// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2011-2012 Barend Gehrels, Amsterdam, the Netherlands. // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP #define BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP #include #include #include #include #include namespace boost { namespace geometry { namespace strategy { namespace within { /*! \brief Within detection using winding rule, but checking if enclosing ring is counter clockwise and, if so, reverses the result \ingroup strategies \tparam Point \tparam_point \tparam Reverse True if parameter should be reversed \tparam PointOfSegment \tparam_segment_point \tparam CalculationType \tparam_calculation \author Barend Gehrels \note The implementation is inspired by terralib http://www.terralib.org (LGPL) \note but totally revised afterwards, especially for cases on segments \note Only dependant on "side", -> agnostic, suitable for spherical/latlong \qbk{ [heading See also] [link geometry.reference.algorithms.within.within_3_with_strategy within (with strategy)] } */ template < bool Reverse, typename Point, typename PointOfSegment = Point, typename CalculationType = void > class oriented_winding { typedef typename select_calculation_type < Point, PointOfSegment, CalculationType >::type calculation_type; typedef typename strategy::side::services::default_strategy < typename cs_tag::type >::type strategy_side_type; /*! subclass to keep state */ class counter { int m_count; bool m_touches; calculation_type m_sum_area; inline int code() const { return m_touches ? 0 : m_count == 0 ? -1 : 1; } inline int clockwise_oriented_code() const { return (m_sum_area > 0) ? code() : -code(); } inline int oriented_code() const { return Reverse ? -clockwise_oriented_code() : clockwise_oriented_code(); } public : friend class oriented_winding; inline counter() : m_count(0) , m_touches(false) , m_sum_area(0) {} inline void add_to_area(calculation_type triangle) { m_sum_area += triangle; } }; template static inline int check_touch(Point const& point, PointOfSegment const& seg1, PointOfSegment const& seg2, counter& state) { calculation_type const p = get(point); calculation_type const s1 = get(seg1); calculation_type const s2 = get(seg2); if ((s1 <= p && s2 >= p) || (s2 <= p && s1 >= p)) { state.m_touches = true; } return 0; } template static inline int check_segment(Point const& point, PointOfSegment const& seg1, PointOfSegment const& seg2, counter& state) { calculation_type const p = get(point); calculation_type const s1 = get(seg1); calculation_type const s2 = get(seg2); // Check if one of segment endpoints is at same level of point bool eq1 = math::equals(s1, p); bool eq2 = math::equals(s2, p); if (eq1 && eq2) { // Both equal p -> segment is horizontal (or vertical for D=0) // The only thing which has to be done is check if point is ON segment return check_touch<1 - D>(point, seg1, seg2, state); } return eq1 ? (s2 > p ? 1 : -1) // Point on level s1, UP/DOWN depending on s2 : eq2 ? (s1 > p ? -1 : 1) // idem : s1 < p && s2 > p ? 2 // Point between s1 -> s2 --> UP : s2 < p && s1 > p ? -2 // Point between s2 -> s1 --> DOWN : 0; } public : // Typedefs and static methods to fulfill the concept typedef Point point_type; typedef PointOfSegment segment_point_type; typedef counter state_type; static inline bool apply(Point const& point, PointOfSegment const& s1, PointOfSegment const& s2, counter& state) { state.add_to_area(get<0>(s2) * get<1>(s1) - get<0>(s1) * get<1>(s2)); int count = check_segment<1>(point, s1, s2, state); if (count != 0) { int side = strategy_side_type::apply(s1, s2, point); if (side == 0) { // Point is lying on segment state.m_touches = true; state.m_count = 0; return false; } // Side is NEG for right, POS for left. // The count is -2 for down, 2 for up (or -1/1) // Side positive thus means UP and LEFTSIDE or DOWN and RIGHTSIDE // See accompagnying figure (TODO) if (side * count > 0) { state.m_count += count; } } return ! state.m_touches; } static inline int result(counter const& state) { return state.oriented_code(); } }; }} // namespace strategy::within }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGY_AGNOSTIC_POINT_IN_POLY_ORIENTED_WINDING_HPP