The Genetic Codes Compiled by Andrzej (Anjay) Elzanowski and Jim Ostell National Center for Biotechnology Information (NCBI), Bethesda, Maryland, U.S.A. Last update of the Genetic Codes: October 05, 2000 NCBI takes great care to ensure that the translation for each coding sequence (CDS) present in GenBank records is correct. Central to this effort is careful checking on the taxonomy of each record and assignment of the correct genetic code (shown as a /transl_table qualifier on the CDS in the flat files) for each organism and record. This page summarizes and references this work. The synopsis presented below is based primarily on the reviews by Osawa et al. (1992) and Jukes and Osawa (1993). Listed in square brackets [ ] (under Systematic Range) are tentative assignments of a particular code based on sequence homology and/or phylogenetic relationships. The print-form ASN.1 version of this document, which includes all the genetic codes outlined below, is also available here. Detailed information on codon usage can be found at the Codon Usage Database. The following genetic codes are described here: The Standard Code The Vertebrate Mitochondrial Code The Yeast Mitochondrial Code The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code The Invertebrate Mitochondrial Code The Ciliate, Dasycladacean and Hexamita Nuclear Code The Echinoderm and Flatworm Mitochondrial Code The Euplotid Nuclear Code The Bacterial and Plant Plastid Code The Alternative Yeast Nuclear Code The Ascidian Mitochondrial Code The Alternative Flatworm Mitochondrial Code Blepharisma Nuclear Code Chlorophycean Mitochondrial Code Trematode Mitochondrial Code Scenedesmus Obliquus Mitochondrial Code Thraustochytrium Mitochondrial Code ------------------------------------------------------------------------------- 1. The Standard Code (transl_table=1) By default all transl_table in GenBank flatfiles are equal to id 1, and this is not shown. When transl_table is not equal to id 1, it is shown as a qualifier on the CDS feature. AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M---------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Initiation Codon: AUG Alternative Initiation Codons In rare cases, translation in eukaryotes can be initiated from codons other than AUG. A well documented case (including direct protein sequencing) is the GUG start of a ribosomal P protein of the fungus Candida albicans (Abramczyk et al.). Other examples can be found in the following references: Peabody 1989; Prats et al. 1989; Hann et al. 1992; Sugihara et al. 1990. GUG, CUG, UUG Back to top ------------------------------------------------------------------------------- 2. The Vertebrate Mitochondrial Code (transl_table=2) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG Starts = --------------------------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 2 Standard AGA Ter * Arg R AGG Ter * Arg R AUA Met M Ile I UGA Trp W Ter * Alternative Initiation Codon: Bos: AUA Homo: AUA, AUU Mus: AUA, AUU, AUC Coturnix, Gallus: also GUG (Desjardins and Morais, 1991) Systematic Range: Vertebrata Comment: The transcripts of several vertebrate mitochondrial genes end in U or UA, which become termination codons (UAA) upon subsequent polyadenylation. Back to top ------------------------------------------------------------------------------- 3. The Yeast Mitochondrial Code (transl_table=3) AAs = FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ----------------------------------MM---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 3 Standard AUA Met M Ile I CUU Thr T Leu L CUC Thr T Leu L CUA Thr T Leu L CUG Thr T Leu L UGA Trp W Ter * CGA absent Arg R CGC absent Arg R Systematic Range: Saccharomyces cerevisiae, Candida glabrata, Hansenula saturnus, and Kluyveromyces thermotolerans (Clark-Walker and Weiller, 1994) Comments: The remaining CGN codons are rare in Saccharomyces cerevisiae and absent in Candida glabrata (= Torulopsis glabrata). The AUA codon is common in the gene var1 coding for the single mitochonLIial ribosomal protein, but rare in genes encoding the enzymes. The coding assignments of the AUA (Met or Ile) and CUU (possibly Leu, not Thr) are uncertain in Hansenula saturnus. The coding assignment of Thr to CUN is uncertain in Kluyveromyces thermotolerans (Clark-Walker and Weiller, 1994). Back to top ------------------------------------------------------------------------------- 4. The Mold, Protozoan, and Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code (transl_table=4) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = --MM---------------M------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 4 Standard UGA Trp W Ter * Alternative Initiation Codons: Trypanosoma: UUA, UUG, CUG Leishmania: AUU, AUA Tertrahymena: AUU, AUA, AUG Paramecium: AUU, AUA, AUG, AUC, GUG, GUA(?) (Pritchard et al., 1990) Systematic Range: Mycoplasmatales: Mycoplasma, Spiroplasma (Bove et al., 1989); Fungi: Emericella nidulans, Neurospora crassa, Podospora anserina, Acremonium (Fox, 1987), Candida parapsilosis (Guelin et al., 1991), Trichophyton rubrum (de Bievre and Dujon, 1992), Dekkera/Brettanomyces, Eeniella (Hoeben et al., 1993), and probably Ascobolus immersus, Aspergillus amstelodami, Claviceps purpurea, and Cochliobolus heterostrophus. Other Eukaryotes: Gigartinales among the red algae (Boyen et al. 1994), and the protozoa Trypanosoma brucei, Leishmania tarentolae, Paramecium tetraurelia, Tetrahymena pyriformis and probably Plasmodium gallinaceum (Aldritt et al., 1989). Metazoa: Coelenterata (Ctenophora and Cnidaria) Comments: This code is also used for the kinetoplast DNA (maxicircles, minicircles). Kinetoplasts are modified mitochondria (or their parts). This code is not used in the Acholeplasmataceae and plant-pathogenic mycoplasma-like organisms (MLO) (Lim and Sears, 1992) Back to top ------------------------------------------------------------------------------- 5. The Invertebrate Mitochondrial Code (transl_table=5) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG Starts = ---M----------------------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Comment: The codon AGG is absent in Drosophila. Differences from the Standard Code: Code 5 Standard AGA Ser S Arg R AGG Ser S Arg R AUA Met M Ile I UGA Trp W Ter * Alternative Initiation Codons: AUA, AUU AUC: Apis (Crozier and Crozier, 1993) GUG: Polyplacophora (Boore and Brown, 1994 GenBank Accession Number: U09810) UUG: Ascaris, Caenorhabditis Systematic Range: Nematoda: Ascaris, Caenorhabditis; Mollusca: Bivalvia (Hoffmann et al., 1992); Polyplacophora (Boore and Brown, 1994) Arthropoda/Crustacea: Artemia (Batuecas et al., 1988); Arthropoda/Insecta: Drosophila [Locusta migratoria (migratory locust), Apis mellifera (honeybee)] Comments: GUG may possibly function as an initiator in Drosophila (Clary and Wolstenholme, 1985; Gadaleta et al., 1988). AUU is not used as an initiator in Mytilus (Hoffmann et al., 1992). "An exceptional mechanism must operate for initiation of translation of the cytochrome oxidase subunit I mRNA in both D. melanogaster (de Bruijn, 1983) and D. yakuba (Clary and Wolstenholme 1983), since its only plausible initiation codon, AUA, is out of frame with the rest of the gene. Initiation appears to require the "reading" of of an AUAA quadruplet, which would be equivalent to initiation at AUA followed immediately by a specific ribosomal frameshift. Another possible mechanism ... is that the mRNA is "edited" to bring the AUA initiation into frame." (Fox, 1987) Back to top ------------------------------------------------------------------------------- 6. The Ciliate, Dasycladacean and Hexamita Nuclear Code (transl_table=6) AAs = FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 6 Standard UAA Gln Q Ter * UAG Gln Q Ter * Systematic Range: Ciliata: Oxytricha and Stylonychia (Hoffman et al. 1995), Paramecium, Tetrahymena, Oxytrichidae and probably Glaucoma chattoni. Dasycladaceae: Acetabularia (Schneider et al., 1989) and Batophora (Schneider and de Groot, 1991). Diplomonadida: Scope: Hexamita inflata, Diplomonadida ATCC50330, and ATCC50380. Ref.: Keeling, P.J. and Doolittle, W.F. 1996.. A non-canonical genetic code in an early diverging eukaryotic lineage. The EMBO Journal 15, 2285-2290. Comment: The ciliate macronuclear code has not been determined completely. The codon UAA is known to code for Gln only in the Oxytrichidae. Back to top ------------------------------------------------------------------------------- Tables 7 and 8 have been deleted ------------------------------------------------------------------------------- 9. The Echinoderm and Flatworm Mitochondrial Code (transl_table=9) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 9 Standard AAA Asn N Lys K AGA Ser S Arg R AGG Ser S Arg R UGA Trp W Ter * Systematic Range: Asterozoa (starfishes) (Himeno et al., 1987) Echinozoa (sea urchins) (Jacobs et al., 1988; Cantatore et al., 1989) Rhabditophora among the Platyhelminthes (Telford et al. 2000) Back to top ------------------------------------------------------------------------------- 10. The Euplotid Nuclear Code (transl_table=10) AAs = FFLLSSSSYY**CCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 10 Standard UGA Cys C Ter * Systematic Range: Ciliata: Euplotidae (Hoffman et al. 1995). Back to top ------------------------------------------------------------------------------- 11. The Bacterial and Plant Plastid Code (transl_table=11) AAs = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = ---M---------------M------------MMMM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Systematic Range and Comments: Table 11 is used for Bacteria, Archaea, prokaryotic viruses and chloroplast proteins. As in the standard code, initiation is most efficient at AUG. In addition, GUG and UUG starts are documented in Archaea and Bacteria (Kozak 1983, Fotheringham et al. 1986, Golderer et al. 1995, Nolling et al. 1995, Sazuka & Ohara 1996, Genser et al. 1998, Wang et al. 2003). In E. coli, UUG is estimated to serve as initiator for about 3% of the bacterium's proteins (Blattner et al. 1997). CUG is known to function as an initiator for one plasmid-encoded protein (RepA) in Escherichia coli (Spiers and Bergquist, 1992). In addition to the NUG initiations, in rare cases Bacteria can initiate translation from an AUU codon as e.g. in the case of poly(A) polymerase PcnB and the InfC gene that codes for translation initiation factor IF3 (Polard et al. 1991, Liveris et al. 1993, Sazuka & Ohara 1996, Binns & Masters 2002). The internal assignments are the same as in the standard code though UGA codes at low efficiency for Trp in Bacillus subtilis and, presumably, in Escherichia coli (Hatfiled and Diamond, 1993). Back to top ------------------------------------------------------------------------------- 12. The Alternative Yeast Nuclear Code (transl_table=12) AAs = FFLLSSSSYY**CC*WLLLSPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -------------------M---------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 12 Standard CUG Ser Leu Alternative Initiation Codons: CAG may be used in Candida albicans (Santos et al., 1993). Systematic Range: Endomycetales (yeasts): Candida albicans, Candida cylindracea, Candida melibiosica, Candida parapsilosis, and Candida rugosa (Ohama et al., 1993). Comment: However, other yeast, including Saccharomyces cerevisiae, Candida azyma, Candida diversa, Candida magnoliae, Candida rugopelliculosa, Yarrowia lipolytica, and Zygoascus hellenicus, definitely use the standard (nuclear) code (Ohama et al., 1993). Back to top ------------------------------------------------------------------------------- 13. The Ascidian Mitochondrial Code (transl_table=13) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSGGVVVVAAAADDEEGGGG Starts = ---M------------------------------MM---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 13 Standard AGA Gly G Arg R AGG Gly G Arg R AUA Met M Ile I UGA Trp W Ter * Systematic range and Comments: There is evidence from a phylogenetically diverse sample of tunicates (Urochordata) that AGA and AGG code for glycine. In other organisms, AGA/AGG code for either arginine or serine and in vertebrate mitochondria they code a STOP. Evidence for glycine translation of AGA/AGG has been found in Pyura stolonifera (Durrheim et al. 1993), Halocynthia roretzi (Kondow et al. 1999, Yokobori et al., 1993, Yokobori et al. 1999) and Ciona savignyi (Yokobori et al. 2003). In addition, the Halocynthia roretzi mitochondrial genome encodes an additional tRNA gene with the anticodon U*CU that is thought to enable the use of AGA or AGG codons for glycine and the gene has been shown to be transcribed in vivo (Kondow et al. 1999, Yokobori et al. 1999). Alternative initiation codons: ATA, GTG and TTG (Yokobori et al. 1999). Back to top ------------------------------------------------------------------------------- 14. The Alternative Flatworm Mitochondrial Code (transl_table=14) AAs = FFLLSSSSYYY*CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 14 Standard AAA Asn N Lys K AGA Ser S Arg R AGG Ser S Arg R UAA Tyr Y Ter * UGA Trp W Ter * Systematic Range: Platyhelminthes (flatworms) Comments: Code 14 differs from code 9 only by translating UAA to Tyr rather than STOP. A recent study [PMID:11027335] has found no evidence that the codon UAA codes for Tyr in the flatworms but other opinions exist. There are very few GenBank records that are translated with code 14 but a test translation shows that retranslating these records with code 9 can cause premature terminations. Therefore, GenBank will maintain code 14 until further information becomes available. Back to top ------------------------------------------------------------------------------- 15. Blepharisma Nuclear Code (transl_table=15) AAs = FFLLSSSSYY*QCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Differences from the Standard Code: Code 10 GStandard UAG Gln Q Ter * Systematic Range: Ciliata: Blepharisma (Liang and Heckman, 1993) Back to top ------------------------------------------------------------------------------- 16. Chlorophycean Mitochondrial Code (transl_table=16) AAs = FFLLSSSSYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Systematic Range: Chlorophyceae: Hayashi-Ishiimaru, Y, T. Ohama, Y. Kawatsu, K. Nakamura, S. Osawa, 1996. Current Genetics 30: 29-33 Back to top ------------------------------------------------------------------------------- 21. Trematode Mitochondrial Code (transl_table=21) AAs = FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNNKSSSSVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Systematic Range: Trematoda: Ohama, T, S. Osawa, K. Watanabe, T.H. Jukes, 1990. J. Molec Evol. 30 Garey, J.R. and D.R. Wolstenholme, 1989. J. Molec. Evol. 28: 374-387 329-332. Other Alternative Initiation Codons GUG, UUG (and possibly CUG) in the Archaea (Noelling et al., unpublished) AUA, GUG, UUG, and AUC or AAG may be used (at least in experimental systems) by the yeasts Saccharomyces cerevisiae (Olsen, 1987, and references therein). ACG initiates translation of certain proteins in the adeno-associated virus type 2 (Becerra et al., 1985), the phage T7 mutant CR17 (Anderson and Buzash-Pollert, 1985), Sendai virus (Gupta and Patwardhan, 1988), and rice chloroplast (Hiratsuka et al., 1989). Also, it is the most effective non-AUG initiation codon in mammalin cells (Koepke and Leggatt, 1991). CUG is the initiation codon for one of the two alternative products of the human c-myc gene (Hann et al., 1987). Back to top ------------------------------------------------------------------------------- 22. Scenedesmus obliquus mitochondrial Code (transl_table=22) AAs = FFLLSS*SYY*LCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = -----------------------------------M---------------------------- Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format Systematic Range: Scenedesmus obliquus: Nedelcu A, Lee RW, Lemieux C, Gray MW and Burger G. "The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome." Genome Research (in press). Other Alternative Initiation Codons GUG, UUG (and possibly CUG) in the Archaea (Noelling et al., unpublished) AUA, GUG, UUG, and AUC or AAG may be used (at least in experimental systems) by the yeasts Saccharomyces cerevisiae (Olsen, 1987, and references therein). ACG initiates translation of certain proteins in the adeno-associated virus type 2 (Becerra et al., 1985), the phage T7 mutant CR17 (Anderson and Buzash-Pollert, 1985), Sendai virus (Gupta and Patwardhan, 1988), and rice chloroplast (Hiratsuka et al., 1989). Also, it is the most effective non-AUG initiation codon in mammalin cells (Koepke and Leggatt, 1991). CUG is the initiation codon for one of the two alternative products of the human c-myc gene (Hann et al., 1987). Back to top ------------------------------------------------------------------------------- 23. Thraustochytrium Mitochondrial Code (transl_table=23) AAs = FF*LSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG Starts = --------------------------------M--M---------------M------------ Base1 = TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG Base2 = TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG Base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG Click here to change format This code has been created for the mitochondrial genome of the labyrinthulid Thraustochytrium aureum sequenced by the The Organelle Genome Megasequencing Program (OGMP). It is the similar to the bacterial code (trans_table 11) but it contains an additional stop codon (TTA) and also has a different set of start codons. Back to top ------------------------------------------------------------------------------- Cited References ------------------------------------------------------------------------------- Aldritt, S.M., Joseph, J.T., and Wirth, D.F. (1989) Mol. Cell. Biol. 9, 3614-3620. [PubMed] Anderson, C.W. and Buzash-Pollert, E. (1985) Mol. Cell. Biol. 5, 3621-3624. [PubMed] Batuecas, B., Garesse, R., Calleja, M., Valverde, J.R., and Marco, R. (1988) Nucleic Acids Res. 16, 6515-6529. [PubMed] Becerra, S.P., Rose, J.A., Hardy, M., Baroudy, B.M., and Anderson, C.W. (1985) Proc. Natn. Acad. Sci. USA 82: 7919-7923. [PubMed] Boore, J. L. and Brown, W. M. (1994) (GenBank Accession Number: U09810). Bove, J.M. Carle, P., Garnier, M., Laigret, F., Renaudin, J., and Saillard, C. (1989) in The Mycoplasmas, R.F. Whitcomb and J.G. Tully, eds., 5: 244-364. Academic Press, New York. Brown, J. W., Daniels, C. J., and Reeve, J. N. (1989) Crit. Rev. Microbiol. 16: 287-337. [PubMed] de Bievre, C. and Dujon, B. (1992) Curr. Genet. 22: 229-234. [PubMed] de Bruijn, M.H.L. (1983) Nature 304, 234-241. [PubMed] Cantatore, P., Roberti, M., Rainaldi, G., Gadaleta, M.N., and Saccone, C. (1989) J. Biol. Chem. 264: 10965-10974. [PubMed] Clark-Walker G.D., Weiller G.F. (1994) J. Mol. Evol. 38: 593-601(1994). [PubMed] Clary, D.O. and Wolstenholme, D.R. (1983) Nucleic Acids Res. 11, 6859-6872. [PubMed] Clary, D.O. and Wolstenholme, D.R. (1985) J. Mol. Evol. 22, 252-271. [PubMed] Crozier, R. H. and Crozier, Y. C. (1993) Genetics 133: 97-117. [PubMed] Desjardins, P. and Morais, R. (1991) J. Mol. Evol. 32: 153-161. [PubMed] Durrheim, G. A., Corfield, V. A., Harley, E. H., and Ricketts, M. H. (1993) Nucleic Acids Res. 21: 3587-8. [PubMed] Fox, T.D. (1987) Ann. Rev. Genet. 21, 67-91. Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisa, E., and Saccone, C. (1988) Nucleic Acids Res. 16, 6233. [PubMed] Guelin E., Guerin M., and Velours J. (1991) Eur. J. Biochem. 197: 105-111. [PubMed] Gupta, K.C. and Patwardhan, S. (1988) J. Biol. Chem. 263, 8553-8556. [PubMed] Hann, S. R., King, M. W., Bentley, D. L., Anderson, C. W., and Eisenman, R. N. (1988) Cell 52: 185-195. [PubMed] Hatfield, D. and Diamond, A. (1993) TIG 9: 69-70. [PubMed] Hiesel, R. Wissinger, B., Schuster, W., and Brennicke, A. (1989) Science 246, 1632-1634. [PubMed] Himeno, H., Masaki, H., Kawai, T., Ohta, T., Kumagai, I., Miura, K. and Watanabe, K. (1987) Gene 56: 219-230. [PubMed] Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C. R., Meng, B. Y., Li, Y. Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. (1989) Mol. Gen. Genet. 217: 185-194. [PubMed] Hoeben, P., Weiller, G., and Clark-Walker, G. D. (1993) J. Mol. Evol. 36: 263-269. [PubMed] Hoffman, D. C., Anderson. R., C., DuBois, M. L., and Prescott, D. M. (1995) Nucleic Acids Res. 23: 1279-1283. [PubMed] Hoffmann, R. J, Boore, J. L, and Brown, W. M. (1992) Genetics 131:397-412. [PubMed] Jacobs, H. T., Elliott, D. J., Math, V. B., and Farquharson, A. (1988) J. Mol. Biol. 202, 185-217. [PubMed] Jukes, T. H. and Osawa, S. (1993) Comp. Biochem. Physiol. 106B: 489-494. [PubMed] Kopke, A. K. E. and Leggatt, P. A. (1991) Nucleic Acids Res. 19: 5169-5172. [PubMed] Kozak, M. (1983) Microbiol. Rev. 47, 1-45. [PubMed] Leinfelder, W., Zehelein, E., Mandrand-Berthelot, M.-A., and Boeck, A. (1988) Nature 331, 723-725. [PubMed] Liang, A. and Heckmann, K. (1993) Naturwissenschaften 80, 225-226. [PubMed] Lim, P. and Sears, B. B. (1992) J. Bacteriol. 174, 2606-2611. [PubMed] Noelling J., Pihl T., Vriesema A., Reeve J. (Unpublished) Organization and growth phase dependent transcription of methane genes in two regions of the Methanobacterium thermoautotrophicum genome. Ohama, T., Suzuki, T., Mori, M., Osawa, S., Ueda, T., Watanabe, K., and Nakase, T. (1993) Nucl. Acids Res. 21: 4039-4045. [PubMed] Olsen, O. (1987) Carlsberg Res. Comm. 52: 83-90. Osawa, S., Jukes, T. H., Watanabe, K., and Muto, A. (1992) Microbiol. Rev. 56: 229-264. [PubMed] Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, et al. (1989). High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci U S A 86 (6): 1836-1840. [PubMed] Pritchard, A.E., Seilhamer, J.J., Mahalingam, R. Sable, C.L., Venuti, S.E., and Cummings, D.J. (1990) Nucleic Acids Research 18: 173-180. [PubMed] Santos, M.A., Keith, G., and Tuite, M.F. (1993) EMBO J. 12: 607-616. [PubMed] Schneider, S.U. and de Groot, E.J. (1991) Curr. Genet. 20: 173-175. [PubMed] Schneider, S.U., Leible, M.B., and Yang, X.-P. (1989) Mol. Gen. Genet. 218: 445-452. [PubMed] Spiers, A. J. and Berquist, P. L. (1992) J. Bacter. 174: 7533-7541. [PubMed] Yokobori, S., Ueda, T., and Watanabe, K. (1993) J. Mol. Evol. 36: 1-8. [PubMed] ------------------------------------------------------------------------------- Comments and questions to info@ncbi.nlm.nih.gov Credits: Andrzej (Anjay) Elzanowski, Jim Ostell, Detlef Leipe, Vladimir Soussov.