// Boost.Geometry // Copyright (c) 2015-2016 Oracle and/or its affiliates. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP #include #include #include #include #include #include #include namespace boost { namespace geometry { namespace detail { /*! \brief The solution of the inverse problem of geodesics on latlong coordinates, Forsyth-Andoyer-Lambert type approximation with first order terms. \author See - Technical Report: PAUL D. THOMAS, MATHEMATICAL MODELS FOR NAVIGATION SYSTEMS, 1965 http://www.dtic.mil/docs/citations/AD0627893 - Technical Report: PAUL D. THOMAS, SPHEROIDAL GEODESICS, REFERENCE SYSTEMS, AND LOCAL GEOMETRY, 1970 http://www.dtic.mil/docs/citations/AD703541 */ template struct andoyer_inverse { typedef result_inverse result_type; template static inline result_type apply(T1 const& lon1, T1 const& lat1, T2 const& lon2, T2 const& lat2, Spheroid const& spheroid) { CT const c0 = CT(0); CT const c1 = CT(1); CT const pi = math::pi(); result_type result; // coordinates in radians if ( math::equals(lon1, lon2) && math::equals(lat1, lat2) ) { result.set(c0, c0); return result; } CT const dlon = lon2 - lon1; CT const sin_dlon = sin(dlon); CT const cos_dlon = cos(dlon); CT const sin_lat1 = sin(lat1); CT const cos_lat1 = cos(lat1); CT const sin_lat2 = sin(lat2); CT const cos_lat2 = cos(lat2); // H,G,T = infinity if cos_d = 1 or cos_d = -1 // lat1 == +-90 && lat2 == +-90 // lat1 == lat2 && lon1 == lon2 CT cos_d = sin_lat1*sin_lat2 + cos_lat1*cos_lat2*cos_dlon; // on some platforms cos_d may be outside valid range if (cos_d < -c1) cos_d = -c1; else if (cos_d > c1) cos_d = c1; CT const d = acos(cos_d); // [0, pi] CT const sin_d = sin(d); // [-1, 1] CT const f = detail::flattening(spheroid); if ( BOOST_GEOMETRY_CONDITION(EnableDistance) ) { CT const K = math::sqr(sin_lat1-sin_lat2); CT const L = math::sqr(sin_lat1+sin_lat2); CT const three_sin_d = CT(3) * sin_d; CT const one_minus_cos_d = c1 - cos_d; CT const one_plus_cos_d = c1 + cos_d; // cos_d = 1 or cos_d = -1 means that the points are antipodal CT const H = math::equals(one_minus_cos_d, c0) ? c0 : (d + three_sin_d) / one_minus_cos_d; CT const G = math::equals(one_plus_cos_d, c0) ? c0 : (d - three_sin_d) / one_plus_cos_d; CT const dd = -(f/CT(4))*(H*K+G*L); CT const a = get_radius<0>(spheroid); result.distance = a * (d + dd); } else { result.distance = c0; } if ( BOOST_GEOMETRY_CONDITION(EnableAzimuth) ) { // sin_d = 0 <=> antipodal points if (math::equals(sin_d, c0)) { // T = inf // dA = inf // azimuth = -inf if (lat1 <= lat2) result.azimuth = c0; else result.azimuth = pi; } else { CT const c2 = CT(2); CT A = c0; CT U = c0; if ( ! math::equals(cos_lat2, c0) ) { CT const tan_lat2 = sin_lat2/cos_lat2; CT const M = cos_lat1*tan_lat2-sin_lat1*cos_dlon; A = atan2(sin_dlon, M); CT const sin_2A = sin(c2*A); U = (f/ c2)*math::sqr(cos_lat1)*sin_2A; } CT V = c0; if ( ! math::equals(cos_lat1, c0) ) { CT const tan_lat1 = sin_lat1/cos_lat1; CT const N = cos_lat2*tan_lat1-sin_lat2*cos_dlon; CT const B = atan2(sin_dlon, N); CT const sin_2B = sin(c2*B); V = (f/ c2)*math::sqr(cos_lat2)*sin_2B; } CT const T = d / sin_d; CT const dA = V*T-U; result.azimuth = A - dA; // even with sin_d == 0 checked above if the second point // is somewhere in the antipodal area T may still be great // therefore dA may be great and the resulting azimuth // may be some more or less arbitrary angle if (A >= c0) // A indicates Eastern hemisphere { if (dA >= c0) // A altered towards 0 { if ((result.azimuth) < c0) result.azimuth = c0; } else // dA < 0, A altered towards pi { if (result.azimuth > pi) result.azimuth = pi; } } else // A indicates Western hemisphere { if (dA <= c0) // A altered towards 0 { if (result.azimuth > c0) result.azimuth = c0; } else // dA > 0, A altered towards -pi { CT const minus_pi = -pi; if ((result.azimuth) < minus_pi) result.azimuth = minus_pi; } } } } else { result.azimuth = c0; } return result; } }; }}} // namespace boost::geometry::detail #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_ANDOYER_INVERSE_HPP