCoverageNodes(graph, maxCoverageCutoff, exportFilteredNodes, minContigKmerLength, highCovContigsFilename); clipTipsHard(graph, conserveLong); if (sequences->readCount > 0 && sequences->categories[0] == REFERENCE) removeLowArcs(graph, coverageCutoff); if (expectedCoverage > 0) { // Mixed length sequencing readCoherentGraph(graph, isUniqueSolexa, expectedCoverage, sequences); // Paired end resolution createReadPairingArray(sequences); pebbleRounds += pairedCategories(sequences); detachDubiousReads(sequences, dubious); activateGapMarkers(graph); for ( ;pebbleRounds > 0; pebbleRounds--) exploitShortReadPairs(graph, sequences, dubious, shadows, scaffolding); } else { velvetLog("WARNING: NO EXPECTED COVERAGE PROVIDED\n"); velvetLog("Velvet will be unable to resolve any repeats\n"); velvetLog("See manual for instructions on how to set the expected coverage parameter\n"); } if (dubious) free(dubious); concatenateGraph(graph); removeLowCoverageReferenceNodes(graph, coverageCutoff, longCoverageCutoff, sequences); strcpy(graphFilename, directory); strcat(graphFilename, "/contigs.fa"); sequenceLengths = getSequenceLengths(sequences, getWordLength(graph)); exportLongNodeSequences(graphFilename, graph, minContigKmerLength, sequences, sequenceLengths, coverageMask); if (exportAlignments) { strcpy(graphFilename, directory); strcat(graphFilename, "/contig-alignments.psa"); exportLongNodeMappings(graphFilename, graph, sequences, minContigKmerLength, seqReadInfo); } strcpy(graphFilename, directory); strcat(graphFilename, "/stats.txt"); displayGeneralStatistics(graph, graphFilename, sequences); if (clean == 0) { strcpy(graphFilename, directory); strcat(graphFilename, "/LastGraph"); exportGraph(graphFilename, graph, sequences->tSequences); } if (exportAssembly) { strcpy(graphFilename, directory); strcat(graphFilename, "/velvet_asm.afg"); exportAMOSContigs(graphFilename, graph, minContigKmerLength, sequences); } if (unusedReads) exportUnusedReads(graph, sequences, minContigKmerLength, directory); if (estimateCoverage) velvetLog("Estimated Coverage = %f\n", expectedCoverage); if (estimateCutoff) velvetLog("Estimated Coverage cutoff = %f\n", coverageCutoff); logFinalStats(graph, minContigKmerLength, directory); if (clean > 0) { strcpy(graphFilename, directory); strcat(graphFilename, "/Roadmaps"); remove(graphFilename); strcpy(graphFilename, directory); strcat(graphFilename, "/LastGraph"); remove(graphFilename); } if (clean > 1) { strcpy(graphFilename, directory); strcat(graphFilename, "/Sequences"); remove(graphFilename); strcpy(graphFilename, directory); strcat(graphFilename, "/Graph2"); remove(graphFilename); strcpy(graphFilename, directory); strcat(graphFilename, "/Graph"); remove(graphFilename); } free(sequenceLengths); destroyGraph(graph); free(graphFilename); free(connectedGraphFilename); free(preGraphFilename); free(seqFilename); free(roadmapFilename); free(lowCovContigsFilename); free(highCovContigsFilename); destroyReadSet(sequences); if (seqReadInfo) { free(seqReadInfo); } return 0; }